Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
57e12429
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
57e12429
编写于
8月 22, 2020
作者:
Z
zhupengyang
提交者:
GitHub
8月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
var, std: input->x, adjust attr order, remove out, add docs (#26446)
上级
e966d0b6
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
297 addition
and
244 deletion
+297
-244
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+1
-4
python/paddle/fluid/tests/unittests/test_std_layer.py
python/paddle/fluid/tests/unittests/test_std_layer.py
+95
-56
python/paddle/fluid/tests/unittests/test_variance_layer.py
python/paddle/fluid/tests/unittests/test_variance_layer.py
+95
-56
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+12
-12
python/paddle/tensor/stat.py
python/paddle/tensor/stat.py
+94
-116
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
57e12429
...
...
@@ -12301,13 +12301,10 @@ def clip_by_norm(x, max_norm, name=None):
return out
@deprecated(since="2.0.0", update_to="paddle.mean")
@templatedoc()
def mean(x, name=None):
"""
:alias_main: paddle.mean
:alias: paddle.mean,paddle.tensor.mean,paddle.tensor.stat.mean
:old_api: paddle.fluid.layers.mean
${comment}
Args:
...
...
python/paddle/fluid/tests/unittests/test_std_layer.py
浏览文件 @
57e12429
...
...
@@ -15,65 +15,104 @@
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
class
TestStdLayer
(
unittest
.
TestCase
):
def
ref_std
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
False
):
ddof
=
1
if
unbiased
else
0
if
isinstance
(
axis
,
int
):
axis
=
(
axis
,
)
if
axis
is
not
None
:
axis
=
tuple
(
axis
)
return
np
.
std
(
x
,
axis
=
axis
,
ddof
=
ddof
,
keepdims
=
keepdim
)
class
TestStdAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_dtype
=
"float64"
self
.
_input
=
np
.
random
.
random
([
2
,
3
,
4
,
5
]).
astype
(
self
.
_dtype
)
def
static
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
data
=
fluid
.
data
(
name
=
"data"
,
dtype
=
self
.
_dtype
,
shape
=
[
None
,
3
,
4
,
5
])
out
=
prog
.
current_block
().
create_var
(
dtype
=
self
.
_dtype
,
shape
=
[
2
,
3
,
4
,
5
])
paddle
.
std
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
,
out
=
out
)
exe
=
fluid
.
Executor
(
self
.
_place
)
return
exe
.
run
(
feed
=
{
"data"
:
self
.
_input
},
program
=
prog
,
fetch_list
=
[
out
])[
0
]
def
dynamic
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
with
fluid
.
dygraph
.
guard
(
self
.
_place
):
data
=
fluid
.
dygraph
.
to_variable
(
self
.
_input
)
out
=
paddle
.
std
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
)
return
out
.
numpy
()
def
numpy
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
ddof
=
1
if
unbiased
else
0
axis
=
tuple
(
axis
)
if
isinstance
(
axis
,
list
)
else
axis
return
np
.
std
(
self
.
_input
,
axis
=
axis
,
keepdims
=
keepdim
,
ddof
=
ddof
)
def
test_equal
(
self
):
places
=
[]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
_place
=
place
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(),
self
.
static
()))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
0
,
2
]),
self
.
dynamic
(
axis
=
[
0
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
1
,
3
],
keepdim
=
True
),
self
.
dynamic
(
axis
=
[
1
,
3
],
keepdim
=
True
)))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
unbiased
=
False
),
self
.
dynamic
(
unbiased
=
False
)))
self
.
dtype
=
'float64'
self
.
shape
=
[
1
,
3
,
4
,
10
]
self
.
axis
=
[
1
,
3
]
self
.
keepdim
=
False
self
.
unbiased
=
True
self
.
set_attrs
()
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
\
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
set_attrs
(
self
):
pass
def
static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
shape
,
self
.
dtype
)
out
=
paddle
.
std
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x
},
fetch_list
=
[
out
])
return
res
[
0
]
def
dygraph
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
self
.
x
)
out
=
paddle
.
std
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
paddle
.
enable_static
()
return
out
.
numpy
()
def
test_api
(
self
):
out_ref
=
ref_std
(
self
.
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
out_dygraph
=
self
.
dygraph
()
out_static
=
self
.
static
()
for
out
in
[
out_dygraph
,
out_static
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
))
self
.
assertTrue
(
np
.
equal
(
out_ref
.
shape
,
out
.
shape
).
all
())
class
TestStdAPI_dtype
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
dtype
=
'float32'
class
TestStdAPI_axis_int
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
axis
=
2
class
TestStdAPI_axis_list
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
axis
=
[
1
,
2
]
class
TestStdAPI_axis_tuple
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
axis
=
(
1
,
3
)
class
TestStdAPI_keepdim
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
keepdim
=
False
class
TestStdAPI_unbiased
(
TestStdAPI
):
def
set_attrs
(
self
):
self
.
unbiased
=
False
class
TestStdAPI_alias
(
unittest
.
TestCase
):
def
test_alias
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
np
.
array
([
10
,
12
],
'float32'
))
out1
=
paddle
.
std
(
x
).
numpy
()
out2
=
paddle
.
tensor
.
std
(
x
).
numpy
()
out3
=
paddle
.
tensor
.
stat
.
std
(
x
).
numpy
()
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
))
self
.
assertTrue
(
np
.
allclose
(
out1
,
out3
))
paddle
.
enable_static
()
class
TestStdError
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
[
2
,
3
,
4
],
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
std
,
x
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_variance_layer.py
浏览文件 @
57e12429
...
...
@@ -15,65 +15,104 @@
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
class
TestVarianceLayer
(
unittest
.
TestCase
):
def
ref_var
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
False
):
ddof
=
1
if
unbiased
else
0
if
isinstance
(
axis
,
int
):
axis
=
(
axis
,
)
if
axis
is
not
None
:
axis
=
tuple
(
axis
)
return
np
.
var
(
x
,
axis
=
axis
,
ddof
=
ddof
,
keepdims
=
keepdim
)
class
TestVarAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_dtype
=
"float64"
self
.
_input
=
np
.
random
.
random
([
2
,
3
,
4
,
5
]).
astype
(
self
.
_dtype
)
def
static
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
prog
=
fluid
.
Program
()
with
fluid
.
program_guard
(
prog
):
data
=
fluid
.
data
(
name
=
"data"
,
dtype
=
self
.
_dtype
,
shape
=
[
None
,
3
,
4
,
5
])
out
=
prog
.
current_block
().
create_var
(
dtype
=
self
.
_dtype
,
shape
=
[
2
,
3
,
4
,
5
])
paddle
.
var
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
,
out
=
out
)
exe
=
fluid
.
Executor
(
self
.
_place
)
return
exe
.
run
(
feed
=
{
"data"
:
self
.
_input
},
program
=
prog
,
fetch_list
=
[
out
])[
0
]
def
dynamic
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
with
fluid
.
dygraph
.
guard
(
self
.
_place
):
data
=
fluid
.
dygraph
.
to_variable
(
self
.
_input
)
out
=
paddle
.
var
(
input
=
data
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
)
return
out
.
numpy
()
def
numpy
(
self
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
):
ddof
=
1
if
unbiased
else
0
axis
=
tuple
(
axis
)
if
isinstance
(
axis
,
list
)
else
axis
return
np
.
var
(
self
.
_input
,
axis
=
axis
,
keepdims
=
keepdim
,
ddof
=
ddof
)
def
test_equal
(
self
):
places
=
[
fluid
.
CPUPlace
()]
if
fluid
.
core
.
is_compiled_with_cuda
():
places
.
append
(
fluid
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
_place
=
place
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(),
self
.
static
()))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
0
,
2
]),
self
.
dynamic
(
axis
=
[
0
,
2
])))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
axis
=
[
1
,
3
],
keepdim
=
True
),
self
.
dynamic
(
axis
=
[
1
,
3
],
keepdim
=
True
)))
self
.
assertTrue
(
np
.
allclose
(
self
.
numpy
(
unbiased
=
False
),
self
.
dynamic
(
unbiased
=
False
)))
self
.
dtype
=
'float64'
self
.
shape
=
[
1
,
3
,
4
,
10
]
self
.
axis
=
[
1
,
3
]
self
.
keepdim
=
False
self
.
unbiased
=
True
self
.
set_attrs
()
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
self
.
place
=
paddle
.
CUDAPlace
(
0
)
\
if
paddle
.
fluid
.
core
.
is_compiled_with_cuda
()
\
else
paddle
.
CPUPlace
()
def
set_attrs
(
self
):
pass
def
static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
self
.
shape
,
self
.
dtype
)
out
=
paddle
.
var
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x
},
fetch_list
=
[
out
])
return
res
[
0
]
def
dygraph
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
self
.
x
)
out
=
paddle
.
var
(
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
paddle
.
enable_static
()
return
out
.
numpy
()
def
test_api
(
self
):
out_ref
=
ref_var
(
self
.
x
,
self
.
axis
,
self
.
unbiased
,
self
.
keepdim
)
out_dygraph
=
self
.
dygraph
()
out_static
=
self
.
static
()
for
out
in
[
out_dygraph
,
out_static
]:
self
.
assertTrue
(
np
.
allclose
(
out_ref
,
out
))
self
.
assertTrue
(
np
.
equal
(
out_ref
.
shape
,
out
.
shape
).
all
())
class
TestVarAPI_dtype
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
dtype
=
'float32'
class
TestVarAPI_axis_int
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
axis
=
2
class
TestVarAPI_axis_list
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
axis
=
[
1
,
2
]
class
TestVarAPI_axis_tuple
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
axis
=
(
1
,
3
)
class
TestVarAPI_keepdim
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
keepdim
=
False
class
TestVarAPI_unbiased
(
TestVarAPI
):
def
set_attrs
(
self
):
self
.
unbiased
=
False
class
TestVarAPI_alias
(
unittest
.
TestCase
):
def
test_alias
(
self
):
paddle
.
disable_static
()
x
=
paddle
.
to_tensor
(
np
.
array
([
10
,
12
],
'float32'
))
out1
=
paddle
.
var
(
x
).
numpy
()
out2
=
paddle
.
tensor
.
var
(
x
).
numpy
()
out3
=
paddle
.
tensor
.
stat
.
var
(
x
).
numpy
()
self
.
assertTrue
(
np
.
allclose
(
out1
,
out2
))
self
.
assertTrue
(
np
.
allclose
(
out1
,
out3
))
paddle
.
enable_static
()
class
TestVarError
(
unittest
.
TestCase
):
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
data
(
'X'
,
[
2
,
3
,
4
],
'int32'
)
self
.
assertRaises
(
TypeError
,
paddle
.
var
,
x
)
if
__name__
==
'__main__'
:
...
...
python/paddle/tensor/creation.py
浏览文件 @
57e12429
...
...
@@ -361,14 +361,14 @@ def ones_like(x, dtype=None, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
"""
return
full_like
(
x
=
x
,
fill_value
=
1
,
dtype
=
dtype
,
name
=
name
)
...
...
@@ -451,14 +451,14 @@ def zeros_like(x, dtype=None, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
import paddle
import numpy as np
paddle.disable_static()
paddle.disable_static()
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
x = paddle.to_tensor(np.array([1,2,3], dtype='float32'))
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
"""
return
full_like
(
x
=
x
,
fill_value
=
0
,
dtype
=
dtype
,
name
=
name
)
...
...
python/paddle/tensor/stat.py
浏览文件 @
57e12429
...
...
@@ -40,9 +40,9 @@ def mean(x, axis=None, keepdim=False, name=None):
should be in range [-D, D), where D is the dimensions of ``x`` . If
``axis`` or element(s) of ``axis`` is less than 0, it works the
same way as :math:`axis + D` . If ``axis`` is None, mean is
calculated
along
all elements of ``x``. Default is None.
calculated
over
all elements of ``x``. Default is None.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keep
_
dim`` is True, the dimensions of
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
...
...
@@ -67,7 +67,7 @@ def mean(x, axis=None, keepdim=False, name=None):
[[13, 14, 15, 16],
[17, 18, 19, 20],
[21, 22, 23, 24]]], 'float32')
x = paddle.to_
variable
(x)
x = paddle.to_
tensor
(x)
out1 = paddle.mean(x)
# [12.5]
out2 = paddle.mean(x, axis=-1)
...
...
@@ -111,142 +111,120 @@ def mean(x, axis=None, keepdim=False, name=None):
return
out
def
var
(
input
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
,
out
=
Non
e
,
name
=
None
):
def
var
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
Fals
e
,
name
=
None
):
"""
:alias_main: paddle.var
:alias: paddle.var,paddle.tensor.var,paddle.tensor.stat.var
Computes the variance of the input Variable's elements along the specified
axis.
Computes the variance of ``x`` along ``axis`` .
Args:
input (Variable): The input Variable to be computed variance, with data
type float32 and float64 supported.
axis (list|int, optional): The axis along which the variance is computed.
If `None`, compute the variance over all elements of :attr:`input`
and return a Variable with a single element, otherwise it must be in
the range :math:`[-rank(input), rank(input))`. If :math:`axis[i] < 0`,
the axis to compute is :math:`rank(input) + axis[i]`.
keepdim (bool, optional): Whether to reserve the reduced dimensions in
the output Variable. The dimensions in :attr:`axis` will be squeezed
and the result Variable will have :attr:`len(axis)` fewer dimensions
than the :attr:`input` unless :attr:`keepdim` is true, default False.
unbiased (bool, optional): Whether to compute variance via the unbiased
estimator, in which the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along :attr:`axis`, otherwise the divisor is :math:`N`. Default True.
out (Variable, optional): Alternate output Variable to store the result
variance. Default None.
name (str, optional): The name for this layer. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`. Default None.
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
variance calculations. ``axis`` should be int, list(int) or
tuple(int). If ``axis`` is a list/tuple of dimension(s), variance
is calculated along all element(s) of ``axis`` . ``axis`` or
element(s) of ``axis`` should be in range [-D, D), where D is the
dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is less
than 0, it works the same way as :math:`axis + D` . If ``axis`` is
None, variance is calculated over all elements of ``x``. Default
is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along ``axis`` , otherwise the divisor is :math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: The result variance with the same dtype as :attr:`input`.
If :attr:`out = None`, returns a new Variable containing the
variance, otherwise returns a reference to the output Variable.
Tensor, results of variance along ``axis`` of ``x``, with the same data
type as ``x``.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid.dygraph as dg
a = np.array([[1.0, 2.0], [3.0, 4.0]]).astype("float32")
with dg.guard():
data = dg.to_variable(a)
variance = paddle.var(data, axis=[1])
print(variance.numpy())
# [0.5 0.5]
import numpy as np
paddle.disable_static()
x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
x = paddle.to_tensor(x)
out1 = paddle.var(x)
# [2.66666667]
out2 = paddle.var(x, axis=1)
# [1. 4.33333333]
"""
dtype
=
convert_dtype
(
input
.
dtype
)
if
dtype
not
in
[
"float32"
,
"float64"
]:
raise
ValueError
(
"Layer tensor.var() only supports floating-point "
"dtypes, but received {}."
.
format
(
dtype
))
rank
=
len
(
input
.
shape
)
axes
=
axis
if
axis
!=
None
and
axis
!=
[]
else
range
(
rank
)
axes
=
[
e
if
e
>=
0
else
e
+
rank
for
e
in
axes
]
inp_shape
=
input
.
shape
if
in_dygraph_mode
()
else
layers
.
shape
(
input
)
mean
=
layers
.
reduce_mean
(
input
,
dim
=
axis
,
keep_dim
=
True
,
name
=
name
)
tmp
=
layers
.
reduce_mean
(
(
input
-
mean
)
**
2
,
dim
=
axis
,
keep_dim
=
keepdim
,
name
=
name
)
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'var'
)
u
=
mean
(
x
,
axis
,
True
,
name
)
out
=
paddle
.
sum
((
x
-
u
)
**
2
,
axis
,
keepdim
=
keepdim
,
name
=
name
)
n
=
paddle
.
cast
(
paddle
.
numel
(
x
),
x
.
dtype
)
\
/
paddle
.
cast
(
paddle
.
numel
(
out
),
x
.
dtype
)
if
unbiased
:
n
=
1
for
i
in
axes
:
n
*=
inp_shape
[
i
]
if
not
in_dygraph_mode
():
n
=
layers
.
cast
(
n
,
dtype
)
zero_const
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
dtype
,
value
=
0.0
)
factor
=
where
(
n
>
1.0
,
n
/
(
n
-
1.0
),
zero_const
)
else
:
factor
=
n
/
(
n
-
1.0
)
if
n
>
1.0
else
0.0
tmp
*=
factor
if
out
:
layers
.
assign
(
input
=
tmp
,
output
=
out
)
return
out
else
:
return
tmp
def
std
(
input
,
axis
=
None
,
keepdim
=
False
,
unbiased
=
True
,
out
=
None
,
name
=
None
):
"""
:alias_main: paddle.std
:alias: paddle.std,paddle.tensor.std,paddle.tensor.stat.std
one_const
=
paddle
.
ones
([
1
],
x
.
dtype
)
n
=
where
(
n
>
one_const
,
n
-
1.
,
one_const
)
out
/=
n
return
out
Computes the standard-deviation of the input Variable's elements along the specified
axis.
def
std
(
x
,
axis
=
None
,
unbiased
=
True
,
keepdim
=
False
,
name
=
None
):
"""
Computes the standard-deviation of ``x`` along ``axis`` .
Args:
input (Variable): The input Variable to be computed standard-deviation, with data
type float32 and float64 supported.
axis (list|int, optional): The axis along which the standard-deviation is computed.
If `None`, compute the standard-deviation over all elements of :attr:`input`
and return a Variable with a single element, otherwise it must be in
the range :math:`[-rank(input), rank(input))`. If :math:`axis[i] < 0`,
the axis to compute is :math:`rank(input) + axis[i]`.
keepdim (bool, optional): Whether to reserve the reduced dimensions in
the output Variable. The dimensions in :attr:`axis` will be squeezed
and the result Variable will have :attr:`len(axis)` fewer dimensions
than the :attr:`input` unless :attr:`keepdim` is true, default False.
unbiased (bool, optional): Whether to compute standard-deviation via the unbiased
estimator, in which the divisor used in the computation is
:math:`N - 1`, where :math:`N` represents the number of elements
along :attr:`axis`, otherwise the divisor is :math:`N`. Default True.
out (Variable, optional): Alternate output Variable to store the result
standard-deviation . Default None.
name (str, optional): The name for this layer. Normally there is no
need for user to set this property. For more information, please
refer to :ref:`api_guide_Name`. Default None.
x (Tensor): The input Tensor with data type float32, float64.
axis (int|list|tuple, optional): The axis along which to perform
standard-deviation calculations. ``axis`` should be int, list(int)
or tuple(int). If ``axis`` is a list/tuple of dimension(s),
standard-deviation is calculated along all element(s) of ``axis`` .
``axis`` or element(s) of ``axis`` should be in range [-D, D),
where D is the dimensions of ``x`` . If ``axis`` or element(s) of
``axis`` is less than 0, it works the same way as :math:`axis + D` .
If ``axis`` is None, standard-deviation is calculated over all
elements of ``x``. Default is None.
unbiased (bool, optional): Whether to use the unbiased estimation. If
``unbiased`` is True, the standard-deviation is calculated via the
unbiased estimator. If ``unbiased`` is True, the divisor used in
the computation is :math:`N - 1`, where :math:`N` represents the
number of elements along ``axis`` , otherwise the divisor is
:math:`N`. Default is True.
keepdim (bool, optional): Whether to reserve the reduced dimension(s)
in the output Tensor. If ``keepdim`` is True, the dimensions of
the output Tensor is the same as ``x`` except in the reduced
dimensions(it is of size 1 in this case). Otherwise, the shape of
the output Tensor is squeezed in ``axis`` . Default is False.
name (str, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Returns:
Variable: The result standard-deviation with the same dtype as :attr:`input`.
If :attr:`out = None`, returns a new Variable containing the
standard-deviation , otherwise returns a reference to the output Variable.
Tensor, results of standard-deviation along ``axis`` of ``x``, with the
same data type as ``x``.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
# x is a Tensor variable with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x = fluid.data(name='x', shape=[2, 4], dtype='float32')
paddle.std(x) # [0.28252685]
paddle.std(x, axis=[0]) # [0.0707107, 0.07071075, 0.07071064, 0.1414217]
paddle.std(x, axis=[-1]) # [0.30956957, 0.29439208]
import numpy as np
paddle.disable_static()
x = np.array([[1.0, 2.0, 3.0], [1.0, 4.0, 5.0]])
x = paddle.to_tensor(x)
out1 = paddle.std(x)
# [1.63299316]
out2 = paddle.std(x, axis=1)
# [1. 2.081666]
"""
check_variable_and_dtype
(
input
,
'input'
,
[
'float32'
,
'float64'
],
'std'
)
tmp
=
var
(
input
,
axis
=
axis
,
keepdim
=
keepdim
,
unbiased
=
unbiased
,
name
=
name
)
tmp
=
layers
.
sqrt
(
tmp
)
if
out
is
not
None
:
layers
.
assign
(
input
=
tmp
,
output
=
out
)
return
out
else
:
return
tmp
if
not
in_dygraph_mode
():
check_variable_and_dtype
(
x
,
'x'
,
[
'float32'
,
'float64'
],
'std'
)
out
=
var
(
**
locals
())
return
paddle
.
sqrt
(
out
)
def
numel
(
x
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录