pybind.cc 111.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
56
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/op_info.h"
58
#include "paddle/fluid/framework/op_registry.h"
59
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/framework/parallel_executor.h"
61
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/framework/prune.h"
63
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/framework/scope_pool.h"
66
#include "paddle/fluid/framework/selected_rows_utils.h"
67
#include "paddle/fluid/framework/tensor_util.h"
68
#include "paddle/fluid/framework/trainer.h"
69
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
70
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
71
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
72
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
73
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
74 75
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
76
#include "paddle/fluid/prim/utils/utils.h"
77 78 79
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
80
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
81
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
82
#include "paddle/fluid/operators/common_infer_shape_functions.h"
83
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
84
#include "paddle/fluid/operators/py_func_op.h"
85
#include "paddle/fluid/platform/cpu_helper.h"
86
#include "paddle/fluid/platform/device/device_wrapper.h"
87
#include "paddle/fluid/platform/device_context.h"
88
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/platform/enforce.h"
90
#include "paddle/fluid/platform/init.h"
91
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
92
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
95 96 97
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
98
#include "paddle/fluid/pybind/cuda_streams_py.h"
99
#include "paddle/fluid/pybind/custom_device_py.h"
100
#include "paddle/fluid/pybind/distributed_py.h"
101
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
102
#include "paddle/fluid/pybind/imperative.h"
103
#include "paddle/fluid/pybind/io.h"
104
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
105
#include "paddle/fluid/pybind/xpu_streams_py.h"
106
#include "paddle/phi/backends/cpu/cpu_info.h"
107 108
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
109
#include "paddle/utils/none.h"
110 111 112
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
113
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
114
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
115
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
116
#include "paddle/fluid/pybind/box_helper_py.h"
117
#include "paddle/fluid/pybind/communication.h"
118
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
119
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
120
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
121
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
122
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
123
#include "paddle/fluid/pybind/generator_py.h"
124
#include "paddle/fluid/pybind/global_value_getter_setter.h"
125
#include "paddle/fluid/pybind/gloo_context_py.h"
126
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
127
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
128
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
129
#include "paddle/fluid/pybind/ir.h"
130
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
131
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
132
#include "paddle/fluid/pybind/pybind_variant_caster.h"
133
#include "paddle/phi/backends/device_manager.h"
134

135
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
136
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
137
#endif
138
#include "paddle/fluid/framework/data_type.h"
139 140
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
141 142
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
143
#include "paddle/fluid/pybind/reader_py.h"
144
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
145
#include "paddle/fluid/pybind/tensor_py.h"
146
#include "paddle/fluid/string/to_string.h"
147 148
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
149
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
150
#endif
151
#ifndef PADDLE_WITH_HIP
152
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
153
#endif
154
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
155 156
#endif

157
#ifdef PADDLE_WITH_ASCEND_CL
158
#include "paddle/fluid/platform/collective_helper.h"
159 160
#include "paddle/fluid/platform/device/npu/npu_info.h"
#include "paddle/fluid/platform/device/npu/npu_profiler.h"
161 162
#endif

163
#ifdef PADDLE_WITH_XPU
164
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
165
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
166 167
#endif

168
#ifdef PADDLE_WITH_CUSTOM_DEVICE
169
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
170 171 172
#include "paddle/phi/capi/capi.h"
#endif

173
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
174

J
jianghaicheng 已提交
175
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
176 177
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
178
#endif
179

180 181 182 183
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

Y
Yanghello 已提交
184 185 186 187
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
188
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
189 190 191
#include "paddle/fluid/pybind/fleet_py.h"
#endif

192 193 194 195
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
196
#if defined(PADDLE_WITH_RPC)
197 198 199
#include "paddle/fluid/pybind/rpc.h"
#endif

200
#include "paddle/fluid/eager/api/utils/global_utils.h"
201
#include "paddle/fluid/eager/nan_inf_utils.h"
202
#include "paddle/fluid/imperative/layout_autotune.h"
203 204
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
205 206
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
207 208
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
209 210
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
211 212
#include "pybind11/stl.h"

213
DECLARE_bool(use_mkldnn);
214

Q
Qiao Longfei 已提交
215 216
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
217 218 219
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
220

221
DECLARE_FILE_SYMBOLS(init_phi);
222
namespace paddle {
223
namespace pybind {
224

0
0x45f 已提交
225
PyTypeObject *g_framework_scope_pytype = nullptr;
226
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
227
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
228

229 230 231 232 233 234 235 236
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

237
bool IsCompiledWithCUDA() {
238 239 240 241 242 243 244
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

245 246 247 248 249 250 251 252
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

270 271
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
272 273 274 275 276 277
  return false;
#else
  return true;
#endif
}

278 279 280 281 282 283 284 285
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

286 287 288 289 290 291 292 293
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

294 295 296 297 298 299 300 301
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
316 317 318 319 320 321 322 323
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

324 325 326 327 328 329 330 331
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

332 333 334 335 336 337 338 339
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

340 341 342 343 344 345 346 347
bool IsCompiledWithMLU() {
#ifndef PADDLE_WITH_MLU
  return false;
#else
  return true;
#endif
}

348 349 350 351 352 353 354 355
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

356 357 358 359
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
360
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
361 362 363 364 365 366
    return true;
  else
    return false;
#endif
}

367 368 369 370
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
371
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
372 373 374 375 376 377
    return true;
  else
    return false;
#endif
}

378 379 380 381
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
382 383
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
384 385 386 387 388 389 390
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
391 392
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
393 394 395
#endif
}

396
bool IsCompiledWithBrpc() {
397
#ifndef PADDLE_WITH_DISTRIBUTE
398
  return false;
399
#else
400
  return true;
401
#endif
402 403
}

Y
update  
Yancey1989 已提交
404
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
405
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
406 407 408 409 410 411
  return true;
#else
  return false;
#endif
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
547 548
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
549 550
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
564 565
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
566 567
    }
    vec_res.emplace_back(
568
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
569 570 571 572 573 574 575 576 577 578 579 580
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
581 582
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
583 584 585 586 587 588 589 590 591 592 593 594
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
595 596 597
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
598 599 600 601
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
602 603
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
604 605 606 607
  }
  return vec_res;
}

O
OccupyMars2025 已提交
608
static void inline CreateVariableIfNotExist(
609 610
    const py::handle &py_handle,
    const framework::Scope &scope,
611 612 613 614 615 616
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
617 618
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
619 620 621 622 623 624 625 626 627 628 629 630 631
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
632 633 634
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
635 636 637 638 639
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
640 641 642 643 644
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
645 646
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
647
        PADDLE_ENFORCE_NOT_NULL(
648 649 650
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
651 652 653
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
654
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
655
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
656 657
        tensor_temp->mutable_data(
            exe->GetPlace(),
658
            framework::TransToPhiDataType(var_desc.GetDataType()));
659 660 661
      }
    }
  } else {
662 663
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
664 665 666 667 668
  }

  return;
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
685 686
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
687 688 689 690 691 692 693
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
694 695 696 697
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
698
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
699 700 701 702 703 704 705 706
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

707
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
708
  BindImperative(&m);
709
  BindEager(&m);
J
Jack Zhou 已提交
710
  BindEagerStringTensor(&m);
711
  BindCudaStream(&m);
J
james 已提交
712
  BindXpuStream(&m);
713
  BindJit(&m);
714
  BindCustomDevicePy(&m);
715

Y
Yu Yang 已提交
716
  // Not used, just make sure cpu_info.cc is linked.
717
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
718

Y
Refine  
Yu Yang 已提交
719
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
720

721 722
  AssertStaticGraphAndDygraphGradMakerNoDiff();

723
  m.doc() = "C++ core of PaddlePaddle";
724

725 726 727 728
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

729
  BindException(&m);
Y
Yu Yang 已提交
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

769 770 771 772 773 774 775 776 777 778
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
779 780 781 782
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
783 784
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
785 786
  m.def("set_num_threads", &platform::SetNumThreads);

787 788
  m.def("disable_signal_handler", &DisableSignalHandler);

789 790 791 792 793 794 795 796
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

797
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
798
  m.def("cudnn_version", &platform::DnnVersion);
799 800 801 802 803 804
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
805
#endif
806

Z
Zeng Jinle 已提交
807 808 809 810
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

811 812
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
813
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
814 815 816 817 818 819
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
820
      .def_static("gen_new_memory_pool_id",
821 822 823 824 825
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
826 827
#endif

Z
Zeng Jinle 已提交
828 829 830 831
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
832 833 834
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
835 836

    PADDLE_ENFORCE_NOT_NULL(
837 838 839 840
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
841

6
633WHU 已提交
842 843
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
844
    phi::DenseTensor tensor;
6
633WHU 已提交
845

S
Siming Dai 已提交
846
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
847
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
848
    }
849
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
850
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
851
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
852 853 854 855
    }
#endif
    return tensor;
  });
H
hong 已提交
856

857
  m.def("_create_loaded_parameter",
858 859
        [](const py::handle &vec_var_list,
           const Scope &scope,
860
           const Executor *executor) {
O
OccupyMars2025 已提交
861
          CreateVariableIfNotExist(vec_var_list, scope, executor);
862 863
        });

864 865 866 867 868 869
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
870 871
  });

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

897 898 899 900 901 902
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
903

S
sneaxiy 已提交
904
  m.def(
S
sneaxiy 已提交
905
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
906 907 908 909
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
910 911 912
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
929
            }
930
            all_kernels_info.emplace(op_type, kernel_types);
931
          }
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
948
                }
949 950
              } else {
                kernel_types.emplace_back(kernel_type_str);
951
              }
952
            }
953 954 955
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
956
          }
957
        }
958

959 960 961 962
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
963 964 965
           Return the registered kernels in paddle.

           Args:
966
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
967
           )DOC");
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1021 1022 1023 1024 1025 1026
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1027 1028 1029 1030 1031
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
1032

S
sneaxiy 已提交
1033 1034 1035
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1036
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1037

1038
  m.def("_set_fuse_parameter_group_size",
1039
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1040
  m.def("_set_fuse_parameter_memory_size",
1041
        &paddle::framework::ir::SetFuseParameterMemorySize);
1042

S
sneaxiy 已提交
1043 1044 1045
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1046 1047
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1048 1049
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1050 1051 1052
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
1064 1065 1066
             } else if (obj == Py_None) {
               // Check optional Tensor, use one un-initialized tensor to
               // indicate both Tensor and vector<Tensor> inputs
1067
               self.EmplaceBackInput(std::move(paddle::Tensor()));
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
1111 1112 1113 1114 1115
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
1116

1117
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1118 1119 1120

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1121
      .def(py::init<>())
1122
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1123
      .def("set_int",
1124 1125
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1126 1127 1128 1129 1130 1131 1132
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1133 1134
      .def(
          "get_tensor",
1135 1136
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1137 1138
          },
          py::return_value_policy::reference)
1139 1140
      .def("get_bytes",
           [](Variable &self) {
1141 1142 1143 1144 1145 1146
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1147
           })
S
Steffy-zxf 已提交
1148
      .def("set_string_list",
1149
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1150 1151
             *self.GetMutable<Strings>() = str_list;
           })
1152
      .def("set_vocab",
1153 1154
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1155 1156
             *self.GetMutable<Vocab>() = vocab;
           })
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1183
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1184 1185 1186 1187 1188 1189
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1190
#endif
1191 1192 1193
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1194 1195
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1206 1207
                scope_vec->size(),
                0,
1208 1209 1210 1211 1212
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1213 1214 1215 1216
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1217

S
sneaxiy 已提交
1218
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1219

0
0x45f 已提交
1220
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1234
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1235 1236 1237 1238 1239
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1240 1241 1242
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1243 1244
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1245 1246 1247 1248 1249 1250 1251
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1252
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1253

1254
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1255
           current scope, the variable would be created. Otherwise,
1256
           return the existing variable.
S
sneaxiy 已提交
1257 1258

           Args:
1259 1260
               name (str): the variable name.

S
sneaxiy 已提交
1261
           Returns:
1262
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1263
           )DOC",
1264
          py::return_value_policy::reference)
1265 1266 1267
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1268
           R"DOC(
1269
           Find variable named :code:`name` in the current scope or
1270
           its parent scope. Return None if not found.
1271

S
sneaxiy 已提交
1272 1273
           Args:
               name (str): the variable name.
1274

S
sneaxiy 已提交
1275
           Returns:
1276
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1277
           )DOC",
1278
           py::return_value_policy::reference)
1279
      .def("size", &Scope::Size)
1280 1281 1282
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1283 1284
           R"DOC(
           Find variable named :code:`name` in the current scope or
1285
           its parent scope. Return None if not found.
1286 1287 1288 1289 1290 1291 1292 1293

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1294
      .def(
1295 1296
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1297
          R"DOC(
S
sneaxiy 已提交
1298 1299 1300 1301 1302
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1303
          py::return_value_policy::reference)
1304 1305
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1306 1307
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1308
           )DOC")
1309 1310
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1311

1312 1313 1314 1315 1316 1317 1318 1319
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1320
        Create a new scope.
1321

S
sneaxiy 已提交
1322 1323 1324
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1325
      py::return_value_policy::reference);
S
sneaxiy 已提交
1326

Y
Yu Yang 已提交
1327 1328
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1329 1330
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1331 1332 1333 1334
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1335
        PADDLE_ENFORCE_EQ(
1336 1337
            info.Proto().SerializeToString(&str),
            true,
1338 1339
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1340 1341 1342
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1343 1344
    return ret_values;
  });
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1383 1384 1385 1386 1387 1388 1389 1390
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1391
              res = op_checker->GetDefaultAttrsMap();
1392 1393 1394 1395
            }
          }
          return res;
        });
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1412 1413 1414
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1415 1416 1417 1418 1419
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1420 1421 1422

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1423
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1424 1425 1426 1427 1428 1429 1430

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1431
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1432 1433 1434 1435 1436 1437 1438 1439
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1440
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1441 1442
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1443
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1444 1445
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1446 1447 1448
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1449
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1450
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1451
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1474 1475 1476 1477 1478 1479 1480 1481
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1482 1483 1484
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1485 1486 1487
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1488 1489 1490 1491 1492
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1493 1494 1495
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1496
  m.def("infer_no_need_buffer_slots",
1497 1498
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1526 1527 1528 1529 1530 1531
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1532 1533
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1534

1535
            Args:
1536 1537 1538
                   program (ProgramDesc): The original program.

             Returns:
1539
                   tuple(ProgramDesc, map<int, int>): The first part is
1540 1541 1542 1543
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1544 1545 1546 1547
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1548 1549
    VLOG(4) << s;
    return s;
1550 1551 1552 1553 1554 1555
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1556
  });
1557 1558 1559 1560
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1561 1562 1563
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1564 1565
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1566

Y
Yu Yang 已提交
1567
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1568
      .def_static("create",
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1584 1585 1586 1587
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1588
                    return context;
Q
qijun 已提交
1589
                  })
1590 1591 1592 1593
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1594
#ifndef PADDLE_WITH_XPU
1595 1596 1597
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1598
#else
W
Wilber 已提交
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1612 1613 1614 1615
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1616
      return context;
1617
#endif
1618 1619 1620 1621 1622
          })
      .def_static(
          "create",
          [](paddle::platform::MLUPlace &place)
              -> paddle::platform::DeviceContext * {
1623
#ifndef PADDLE_WITH_MLU
1624 1625 1626
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use MLUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with MLU support."));
1627 1628
#else
                    return new paddle::platform::MLUDeviceContext(place);
1629
#endif
1630 1631 1632 1633 1634
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1635
#ifndef PADDLE_WITH_ASCEND_CL
1636 1637 1638
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1639 1640
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1641
#endif
1642 1643 1644 1645
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1646
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1647 1648 1649 1650
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1651 1652
#else
                return new paddle::platform::CustomDeviceContext(place);
1653
#endif
1654 1655 1656 1657 1658
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1659
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1660 1661 1662
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1663
#else
L
Leo Chen 已提交
1664
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1677 1678 1679 1680
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1681 1682 1683 1684
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1685 1686
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1687
#endif
1688 1689 1690 1691 1692
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1693
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1694 1695 1696
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1697 1698 1699
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1700
          });
1701
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1702 1703
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1704 1705 1706
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1707
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1708
#else
R
ronnywang 已提交
1709
          VLOG(1) << string::Sprintf(
1710 1711 1712 1713
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1714
              "PaddlePaddle by: pip install paddlepaddle\n");
1715 1716 1717 1718 1719 1720
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1721
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1722
#else
R
ronnywang 已提交
1723
          VLOG(1) << string::Sprintf(
1724 1725 1726 1727
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1728
              "PaddlePaddle by: pip install paddlepaddle\n");
1729 1730 1731 1732 1733 1734
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1735
    devices = phi::DeviceManager::GetAllDeviceList();
1736
#else
R
ronnywang 已提交
1737
          VLOG(1) << string::Sprintf(
1738 1739 1740 1741
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1742
              "PaddlePaddle by: pip install paddlepaddle\n");
1743 1744 1745 1746 1747 1748
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1749
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1750
#else
R
ronnywang 已提交
1751
          VLOG(1) << string::Sprintf(
1752 1753 1754 1755 1756 1757
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1758
              "PaddlePaddle by: pip install paddlepaddle\n");
1759 1760 1761
#endif
    return devices;
  });
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1781

Y
Yu Yang 已提交
1782
  py::class_<OperatorBase>(m, "Operator")
1783 1784 1785 1786 1787 1788 1789
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1790 1791
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1792 1793 1794 1795 1796 1797
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1798
      .def("run",
1799 1800
           [](OperatorBase &self,
              const Scope &scope,
1801 1802 1803 1804
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1805
      .def("run",
1806 1807
           [](OperatorBase &self,
              const Scope &scope,
1808 1809 1810 1811
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1812
      .def("run",
1813 1814
           [](OperatorBase &self,
              const Scope &scope,
1815 1816 1817 1818
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1819
      .def("run",
1820 1821
           [](OperatorBase &self,
              const Scope &scope,
1822 1823 1824 1825
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1826
      .def("run",
1827 1828
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1829
              const platform::CUDAPinnedPlace &place) {
1830
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1831 1832
             self.Run(scope, place);
           })
1833
      .def("run",
1834 1835
           [](OperatorBase &self,
              const Scope &scope,
1836 1837 1838 1839
              const platform::MLUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
R
ronnywang 已提交
1840
      .def("run",
1841 1842
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1843 1844 1845 1846
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1847 1848 1849 1850 1851
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1852 1853
             return op.Outputs();
           })
Q
qijun 已提交
1854 1855
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1856
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1857
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1858 1859 1860 1861
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1862

1863 1864 1865
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1866 1867
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1868 1869 1870 1871 1872 1873
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1874 1875
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1876

1877 1878
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1879
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1880
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1881
      .def("close", &Executor::Close)
1882 1883
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1884
           py::call_guard<py::gil_scoped_release>())
1885 1886
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1887
           py::call_guard<py::gil_scoped_release>())
1888
      .def("init_for_dataset",
1889 1890 1891 1892
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1893
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1894
             pybind11::gil_scoped_release release;
1895 1896 1897 1898 1899 1900 1901
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1902
      .def("run_prepared_ctx",
1903 1904 1905
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1906
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1907
              std::map<std::string, FetchType *> *fetch_targets,
1908 1909
              bool create_local_scope = true,
              bool create_vars = true,
1910 1911 1912
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1913 1914 1915 1916 1917 1918 1919 1920
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1921
           })
1922
      .def("run_prepared_ctx",
1923 1924 1925 1926 1927
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1928 1929
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1930 1931
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1932
           })
1933
      .def("prepare",
1934 1935 1936
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1937 1938 1939 1940
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1941 1942
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1943 1944
           })
      .def("create_variables", &Executor::CreateVariables)
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1961

1962
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1963
      .def(py::init<>())
1964 1965 1966 1967 1968
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1969

1970
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1971
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1972
      .def("run",
1973
           [](StandaloneExecutor &self,
1974
              Scope *scope,
1975
              std::vector<std::string> feed_names,
1976 1977 1978 1979
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1980
               ret = self.Run(scope, feed_names, fetch_names);
1981 1982 1983
             }
             return py::cast(std::move(ret));
           })
1984 1985
      .def("dry_run",
           [](StandaloneExecutor &self,
1986
              Scope *scope,
1987
              const std::unordered_map<std::string, py::array> &input_dict) {
1988
             std::vector<phi::DenseTensor> feed_tensors;
1989 1990 1991
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1992
               phi::DenseTensor t;
1993 1994 1995 1996 1997 1998
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1999
             framework::interpreter::CostInfo cost_info;
2000 2001
             {
               pybind11::gil_scoped_release release;
2002
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
2003 2004
             }
             return cost_info;
H
hong 已提交
2005 2006
           });

D
dzhwinter 已提交
2007
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
2008
  m.def("init_glog", framework::InitGLOG);
2009
  m.def("init_memory_method", framework::InitMemoryMethod);
2010 2011 2012 2013
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
2014 2015 2016 2017 2018 2019 2020 2021
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
2022 2023
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
2024 2025 2026 2027 2028 2029 2030 2031 2032
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
2033
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
2034
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2035
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2036
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2037
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2038
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
2039
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2040
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2041
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2042
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
2043 2044
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
2045
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2046
  m.def("is_compiled_with_mlu", IsCompiledWithMLU);
2047
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2048
  m.def("supports_bfloat16", SupportsBfloat16);
2049
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2050 2051
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2052
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2053
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2054
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2055 2056 2057
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2077 2078 2079
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
2080 2081
  m.def(
      "run_cmd",
2082 2083
      [](const std::string &cmd,
         int time_out = -1,
2084
         int sleep_inter = -1) -> const std::string {
2085 2086
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2087
      },
2088 2089 2090
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2091 2092
  m.def(
      "shell_execute_cmd",
2093 2094 2095
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2096
         bool redirect_stderr = false) -> std::vector<std::string> {
2097 2098
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2099
      },
2100 2101 2102
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2103
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2104

2105
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2106 2107
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2108
    return platform::GetGPUComputeCapability(place.device) >= 53;
2109
  });
2110 2111 2112 2113
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
2114
#endif
2115

S
Steffy-zxf 已提交
2116
  m.def("set_feed_variable",
2117 2118
        static_cast<void (*)(  // NOLINT
            Scope *,
2119
            const phi::DenseTensor &,
2120 2121
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2122
  m.def("set_feed_variable",
2123 2124
        static_cast<void (*)(  // NOLINT
            Scope *,
2125
            const std::vector<std::string> &,
2126 2127
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2128
  m.def("get_fetch_variable",
2129 2130
        [](const Scope &scope,
           const std::string &var_name,
2131 2132 2133
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2134
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2135
          } else {
R
Ruibiao Chen 已提交
2136
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2137 2138
          }
        });
2139
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2140

X
Xin Pan 已提交
2141 2142
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2143 2144 2145 2146
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2147
  BindCostModel(&m);
2148
  BindConstValue(&m);
2149
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2150
  BindFleetExecutor(&m);
2151
  BindTCPStore(&m);
2152
  BindCommContextManager(&m);
2153
  BindAutoParallel(&m);
2154
  BindJitProperty(&m);
Y
Yu Yang 已提交
2155

Y
Yu Yang 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2165
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2166
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2167 2168 2169

    Examples:
        .. code-block:: python
2170

Z
Zeng Jinle 已提交
2171 2172 2173
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2174 2175 2176 2177
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2178 2179
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2180 2181 2182 2183
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2184 2185
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2186
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2187 2188
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2189 2190 2191
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2192 2193 2194
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2195 2196
      .def(
          "append",
2197
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2198 2199 2200 2201
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2202 2203
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2204
             Append a LoDensor to LoDTensorArray.
2205

2206 2207 2208 2209 2210
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2222
           )DOC")
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2234

2235
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2236
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2237
        )DOC")
2238 2239 2240 2241 2242 2243
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2244
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2245
                res[i] = py::cast(std::move(data));
2246 2247 2248
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2249
              } else {
R
Ruibiao Chen 已提交
2250
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2262

2263 2264
      .def(
          "append",
2265
          [](FetchList &self, const phi::DenseTensor &t) {
2266
            self.emplace_back();
2267
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2268 2269 2270 2271 2272 2273 2274 2275 2276
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2277
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2278 2279 2280 2281 2282 2283
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2284 2285

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2286
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2287
        )DOC")
2288 2289 2290 2291 2292 2293 2294 2295
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2296
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2297 2298
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2299
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2314

Y
Yu Yang 已提交
2315
  m.def("op_support_gpu", OpSupportGPU);
2316
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2317
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2318
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2319 2320 2321 2322 2323 2324 2325 2326
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2327 2328 2329 2330 2331 2332
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2333 2334

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2360
      });
D
dangqingqing 已提交
2361

2362
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2363 2364 2365
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2366 2367 2368
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2369 2370 2371
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2372
#endif
P
peizhilin 已提交
2373
#endif
Y
Yu Yang 已提交
2374

2375 2376
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2377
  m.def("npu_finalize", []() {
2378 2379
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2380 2381 2382
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2383
      platform::NPUDeviceGuard guard(devices[i]);
2384 2385 2386 2387
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2408 2409 2410 2411
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2412 2413 2414 2415
#ifdef PADDLE_WITH_MLU
  m.def("get_mlu_device_count", platform::GetMLUDeviceCount);
#endif

2416 2417 2418 2419 2420 2421
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2422 2423 2424 2425
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2426
      .value("kAll", platform::ProfilerState::kAll)
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2438
  m.def("set_tracer_option", platform::SetTracerOption);
2439 2440
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2441
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2442
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2443
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2444
    PADDLE_ENFORCE_EQ(
2445 2446
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2447 2448 2449
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2450
    callable.inc_ref();
2451 2452 2453 2454 2455 2456 2457 2458
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2459
  });
2460
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2461 2462 2463
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2464

2465
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2466 2467
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2468 2469
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2470 2471
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2472 2473 2474 2475 2476 2477 2478 2479 2480
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2481

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2545 2546
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2547 2548 2549 2550
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2551 2552 2553
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2554 2555 2556 2557 2558
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2559 2560 2561
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2562 2563

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2564 2565
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2566
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2567
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2568 2569
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2570 2571 2572 2573 2574 2575
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2599 2600 2601 2602 2603 2604 2605 2606
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2625 2626
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2627 2628
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2629

2630
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2631 2632 2633 2634
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2635
#endif  // PADDLE_WITH_CUDA
2636 2637 2638 2639 2640 2641 2642 2643
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2644

J
jianghaicheng 已提交
2645 2646
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2647 2648 2649
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2650 2651 2652 2653 2654 2655 2656
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2657
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2658 2659
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2660
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2671 2672 2673 2674
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2697 2698
                         option.get_type(),
                         option_name));
2699 2700 2701 2702 2703 2704 2705
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2706 2707
                         option_name,
                         option.first.cast<std::string>(),
2708 2709
                         option.second.cast<std::uint64_t>());
                   }
2710 2711 2712 2713 2714 2715
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2761 2762
                           option.second.get_type(),
                           option_key));
2763
                     }
2764 2765
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2766 2767 2768 2769 2770 2771
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2772 2773
                     element.second.get_type(),
                     option_name));
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2804 2805
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2806 2807 2808
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2809 2810
#endif

2811 2812 2813 2814 2815 2816 2817 2818
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2819
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2820 2821 2822 2823 2824 2825 2826
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

2827
  m.def("get_low_precision_op_list", [] {
2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
2839 2840
  });

2841 2842
  m.def("autotune_status", [] {
    py::dict res;
2843
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2844 2845 2846 2847 2848 2849 2850
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2851 2852
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2853

2854 2855
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2856

2857 2858
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2859 2860 2861
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2862

2863 2864 2865 2866 2867 2868
  m.def("check_numerics",
        [](const std::string &op_name, const paddle::Tensor &tensor) {
          VLOG(4) << "Check tensor whether has nan or inf.";
          egr::CheckTensorHasNanOrInf(op_name, tensor);
        });

D
dongdaxiang 已提交
2869
  BindFleetWrapper(&m);
2870
  BindIO(&m);
2871 2872 2873
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2874

T
Thunderbrook 已提交
2875
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2876
  BindHeterWrapper(&m);
2877
  BindMetrics(&m);
T
Thunderbrook 已提交
2878
#endif
T
Thunderbrook 已提交
2879
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2880
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2881 2882 2883
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2884
#endif
2885
  BindGlooWrapper(&m);
H
hutuxian 已提交
2886
  BindBoxHelper(&m);
H
hutuxian 已提交
2887 2888 2889
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2890
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2891
  BindNCCLWrapper(&m);
2892 2893 2894
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2895
#endif
F
flame 已提交
2896 2897
  BindGraph(&m);
  BindNode(&m);
2898
  BindPass(&m);
F
flame 已提交
2899
  BindInferenceApi(&m);
2900
  BindCompatible(&m);
2901
  BindDataset(&m);
Y
yaoxuefeng 已提交
2902
  BindGenerator(&m);
2903
#ifndef PADDLE_NO_PYTHON
2904 2905
  BindDistributed(&m);
#endif
2906 2907 2908
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2909
  BindAscendDevice(&m);
2910
#endif
Y
Yanghello 已提交
2911 2912 2913
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2914

T
tangwei12 已提交
2915
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2916 2917
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2918
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2919 2920
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2921 2922 2923 2924 2925
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2926 2927 2928 2929
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2930
#ifdef PADDLE_WITH_HETERPS
2931 2932
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2933 2934 2935
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2936
#endif
X
Xinger 已提交
2937
#if defined(PADDLE_WITH_RPC)
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2950
}
2951
}  // namespace pybind
2952
}  // namespace paddle