linalg.py 138.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dynamic_mode
28
from .creation import full
29
from .manipulation import cast
30
from .math import _get_reduce_axis
31

32 33
__all__ = []

34 35 36
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

37

38 39 40 41 42 43 44 45 46 47
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
48
        name (str, optional): The name of this layer. For more information, please refer to :ref:`api_guide_Name`. Default is None.
49 50 51 52

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

53
    Examples:
54 55 56

        .. code-block:: text

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
            x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
                 [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
            shape(x) =  [2,3,4]

            # Example 1
            perm0 = [1,0,2]
            y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                       [[ 5  6  7  8]  [17 18 19 20]]
                       [[ 9 10 11 12]  [21 22 23 24]]]
            shape(y_perm0) = [3,2,4]

            # Example 2
            perm1 = [2,1,0]
            y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                       [[ 2 14] [ 6 18] [10 22]]
                       [[ 3 15]  [ 7 19]  [11 23]]
                       [[ 4 16]  [ 8 20]  [12 24]]]
            shape(y_perm1) = [4,3,2]
75 76 77 78 79

    Examples:

        .. code-block:: python

80
            >>> import paddle
81

82 83 84 85
            >>> x = paddle.randn([2, 3, 4])
            >>> x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            >>> print(x_transposed.shape)
            [3, 2, 4]
86 87

    """
88
    if in_dynamic_mode():
89
        return _C_ops.transpose(x, perm)
90
    else:
91 92 93 94 95 96 97 98 99 100
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
101
                'uint16',
102 103 104 105
                'complex64',
                'complex128',
            ],
            'transpose',
106
        )
107 108 109 110
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
111
            raise ValueError(
112 113
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
114 115 116 117
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
118
            )
119 120 121 122 123 124 125
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
126

127 128 129 130 131 132 133 134 135 136
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
137 138


S
ShenLiang 已提交
139
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
140
    """
141 142
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
143
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
144

S
ShenLiang 已提交
145 146
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
147 148 149 150 151

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
152 153
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
154 155 156 157 158 159 160 161
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

162 163
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
164
      After the matrix multiply, the prepended dimension is removed.
165 166

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
167 168
      the matrix-vector product is obtained.

169 170 171 172 173 174 175 176 177
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
178
      out will be a (j, k, n, p) tensor.
179 180

    Args:
S
ShenLiang 已提交
181 182
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
183 184 185
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication. Default is False.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication. Default is False.
        name (str, optional): If set None, the layer will be named automatically. For more information, please refer to :ref:`api_guide_Name`. Default is None.
186 187

    Returns:
S
ShenLiang 已提交
188
        Tensor: The output Tensor.
189 190 191

    Examples:

C
Chen Long 已提交
192 193
        .. code-block:: python

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
            >>> import paddle

            >>> # vector * vector
            >>> x = paddle.rand([10])
            >>> y = paddle.rand([10])
            >>> z = paddle.matmul(x, y)
            >>> print(z.shape)
            []

            >>> # matrix * vector
            >>> x = paddle.rand([10, 5])
            >>> y = paddle.rand([5])
            >>> z = paddle.matmul(x, y)
            >>> print(z.shape)
            [10]

            >>> # batched matrix * broadcasted vector
            >>> x = paddle.rand([10, 5, 2])
            >>> y = paddle.rand([2])
            >>> z = paddle.matmul(x, y)
            >>> print(z.shape)
            [10, 5]

            >>> # batched matrix * batched matrix
            >>> x = paddle.rand([10, 5, 2])
            >>> y = paddle.rand([10, 2, 5])
            >>> z = paddle.matmul(x, y)
            >>> print(z.shape)
            [10, 5, 5]

            >>> # batched matrix * broadcasted matrix
            >>> x = paddle.rand([10, 1, 5, 2])
            >>> y = paddle.rand([1, 3, 2, 5])
            >>> z = paddle.matmul(x, y)
            >>> print(z.shape)
            [10, 3, 5, 5]
230 231

    """
232
    if in_dynamic_mode():
233
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
234 235 236 237 238
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
239

240 241 242 243 244 245 246
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
247
                        'uint16',
248 249 250 251 252 253 254 255
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
256

257
        __check_input(x, y)
258

259 260 261 262 263 264 265 266 267
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
268 269


myq406450149's avatar
myq406450149 已提交
270
def norm(x, p='fro', axis=None, keepdim=False, name=None):
271
    """
S
swtkiwi 已提交
272

273 274 275
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

276
    Note:
277 278 279 280 281
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

282
    Args:
myq406450149's avatar
myq406450149 已提交
283
        x (Tensor): The input tensor could be N-D tensor, and the input data
284
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
285
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
286
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
287
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
288 289
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
290
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
291
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
292
            Default value is `None`.
293 294 295 296 297 298 299 300
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
301
        Tensor: results of norm operation on the specified axis of input tensor,
302
        it's data type is the same as input's Tensor.
303

304 305
    Examples:
        .. code-block:: python
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
            >>> import paddle
            >>> x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            >>> print(x)
            Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[-12., -11., -10., -9. ],
              [-8. , -7. , -6. , -5. ],
              [-4. , -3. , -2. , -1. ]],
             [[ 0. ,  1. ,  2. ,  3. ],
              [ 4. ,  5. ,  6. ,  7. ],
              [ 8. ,  9. ,  10.,  11.]]])

            >>> # compute frobenius norm along last two dimensions.
            >>> out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
            >>> print(out_fro)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [17.43559647, 16.91153526, 16.73320007, 16.91153526])

            >>> # compute 2-order vector norm along last dimension.
            >>> out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
            >>> print(out_pnorm)
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[21.11871147, 13.19090557, 5.47722578 ],
             [3.74165750 , 11.22497177, 19.13112640]])

            >>> # compute 2-order  norm along [0,1] dimension.
            >>> out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
            >>> print(out_pnorm)
            Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [17.43559647, 16.91153526, 16.73320007, 16.91153526])

            >>> # compute inf-order  norm
            >>> out_pnorm = paddle.linalg.norm(x, p=float("inf"))
            >>> print(out_pnorm)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            12.)

            >>> out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            >>> print(out_pnorm)
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[12., 11., 10., 9. ],
             [8. , 7. , 6. , 7. ],
             [8. , 9. , 10., 11.]])

            >>> # compute -inf-order  norm
            >>> out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
            >>> print(out_pnorm)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.)

            >>> out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            >>> print(out_pnorm)
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 1., 2., 3.],
             [4., 5., 6., 5.],
             [4., 3., 2., 1.]])
362 363
    """

myq406450149's avatar
myq406450149 已提交
364
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
365 366 367 368
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
369
          dim (list, optional): None for last two dimensions. Default None.
370
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
371 372
          name (str, optional): The default value is None. Normally there is no need for
              user to set this property. For more information, please refer to :ref:`api_guide_Name`.
373 374 375 376 377
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
378

379
        if in_dynamic_mode():
F
From00 已提交
380
            if dim is None:
381 382
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
383 384
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
385
            if dim is None:
386 387 388
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
389
            )
390

391 392 393 394
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
395

396 397 398 399 400 401 402
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
403

404 405 406
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
407 408 409 410
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
411 412
          porder (float, optional): None for porder=2.0. Default None.
          axis (int, optional): None for last dimension. Default None.
413
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
414 415 416
          asvector (bool, optional): Whether keep the result as a vector, Default False.
          name (str, optional): The default value is None. Normally there is no need for
              user to set this property. For more information, please refer to :ref:`api_guide_Name`.
417
        """
418
        if in_dynamic_mode():
419 420
            if axis is None:
                axis = -1
421
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
422 423 424 425 426 427
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
428 429 430 431
                input,
                'input',
                ['float16', 'uint16', 'float32', 'float64'],
                'p_norm',
432
            )
433

434 435 436 437 438 439 440 441 442 443 444
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
445

446 447 448 449 450 451 452
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
453

454 455 456
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
457
        if in_dynamic_mode():
458
            out = _C_ops.abs(input)
459
            if porder == np.float64('inf'):
460
                return _C_ops.max(out, axis, keepdim)
461
            else:
462
                return _C_ops.min(out, axis, keepdim)
463 464 465 466 467 468 469 470 471 472 473
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
474
            reduce_all, axis = _get_reduce_axis(axis, x)
475 476 477 478 479 480 481 482 483 484 485 486 487
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
488

489
            return reduce_out
myq406450149's avatar
myq406450149 已提交
490

491
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
492 493 494 495
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
496
        if in_dynamic_mode():
497 498 499
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
500
            out = _C_ops.pow(sum_out, float(1.0 / porder))
501 502
            return out

myq406450149's avatar
myq406450149 已提交
503 504
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
505 506
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
507
        abs_out = block.create_variable_for_type_inference(
508 509 510 511 512
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
513
        pow_out = block.create_variable_for_type_inference(
514 515
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
516

517 518 519 520 521 522
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
523
        sum_out = block.create_variable_for_type_inference(
524 525
            dtype=block.input_dtype()
        )
526
        reduce_all, axis = _get_reduce_axis(axis, x)
527 528 529 530 531 532 533
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
534
                'reduce_all': reduce_all,
535 536 537 538 539 540 541 542
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
543 544
        return out

545 546 547
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
548
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
549 550
            else:
                raise ValueError(
551
                    f"only valid string values are 'fro', found {p}"
552
                )
553
        elif isinstance(p, (int, float)):
554 555 556 557 558 559 560 561
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
562
        else:
563
            raise ValueError(
564
                f"only valid p type is string or float, found {type(p)}"
565
            )
566

myq406450149's avatar
myq406450149 已提交
567 568
    if isinstance(axis, tuple):
        axis = list(axis)
569 570 571
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

572
    # calculate vector norm, where axis is int or list with only one integer
573
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
574 575
        if isinstance(p, str):
            if p == "fro":
576 577 578 579 580 581 582 583
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
584 585 586

            else:
                raise ValueError(
587
                    f"only valid string values are 'fro', found {p}"
588
                )
myq406450149's avatar
myq406450149 已提交
589
        elif isinstance(p, (int, float)):
590 591 592 593 594 595 596 597
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
598 599
        else:
            raise ValueError(
600 601 602 603 604
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
605 606
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
607 608 609
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
610 611
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
612
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
613 614 615
                    axis
                )
            )
616
        else:
617 618 619
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
620 621
    else:
        raise ValueError(
622 623 624 625
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
626 627


628
def dist(x, y, p=2, name=None):
629
    r"""
S
swtkiwi 已提交
630

631
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
632
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
633
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
634

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
658 659 660 661 662 663 664

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
665
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
666 667 668 669 670

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
671
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
672 673 674 675 676 677 678 679 680 681 682 683

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
684 685
        x (Tensor): 1-D to 6-D Tensor, its data type is bfloat16, float16, float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is bfloat16, float16, float32 or float64.
Z
Zhang Ting 已提交
686
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
687 688
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
689 690

    Returns:
691
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
692 693 694 695

    Examples:
        .. code-block:: python

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
            >>> import paddle

            >>> x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            >>> y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
            >>> out = paddle.dist(x, y, 0)
            >>> print(out)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            1.)

            >>> out = paddle.dist(x, y, 2)
            >>> print(out)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.)

            >>> out = paddle.dist(x, y, float("inf"))
            >>> print(out)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.)

            >>> out = paddle.dist(x, y, float("-inf"))
            >>> print(out)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.)
Z
Zhang Ting 已提交
719
    """
720
    if in_dynamic_mode():
721
        return _C_ops.dist(x, y, p)
H
hong 已提交
722

723 724 725 726 727 728
    check_variable_and_dtype(
        x, 'dtype', ['bfloat16', 'float16', 'float32', 'float64'], 'dist'
    )
    check_variable_and_dtype(
        y, 'dtype', ['bfloat16', 'float16', 'float32', 'float64'], 'dist'
    )
Z
Zhang Ting 已提交
729 730 731 732 733 734 735
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
736 737 738
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
739
    return out
L
liuwei1031 已提交
740 741


742 743 744 745 746 747
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
748 749
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
750 751 752 753 754 755 756 757 758 759 760 761
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
            >>> import paddle
            >>> paddle.seed(2023)
            >>> x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            >>> # compute conditional number when p is None
            >>> out = paddle.linalg.cond(x)
            >>> print(out)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            1.41421378)

            >>> # compute conditional number when order of the norm is 'fro'
            >>> out_fro = paddle.linalg.cond(x, p='fro')
            >>> print(out_fro)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            3.16227770)

            >>> # compute conditional number when order of the norm is 'nuc'
            >>> out_nuc = paddle.linalg.cond(x, p='nuc')
            >>> print(out_nuc)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            9.24264145)

            >>> # compute conditional number when order of the norm is 1
            >>> out_1 = paddle.linalg.cond(x, p=1)
            >>> print(out_1)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.)

            >>> # compute conditional number when order of the norm is -1
            >>> out_minus_1 = paddle.linalg.cond(x, p=-1)
            >>> print(out_minus_1)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            1.)

            >>> # compute conditional number when order of the norm is 2
            >>> out_2 = paddle.linalg.cond(x, p=2)
            >>> print(out_2)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            1.41421378)

            >>> # compute conditional number when order of the norm is -1
            >>> out_minus_2 = paddle.linalg.cond(x, p=-2)
            >>> print(out_minus_2)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            0.70710671)

            >>> # compute conditional number when order of the norm is inf
            >>> out_inf = paddle.linalg.cond(x, p=float("inf"))
            >>> print(out_inf)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            2.)

            >>> # compute conditional number when order of the norm is -inf
            >>> out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
            >>> print(out_minus_inf)
            Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            1.)

            >>> a = paddle.randn([2, 4, 4])
            >>> print(a)
            Tensor(shape=[2, 4, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.06132207,  1.11349595,  0.41906244, -0.24858207],
              [-1.85169315, -1.50370061,  1.73954511,  0.13331604],
              [ 1.66359663, -0.55764782, -0.59911072, -0.57773495],
              [-1.03176904, -0.33741450, -0.29695082, -1.50258386]],
             [[ 0.67233968, -1.07747352,  0.80170447, -0.06695852],
              [-1.85003340, -0.23008066,  0.65083790,  0.75387722],
              [ 0.61212337, -0.52664012,  0.19209868, -0.18707706],
              [-0.00711021,  0.35236868, -0.40404350,  1.28656745]]])

            >>> a_cond_fro = paddle.linalg.cond(a, p='fro')
            >>> print(a_cond_fro)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [6.37173700 , 35.15114594])

            >>> b = paddle.randn([2, 3, 4])
            >>> print(b)
            Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[ 0.03306439,  0.70149767,  0.77064633, -0.55978841],
              [-0.84461296,  0.99335045, -1.23486686,  0.59551388],
              [-0.63035583, -0.98797107,  0.09410731,  0.47007179]],
             [[ 0.85850012, -0.98949534, -1.63086998,  1.07340240],
              [-0.05492965,  1.04750168, -2.33754158,  1.16518629],
              [ 0.66847134, -1.05326962, -0.05703246, -0.48190674]]])

            >>> b_cond_2 = paddle.linalg.cond(b, p=2)
            >>> print(b_cond_2)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [2.86566353, 6.85834455])
851 852 853

    """

854
    def mat_norm(input, porder=1.0, axis=None):
855 856 857 858 859
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
860
        if in_dynamic_mode():
861
            abs_out = _C_ops.abs(input)
862
            sum_out = _C_ops.sum(abs_out, axis, None, False)
863 864

            if porder == 1 or porder == np.inf:
865
                return _C_ops.max(sum_out, [-1], False)
866
            if porder == -1 or porder == -np.inf:
867
                return _C_ops.min(sum_out, [-1], False)
868 869 870
        else:
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
871 872
                dtype=block.input_dtype()
            )
873
            sum_out = block.create_variable_for_type_inference(
874 875
                dtype=block.input_dtype()
            )
876
            out = block.create_variable_for_type_inference(
877 878 879 880 881
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
882 883

            reduce_all, axis = _get_reduce_axis(axis, x)
884 885 886 887 888 889
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
890
                    'keep_dim': False,
891 892 893
                    'reduce_all': reduce_all,
                },
            )
894
            if porder == 1 or porder == np.inf:
895 896 897 898 899 900
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
901
                        'keep_dim': False,
902 903 904
                        'reduce_all': reduce_all,
                    },
                )
905
            if porder == -1 or porder == -np.inf:
906 907 908 909 910 911
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
912
                        'keep_dim': False,
913 914 915
                        'reduce_all': reduce_all,
                    },
                )
916
            return out
917 918 919 920 921 922

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
923
        if in_dynamic_mode():
924
            pow_out = _C_ops.pow(input, porder)
925 926
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
927
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        else:
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
948 949

            reduce_all, axis = _get_reduce_axis(axis, x)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
977 978 979 980 981 982 983 984 985

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

986
        if in_dynamic_mode():
987
            if porder == "nuc":
988 989 990 991 992 993 994 995
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
996
            reduce_all, axis = _get_reduce_axis(axis, x)
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
1011
                )
1012 1013 1014 1015 1016 1017 1018
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
1019
            block.append_op(
1020
                type='reduce_max',
1021
                inputs={'X': s},
1022
                outputs={'Out': max_out},
1023 1024
                attrs={
                    'dim': axis,
1025
                    'keep_dim': False,
1026 1027 1028 1029
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
1030 1031 1032 1033 1034 1035 1036 1037
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1038
            )
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1055 1056

    def empty_tensor(input, shape):
1057
        if in_dynamic_mode():
1058
            return input.reshape(shape)
1059 1060 1061
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1062 1063 1064

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1065
        raise ValueError(
1066
            "input should be a matrix or batches of matrices, "
1067
            + f"but the dimention of received input is {len(x_shape)}"
1068
        )
1069
    if p is None:
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1082
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1083 1084
                    x_inv, porder=p, axis=[-2]
                )
1085
            if p in (np.inf, -np.inf):
1086
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1087 1088
                    x_inv, porder=p, axis=[-1]
                )
1089
        else:
1090
            raise ValueError(
1091
                f"only support p is {p} when input is a "
1092 1093
                + "square matrix or batches of square matrices"
            )
1094 1095 1096 1097 1098 1099
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1100
            f"unsupported {p} for p, only supporting ('fro', 'nuc', "
1101 1102
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1103 1104


L
liuwei1031 已提交
1105 1106 1107
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1108

1109
    Note:
1110 1111
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1112 1113

    Parameters:
1114
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``, ``complex64``, ``complex128``
1115
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``, ``complex64``, ``complex128``
L
liuwei1031 已提交
1116 1117
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1118
    Returns:
1119
        Tensor: the calculated result Tensor.
1120

L
liuwei1031 已提交
1121 1122
    Examples:

1123
        .. code-block:: python
L
liuwei1031 已提交
1124

1125
            >>> import paddle
1126

1127 1128 1129 1130 1131 1132 1133
            >>> # 1-D Tensor * 1-D Tensor
            >>> x = paddle.to_tensor([1, 2, 3])
            >>> y = paddle.to_tensor([4, 5, 6])
            >>> z = paddle.dot(x, y)
            >>> print(z)
            Tensor(shape=[], dtype=int64, place=Place(cpu), stop_gradient=True,
            32)
1134

1135 1136 1137 1138 1139 1140 1141
            >>> # 2-D Tensor * 2-D Tensor
            >>> x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
            >>> y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
            >>> z = paddle.dot(x, y)
            >>> print(z)
            Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            [32, 64])
L
liuwei1031 已提交
1142 1143

    """
1144
    if in_dynamic_mode():
1145
        return _C_ops.dot(x, y)
1146 1147
    else:
        op_type = 'dot'
1148

1149 1150
        assert x is not None, f'x cannot be None in {op_type}'
        assert y is not None, f'y cannot be None in {op_type}'
L
liuwei1031 已提交
1151

1152
        check_variable_and_dtype(
1153 1154
            x,
            'x',
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1165
            op_type,
1166 1167
        )
        check_variable_and_dtype(
1168 1169
            y,
            'y',
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1180
            op_type,
1181
        )
L
liuwei1031 已提交
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1192
        )
1193
        return out
1194 1195


Z
zhiboniu 已提交
1196 1197 1198 1199 1200
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1201
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1202 1203 1204
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
1205 1206 1207 1208 1209 1210
        x (Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar (Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        ddof (Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True.
        fweights (Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None.
        aweights (Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None.
        name (str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name` .
Z
zhiboniu 已提交
1211 1212 1213 1214 1215 1216

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

1217
        .. code-block:: python
Z
zhiboniu 已提交
1218

1219 1220
            >>> import paddle
            >>> paddle.seed(2023)
Z
zhiboniu 已提交
1221

1222 1223 1224 1225 1226 1227 1228
            >>> xt = paddle.rand((3, 4))
            >>> paddle.linalg.cov(xt)
            >>> print(xt)
            Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.86583614, 0.52014720, 0.25960937, 0.90525323],
             [0.42400089, 0.40641287, 0.97020894, 0.74437362],
             [0.51785129, 0.73292869, 0.97786582, 0.04315904]])
Z
zhiboniu 已提交
1229 1230 1231 1232 1233
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1234 1235
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1249 1250
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1251 1252 1253
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1254 1255 1256 1257
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1258 1259 1260
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1261 1262
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1263 1264 1265 1266 1267 1268 1269 1270
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1271 1272 1273 1274 1275
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1276 1277 1278
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1279 1280 1281 1282
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1283 1284 1285
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1286 1287
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1306
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1318 1319
def t(input, name=None):
    """
1320 1321
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1322
    the paddle.transpose function which perm dimensions set 0 and 1.
1323

1324
    Args:
1325
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1326 1327 1328
        name (str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name` .

1329
    Returns:
1330
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1331

1332
    Examples:
1333

1334
        .. code-block:: python
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
            :name: code-example

            >>> import paddle

            >>> # Example 1 (0-D tensor)
            >>> x = paddle.to_tensor([0.79])
            >>> out = paddle.t(x)
            >>> print(out)
            Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.79000002])

            >>> # Example 2 (1-D tensor)
            >>> x = paddle.to_tensor([0.79, 0.84, 0.32])
            >>> out2 = paddle.t(x)
            >>> print(out2)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.79000002, 0.83999997, 0.31999999])
            >>> print(paddle.t(x).shape)
            [3]

            >>> # Example 3 (2-D tensor)
            >>> x = paddle.to_tensor([[0.79, 0.84, 0.32],
            ...                       [0.64, 0.14, 0.57]])
            >>> print(x.shape)
            [2, 3]
            >>> out3 = paddle.t(x)
            >>> print(out3)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0.79000002, 0.63999999],
             [0.83999997, 0.14000000],
             [0.31999999, 0.56999999]])
            >>> print(paddle.t(x).shape)
            [3, 2]
1368

1369 1370 1371 1372 1373
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1374 1375
            "tensor.transpose() instead." % len(input.shape)
        )
1376
    if in_dynamic_mode():
1377
        if len(input.shape) <= 1:
1378 1379 1380
            return input
        # 2-D tensor
        perm = [1, 0]
1381
        out = _C_ops.transpose(input, perm)
1382
        return out
1383 1384 1385 1386 1387 1388 1389
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1390

1391 1392 1393
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1394
        if len(input.shape) <= 1:
1395 1396 1397 1398 1399 1400 1401 1402
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1403 1404
        return out

1405

W
wanghuancoder 已提交
1406
def cross(x, y, axis=9, name=None):
1407
    """
1408
    Computes the cross product between two tensors along an axis.
1409

1410 1411
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1412

1413
    Args:
1414 1415
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1416
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1417
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1418 1419

    Returns:
1420
        Tensor. A Tensor with same data type as `x`.
1421

1422 1423
    Examples:
        .. code-block:: python
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
            >>> import paddle

            >>> x = paddle.to_tensor([[1.0, 1.0, 1.0],
            ...                         [2.0, 2.0, 2.0],
            ...                         [3.0, 3.0, 3.0]])
            >>> y = paddle.to_tensor([[1.0, 1.0, 1.0],
            ...                         [1.0, 1.0, 1.0],
            ...                         [1.0, 1.0, 1.0]])
            ...
            >>> z1 = paddle.cross(x, y)
            >>> print(z1)
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-1., -1., -1.],
             [ 2.,  2.,  2.],
             [-1., -1., -1.]])

            >>> z2 = paddle.cross(x, y, axis=1)
            >>> print(z2)
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[0., 0., 0.],
             [0., 0., 0.],
             [0., 0., 0.]])
1447
    """
1448
    if in_dynamic_mode():
1449
        axis = K_DEFAULT_DIM if axis is None else axis
1450
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1451
    else:
1452 1453 1454
        check_variable_and_dtype(
            x,
            'x',
1455
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1456 1457 1458 1459 1460
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
1461
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1462 1463
            'cross',
        )
1464 1465
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
1466
        attrs = {}
1467
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1468

1469 1470 1471 1472 1473 1474 1475
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1476 1477


1478
def cholesky(x, upper=False, name=None):
1479
    r"""
G
Guo Sheng 已提交
1480
    Computes the Cholesky decomposition of one symmetric positive-definite
1481 1482
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1483 1484 1485 1486 1487 1488
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1489
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1490 1491 1492
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
1493
        upper (bool, optional): The flag indicating whether to return upper or lower
G
Guo Sheng 已提交
1494
            triangular matrices. Default: False.
1495 1496
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1497 1498

    Returns:
1499 1500
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1501

G
Guo Sheng 已提交
1502 1503 1504
    Examples:
        .. code-block:: python

1505 1506
            >>> import paddle
            >>> paddle.seed(2023)
G
Guo Sheng 已提交
1507

1508 1509 1510
            >>> a = paddle.rand([3, 3], dtype="float32")
            >>> a_t = paddle.transpose(a, [1, 0])
            >>> x = paddle.matmul(a, a_t) + 1e-03
1511

1512 1513 1514 1515 1516 1517
            >>> out = paddle.linalg.cholesky(x, upper=False)
            >>> print(out)
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[1.04337072, 0.        , 0.        ],
             [1.06467664, 0.17859250, 0.        ],
             [1.30602181, 0.08326444, 0.22790681]])
G
Guo Sheng 已提交
1518
    """
1519
    if in_dynamic_mode():
1520
        return _C_ops.cholesky(x, upper)
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1533 1534


1535 1536 1537 1538
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1539
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1540
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1541 1542

    Args:
1543 1544
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
1545 1546 1547 1548
        tol (float|Tensor, optional): the tolerance value. If `tol` is not specified, and `sigma` is the largest singular value
            (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed with formula
            `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch. Default: None.
        hermitian (bool, optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
1549
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1550
            the lower triangular of the matrix to compute. Default: False.
1551 1552 1553 1554
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1555

1556 1557 1558
    Examples:
        .. code-block:: python

1559
            >>> import paddle
1560

1561 1562 1563 1564 1565
            >>> a = paddle.eye(10)
            >>> b = paddle.linalg.matrix_rank(a)
            >>> print(b)
            Tensor(shape=[], dtype=int32, place=Place(cpu), stop_gradient=True,
            10)
1566

1567 1568 1569 1570 1571 1572 1573
            >>> c = paddle.ones(shape=[3, 4, 5, 5])
            >>> d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            >>> print(d)
            Tensor(shape=[3, 4], dtype=int32, place=Place(cpu), stop_gradient=True,
            [[1, 1, 1, 1],
             [1, 1, 1, 1],
             [1, 1, 1, 1]])
1574

1575
    """
1576
    if in_dynamic_mode():
1577 1578 1579 1580 1581 1582
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1583 1584 1585
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1586

1587 1588 1589 1590 1591 1592
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
Z
zhangyuqin1998 已提交
1593
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1594 1595 1596 1597 1598
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1599
        if tol is None:
1600
            attrs['use_default_tol'] = True
1601
        elif isinstance(tol, Variable):
1602
            attrs['use_default_tol'] = False
1603
            if tol.dtype != x.dtype:
1604
                inputs['TolTensor'] = cast(tol, x.dtype)
1605
            else:
1606
                inputs['TolTensor'] = tol
1607
        else:
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1620 1621


1622 1623 1624 1625 1626 1627
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

1628
    If x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.
1629 1630

    Args:
Y
yaoxuefeng 已提交
1631 1632
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1633 1634
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1635 1636

    Returns:
Y
yaoxuefeng 已提交
1637
        Tensor: The product Tensor.
1638 1639

    Examples:
S
sunzhongkai588 已提交
1640 1641
        .. code-block:: python

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
            >>> import paddle

            >>> # In imperative mode:
            >>> # size x: (2, 2, 3) and y: (2, 3, 2)
            >>> x = paddle.to_tensor([[[1.0, 1.0, 1.0],
            ...                     [2.0, 2.0, 2.0]],
            ...                     [[3.0, 3.0, 3.0],
            ...                     [4.0, 4.0, 4.0]]])
            >>> y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
            ...                     [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            >>> out = paddle.bmm(x, y)
            >>> print(out)
            Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[[6. , 6. ],
              [12., 12.]],
             [[45., 45.],
              [60., 60.]]])
1659

1660
    """
1661
    if in_dynamic_mode():
1662
        return _C_ops.bmm(x, y)
1663
    else:
W
Weilong Wu 已提交
1664 1665 1666 1667 1668 1669 1670 1671
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
1672
        if x_shape[2] != -1 and y_shape[1] != -1 and x_shape[2] != y_shape[1]:
W
Weilong Wu 已提交
1673 1674 1675 1676 1677
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1678
        if x_shape[0] != -1 and y_shape[0] != -1 and x_shape[0] != y_shape[0]:
W
Weilong Wu 已提交
1679 1680 1681 1682 1683
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1684 1685 1686 1687 1688 1689
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1690 1691


1692
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1693
    """
1694
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1695 1696 1697
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1698
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1699
            should be float32, float64, int32, int64.
1700 1701 1702
        bins (int, optional): number of histogram bins. Default: 100.
        min (int, optional): lower end of the range (inclusive). Default: 0.
        max (int, optional): upper end of the range (inclusive). Default: 0.
1703
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1704 1705

    Returns:
1706
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1707

1708
    Examples:
Q
Qi Li 已提交
1709
        .. code-block:: python
1710

1711
            >>> import paddle
1712

1713 1714 1715 1716 1717
            >>> inputs = paddle.to_tensor([1, 2, 1])
            >>> result = paddle.histogram(inputs, bins=4, min=0, max=3)
            >>> print(result)
            Tensor(shape=[4], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 2, 1, 0])
Q
Qi Li 已提交
1718
    """
1719
    if in_dynamic_mode():
1720
        return _C_ops.histogram(input, bins, min, max)
1721 1722 1723 1724
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1725
        )
1726 1727 1728 1729 1730 1731 1732 1733
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1734 1735 1736 1737


def bincount(x, weights=None, minlength=0, name=None):
    """
1738
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1739 1740 1741 1742 1743

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
1744 1745
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default is None.
S
smallv0221 已提交
1746 1747 1748 1749 1750 1751 1752

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

1753
            >>> import paddle
S
smallv0221 已提交
1754

1755 1756 1757 1758 1759
            >>> x = paddle.to_tensor([1, 2, 1, 4, 5])
            >>> result1 = paddle.bincount(x)
            >>> print(result1)
            Tensor(shape=[6], dtype=int64, place=Place(cpu), stop_gradient=True,
            [0, 2, 1, 0, 1, 1])
S
smallv0221 已提交
1760

1761 1762 1763 1764 1765
            >>> w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            >>> result2 = paddle.bincount(x, weights=w)
            >>> print(result2)
            Tensor(shape=[6], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.        , 2.19999981, 0.40000001, 0.        , 0.50000000, 0.50000000])
S
smallv0221 已提交
1766 1767 1768 1769
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1770
    if in_dynamic_mode():
1771
        return _C_ops.bincount(x, weights, minlength)
1772 1773
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1774

1775
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1776

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1792
        )
1793
        return out
1794 1795 1796 1797 1798 1799 1800


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1801
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1802
            should be one of float32, float64.
F
furnace 已提交
1803
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1804
            should be one of float32, float64.
1805 1806
        name (str, optional): Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name`. Default is None.
1807 1808 1809 1810 1811 1812 1813

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

1814 1815
            >>> # x: [M, N], vec: [N]
            >>> # paddle.mv(x, vec)  # out: [M]
1816

1817
            >>> import paddle
1818

1819 1820 1821 1822 1823 1824
            >>> x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            >>> vec = paddle.to_tensor([3, 5, 1]).astype("float64")
            >>> out = paddle.mv(x, vec)
            >>> print(out)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [14., 10.])
1825
    """
1826
    if in_dynamic_mode():
1827
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1828
    else:
1829

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1842
                    )
1843 1844 1845 1846 1847
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1848
                    )
1849
                )
J
Jiabin Yang 已提交
1850

1851
        __check_input(x, vec)
J
Jiabin Yang 已提交
1852

1853 1854 1855 1856 1857 1858
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1859 1860


1861
def det(x, name=None):
H
huangxu96 已提交
1862
    """
1863

H
huangxu96 已提交
1864
    Calculates determinant value of a square matrix or batches of square matrices.
1865

H
huangxu96 已提交
1866
    Args:
1867
        x (Tensor): the input matrix of size `(n, n)` or the
1868 1869
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1870 1871
        name (str, optional): Name of the output.It's used to print debug info for
            developers. Details: :ref:`api_guide_Name`. Default is None.
1872

H
huangxu96 已提交
1873
    Returns:
1874
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1875

1876
    Examples:
H
huangxu96 已提交
1877 1878
        .. code-block:: python

1879 1880 1881 1882 1883 1884 1885
            >>> import paddle
            >>> paddle.seed(2023)
            >>> x =  paddle.randn([3,3,3])
            >>> A = paddle.linalg.det(x)
            >>> print(A)
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [-1.29280925,  0.77832544,  0.89754158])
H
huangxu96 已提交
1886

1887

H
huangxu96 已提交
1888
    """
1889
    if in_dynamic_mode():
1890
        return _C_ops.det(x)
1891
    else:
1892
        check_dtype(x.dtype, 'Input', ['float16', 'float32', 'float64'], 'det')
C
chentianyu03 已提交
1893

1894 1895 1896 1897 1898
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1899

1900 1901
        assert (
            input_shape[-1] == input_shape[-2]
1902
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1903 1904 1905 1906 1907
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1908

1909 1910 1911 1912
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1913 1914


1915
def slogdet(x, name=None):
H
huangxu96 已提交
1916
    """
1917

H
huangxu96 已提交
1918
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1919
    The determinant can be computed with ``sign * exp`` (logabsdet).
1920

1921
    Supports input of float, double.
H
huangxu96 已提交
1922

1923
    Note that for matrices that have zero determinant, this returns ``(0, -inf)``.
1924

H
huangxu96 已提交
1925 1926 1927
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.
1928 1929
        name (str, optional): Name of the output.It's used to print debug info for
            developers. Details: :ref:`api_guide_Name`. Default is None.
H
huangxu96 已提交
1930 1931

    Returns:
1932
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1933 1934
        of the absolute value of determinant, respectively.

1935
    Examples:
1936
        .. code-block:: python
H
huangxu96 已提交
1937

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
            >>> import paddle
            >>> paddle.seed(2023)
            >>> x =  paddle.randn([3,3,3])
            >>> A = paddle.linalg.slogdet(x)
            >>> print(A)
            >>> # doctest: +SKIP
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[-1.        ,  1.        ,  1.        ],
             [ 0.25681755, -0.25061053, -0.10809582]])
            >>> # doctest: -SKIP
H
huangxu96 已提交
1948 1949

    """
1950
    if in_dynamic_mode():
1951
        return _C_ops.slogdet(x)
1952 1953
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1954

1955 1956 1957 1958 1959
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1960

1961 1962
        assert (
            input_shape[-1] == input_shape[-2]
1963
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1964 1965 1966 1967 1968
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1969

1970 1971 1972 1973 1974 1975
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1976 1977


1978 1979
def svd(x, full_matrices=False, name=None):
    r"""
1980 1981 1982 1983 1984
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1985 1986
        X = U * diag(S) * VT

1987 1988
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1989
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1990 1991
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1992
        full_matrices (bool, optional): A flag to control the behavor of svd.
1993
            If full_matrices = True, svd op will compute full U and V matrics,
1994
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1995
            If full_matrices = False, svd op will use a economic method to store U and V.
1996
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1997
            Default value is False.
1998 1999
        name (str, optional): Name for the operation. For more information,
            please refer to :ref:`api_guide_Name`. Default value is None.
2000 2001

    Returns:
Z
Zman 已提交
2002 2003 2004 2005 2006
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
2007

2008 2009 2010
    Examples:
        .. code-block:: python

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
            >>> import paddle

            >>> x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            >>> x = x.reshape([3, 2])
            >>> u, s, vh = paddle.linalg.svd(x)
            >>> print (u)
            Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[-0.27364809, -0.21695147],
             [-0.37892198, -0.87112408],
             [-0.88404460,  0.44053933]])

            >>> print (s)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [8.14753743, 0.78589688])

            >>> print (vh)
            Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[-0.51411221, -0.85772294],
             [ 0.85772294, -0.51411221]])

            >>> # one can verify : U * S * VT == X
            >>> #                  U * UH == I
            >>> #                  V * VH == I
2034
    """
2035

2036
    if in_dynamic_mode():
2037
        return _C_ops.svd(x, full_matrices)
2038 2039 2040 2041 2042 2043 2044
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
2045
        attrs = {}
2046 2047 2048 2049 2050 2051 2052 2053
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
2054 2055


2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
def pca_lowrank(x, q=None, center=True, niter=2, name=None):
    r"""
    Performs linear Principal Component Analysis (PCA) on a low-rank matrix or batches of such matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
        X = U * diag(S) * V^{T}

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
            where `...` is zero or more batch dimensions. N and M can be arbitraty
            positive number. The data type of x should be float32 or float64.
        q (int, optional): a slightly overestimated rank of :math:`X`.
            Default value is :math:`q=min(6,N,M)`.
        center (bool, optional): if True, center the input tensor.
            Default value is True.
2073 2074 2075
        niter (int, optional): number of iterations to perform. Default: 2.
        name (str, optional): Name for the operation. For more information,
            please refer to :ref:`api_guide_Name`. Default: None.
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

    Returns:
        - Tensor U, is N x q matrix.
        - Tensor S, is a vector with length q.
        - Tensor V, is M x q matrix.

        tuple (U, S, V): which is the nearly optimal approximation of a singular value decomposition of a centered matrix :math:`X`.

    Examples:
        .. code-block:: python

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
            >>> import paddle
            >>> paddle.seed(2023)

            >>> x = paddle.randn((5, 5), dtype='float64')
            >>> U, S, V = paddle.linalg.pca_lowrank(x)
            >>> print(U)
           Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
           [[ 0.80131563,  0.11962647,  0.27667179, -0.25891214,  0.44721360],
            [-0.12642301,  0.69917551, -0.17899393,  0.51296394,  0.44721360],
            [ 0.08997135, -0.69821706, -0.20059228,  0.51396579,  0.44721360],
            [-0.23871837, -0.02815453, -0.59888153, -0.61932365,  0.44721360],
            [-0.52614559, -0.09243040,  0.70179595, -0.14869394,  0.44721360]])

            >>> print(S)
            Tensor(shape=[5], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2.60101614, 2.40554940, 1.49768346, 0.19064830, 0.00000000])

            >>> print(V)
            Tensor(shape=[5, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[ 0.58339481, -0.17143771,  0.00522143,  0.57976310,  0.54231640],
             [ 0.22334335,  0.72963474, -0.30148399, -0.39388750,  0.41438019],
             [ 0.05416913,  0.34666487,  0.93549758,  0.00063507,  0.04162998],
             [-0.39519094,  0.53074980, -0.16687419,  0.71175586, -0.16638919],
             [-0.67131070, -0.19071018,  0.07795789, -0.04615811,  0.71046714]])
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
    """

    def conjugate(x):
        if x.is_complex():
            return x.conj()
        return x

    def transpose(x):
        shape = x.shape
        perm = list(range(0, len(shape)))
        perm = perm[:-2] + [perm[-1]] + [perm[-2]]
        return paddle.transpose(x, perm)

    def transjugate(x):
        return conjugate(transpose(x))

    def get_approximate_basis(x, q, niter=2, M=None):
        niter = 2 if niter is None else niter
        m, n = x.shape[-2:]
        qr = paddle.linalg.qr

        R = paddle.randn((n, q), dtype=x.dtype)

        A_t = transpose(x)
        A_H = conjugate(A_t)
        if M is None:
            Q = qr(paddle.matmul(x, R))[0]
            for i in range(niter):
                Q = qr(paddle.matmul(A_H, Q))[0]
                Q = qr(paddle.matmul(x, Q))[0]
        else:
            M_H = transjugate(M)
            Q = qr(paddle.matmul(x, R) - paddle.matmul(M, R))[0]
            for i in range(niter):
                Q = qr(paddle.matmul(A_H, Q) - paddle.matmul(M_H, Q))[0]
                Q = qr(paddle.matmul(x, Q) - paddle.matmul(M, Q))[0]

        return Q

    def svd_lowrank(x, q=6, niter=2, M=None):
        q = 6 if q is None else q
        m, n = x.shape[-2:]
        if M is None:
            M_t = None
        else:
            M_t = transpose(M)
        A_t = transpose(x)

        if m < n or n > q:
            Q = get_approximate_basis(A_t, q, niter=niter, M=M_t)
            Q_c = conjugate(Q)
            if M is None:
                B_t = paddle.matmul(x, Q_c)
            else:
                B_t = paddle.matmul(x, Q_c) - paddle.matmul(M, Q_c)
            assert B_t.shape[-2] == m, (B_t.shape, m)
            assert B_t.shape[-1] == q, (B_t.shape, q)
            assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
            U, S, Vh = paddle.linalg.svd(B_t, full_matrices=False)
            V = transjugate(Vh)
            V = Q.matmul(V)
        else:
            Q = get_approximate_basis(x, q, niter=niter, M=M)
            Q_c = conjugate(Q)
            if M is None:
                B = paddle.matmul(A_t, Q_c)
            else:
                B = paddle.matmul(A_t, Q_c) - paddle.matmul(M_t, Q_c)
            B_t = transpose(B)
            assert B_t.shape[-2] == q, (B_t.shape, q)
            assert B_t.shape[-1] == n, (B_t.shape, n)
            assert B_t.shape[-1] <= B_t.shape[-2], B_t.shape
            U, S, Vh = paddle.linalg.svd(B_t, full_matrices=False)
            V = transjugate(Vh)
            U = Q.matmul(U)

        return U, S, V

    if not paddle.is_tensor(x):
        raise ValueError(f'Input must be tensor, but got {type(x)}')

    (m, n) = x.shape[-2:]

    if q is None:
        q = min(6, m, n)
    elif not (q >= 0 and q <= min(m, n)):
        raise ValueError(
            'q(={}) must be non-negative integer'
            ' and not greater than min(m, n)={}'.format(q, min(m, n))
        )
    if not (niter >= 0):
        raise ValueError(f'niter(={niter}) must be non-negative integer')

    if not center:
        return svd_lowrank(x, q, niter=niter, M=None)

    C = x.mean(axis=-2, keepdim=True)
    return svd_lowrank(x - C, q, niter=niter, M=None)


2211 2212
def matrix_power(x, n, name=None):
    r"""
2213

2214
    Computes the n-th power of a square matrix or a batch of square matrices.
2215

2216 2217 2218 2219 2220
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
2221

2222 2223
    Specifically,

2224
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
2225

2226 2227
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

2228
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
2229 2230 2231 2232 2233 2234

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
2235
        name (str, optional): Name for the operation (optional, default is None).
2236 2237 2238
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2239 2240
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
2241 2242 2243 2244

    Examples:
        .. code-block:: python

2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 2, 3],
            ...                       [1, 4, 9],
            ...                       [1, 8, 27]], dtype='float64')
            >>> print(paddle.linalg.matrix_power(x, 2))
            Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[6.  , 34. , 102.],
             [14. , 90. , 282.],
             [36. , 250., 804.]])

            >>> print(paddle.linalg.matrix_power(x, 0))
            Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[1., 0., 0.],
             [0., 1., 0.],
             [0., 0., 1.]])

            >>> print(paddle.linalg.matrix_power(x, -2))
            Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[ 12.91666667, -12.75000000,  2.83333333 ],
             [-7.66666667 ,  8.         , -1.83333333 ],
             [ 1.80555556 , -1.91666667 ,  0.44444444 ]])
2267
    """
2268
    if in_dynamic_mode():
2269
        return _C_ops.matrix_power(x, n)
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2284 2285


2286 2287 2288 2289 2290 2291 2292
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2293
            positive number. The data type of x should be float32 or float64.
2294
        mode (str, optional): A flag to control the behavior of qr.
2295
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2296
            If mode = "reduced", qr op will return reduced Q and R matrices,
2297
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2298
            If mode = "complete", qr op will return complete Q and R matrices,
2299 2300
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
2301
            R's shape is `[..., K, N]`. Default: "reduced".
2302 2303
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2304

2305
    Returns:
2306
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2307
        If mode = "r", qr will return a tensor which represents R.
2308 2309

    Examples:
2310 2311
        .. code-block:: python

2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
            >>> import paddle

            >>> x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            >>> q, r = paddle.linalg.qr(x)
            >>> print (q)
            Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[-0.16903085,  0.89708523],
             [-0.50709255,  0.27602622],
             [-0.84515425, -0.34503278]])
            >>> print (r)
            Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[-5.91607978, -7.43735744],
             [ 0.        ,  0.82807867]])

            >>> # one can verify : X = Q * R ;
2327
    """
2328
    if in_dynamic_mode():
2329
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2330 2331 2332 2333
        if mode == "r":
            return r
        else:
            return q, r
2334 2335 2336 2337 2338 2339
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
2340
        attrs = {}
2341 2342 2343 2344
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2345 2346 2347 2348 2349 2350
        if mode == "r":
            return r
        else:
            return q, r


2351 2352
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2353
    Computes the LU factorization of an N-D(N>=2) matrix x.
2354

2355
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2356 2357 2358 2359
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2360 2361

    .. code-block:: text
2362

2363 2364 2365 2366
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2378

2379
    Returns:
2380
        factorization (Tensor), LU matrix, the factorization of input X.
2381

2382 2383 2384
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2385

2386 2387 2388
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2389

2390 2391

    Examples:
2392 2393
        .. code-block:: python

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
            >>> import paddle

            >>> x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            >>> lu,p,info = paddle.linalg.lu(x, get_infos=True)

            >>> print(lu)
            Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[5.        , 6.        ],
             [0.20000000, 0.80000000],
             [0.60000000, 0.50000000]])
            >>> print(p)
            Tensor(shape=[2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [3, 3])
            >>> print(info)
            Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True,
            [0])

            >>> P,L,U = paddle.linalg.lu_unpack(lu,p)

            >>> print(P)
            Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.]])
            >>> print(L)
            Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[1.        , 0.        ],
             [0.20000000, 1.        ],
             [0.60000000, 0.50000000]])
            >>> print(U)
            Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[5.        , 6.        ],
             [0.        , 0.80000000]])

            >>> # one can verify : X = P @ L @ U ;
2429
    """
L
Lin Manhui 已提交
2430

2431
    if in_dynamic_mode():
2432
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2433 2434 2435 2436 2437 2438
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
2439
        attrs = {}
L
Lin Manhui 已提交
2440
        attrs['pivot'] = pivot
2441 2442 2443 2444 2445 2446
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2447 2448 2449 2450 2451 2452 2453 2454
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2455
    Unpack L U and P to single matrix tensor .
2456 2457 2458
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2459 2460

    .. code-block:: text
2461

2462 2463 2464
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2465 2466 2467 2468 2469 2470 2471


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

2472
        unpack_ludata (bool, optional): whether to unpack L and U from x. Default: True.
2473 2474 2475 2476 2477

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2478

2479
    Returns:
2480
        P (Tensor), Permutation matrix P of lu factorization.
2481

2482
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2483

2484
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2485

2486 2487

    Examples:
2488 2489
        .. code-block:: python

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
            >>> import paddle

            >>> x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            >>> lu,p,info = paddle.linalg.lu(x, get_infos=True)

            >>> print(lu)
            Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[5.        , 6.        ],
             [0.20000000, 0.80000000],
             [0.60000000, 0.50000000]])
            >>> print(p)
            Tensor(shape=[2], dtype=int32, place=Place(cpu), stop_gradient=True,
            [3, 3])
            >>> print(info)
            Tensor(shape=[1], dtype=int32, place=Place(cpu), stop_gradient=True,
            [0])

            >>> P,L,U = paddle.linalg.lu_unpack(lu,p)

            >>> print(P)
            Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0., 1., 0.],
             [0., 0., 1.],
             [1., 0., 0.]])
            >>> print(L)
            Tensor(shape=[3, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[1.        , 0.        ],
             [0.20000000, 1.        ],
             [0.60000000, 0.50000000]])
            >>> print(U)
            Tensor(shape=[2, 2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[5.        , 6.        ],
             [0.        , 0.80000000]])

            >>> # one can verify : X = P @ L @ U ;
2525
    """
Z
zhiboniu 已提交
2526 2527 2528 2529 2530 2531 2532 2533
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )
    if y.ndim < 1:
        raise ValueError(
            f"The shape of Pivots should be (*, K), but received ndim is [{y.ndim} < 1]"
        )
2534
    if in_dynamic_mode():
2535
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2536
        return P, L, U
2537 2538 2539
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2540
        )
2541 2542 2543 2544
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2545

2546
        attrs = {}
2547 2548 2549 2550 2551 2552 2553 2554 2555
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2556 2557


L
Lijunhui 已提交
2558 2559
def eig(x, name=None):
    """
2560
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2561

2562 2563 2564 2565 2566 2567
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2568 2569 2570 2571

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2572
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2573 2574 2575 2576 2577 2578 2579 2580 2581
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
            >>> import paddle

            >>> x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
            ...                       [9.956216,  8.749598,  6.066444 ],
            ...                       [4.4251957, 1.7983172, 0.370647 ]])
            >>> w, v = paddle.linalg.eig(x)
            >>> print(v)
            Tensor(shape=[3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[ (0.5061365365982056+0j) ,  (0.7971761226654053+0j) ,
               (0.1851806491613388+0j) ],
             [ (0.8308236598968506+0j) , (-0.3463813066482544+0j) ,
               (-0.6837005615234375+0j) ],
             [ (0.23142573237419128+0j), (-0.49449989199638367+0j),
               (0.7058765292167664+0j) ]])

            >>> print(w)
            Tensor(shape=[3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [ (16.50470733642578+0j)  , (-5.503481388092041+0j)  ,
              (-0.21026138961315155+0j)])
L
Lijunhui 已提交
2601
    """
2602

2603
    if in_dynamic_mode():
2604
        return _C_ops.eig(x)
2605 2606 2607 2608 2609
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2610

2611 2612
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2613

2614 2615 2616
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2617

2618
        return w, v
L
Lijunhui 已提交
2619 2620


2621 2622 2623
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2624 2625 2626

    Warning:
        The gradient kernel of this operator does not yet developed.
2627 2628 2629 2630
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2631
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2632
            Its data type should be float32, float64, complex64, or complex128.
2633
        name (str, optional): Name for the operation (optional, default is None).
2634
            For more information, please refer to :ref:`api_guide_Name`.
2635

2636
    Returns:
2637 2638
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2639 2640 2641 2642

    Examples:
        .. code-block:: python

2643 2644
            >>> import paddle
            >>> paddle.seed(2023)
2645

2646 2647 2648 2649 2650 2651
            >>> x = paddle.rand(shape=[3, 3], dtype='float64')
            >>> print(x)
            Tensor(shape=[3, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0.86583615, 0.52014721, 0.25960938],
             [0.90525323, 0.42400090, 0.40641288],
             [0.97020893, 0.74437359, 0.51785128]])
2652

2653 2654 2655 2656
            >>> print(paddle.linalg.eigvals(x))
            Tensor(shape=[3], dtype=complex128, place=Place(cpu), stop_gradient=True,
            [ (1.788956694280852+0j)  ,  (0.16364484879581526+0j),
              (-0.14491322408727625+0j)])
2657 2658 2659 2660 2661
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2662 2663 2664 2665
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2666 2667 2668

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2669 2670 2671 2672
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2673

2674
    if in_dynamic_mode():
2675
        return _C_ops.eigvals(x)
2676
    else:
2677 2678 2679 2680 2681 2682
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2683 2684 2685 2686
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2687 2688


2689 2690 2691 2692
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2693
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
2716 2717
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2718 2719 2720 2721 2722 2723

    Returns:
        Tensor: The output Tensor.

    Examples:

2724
        .. code-block:: python
2725

2726
            >>> import paddle
2727

2728 2729 2730 2731 2732 2733
            >>> # A * B
            >>> A = paddle.rand([3, 4])
            >>> B = paddle.rand([4, 5])
            >>> out = paddle.linalg.multi_dot([A, B])
            >>> print(out.shape)
            [3, 5]
2734

2735 2736 2737 2738 2739 2740 2741
            >>> # A * B * C
            >>> A = paddle.rand([10, 5])
            >>> B = paddle.rand([5, 8])
            >>> C = paddle.rand([8, 7])
            >>> out = paddle.linalg.multi_dot([A, B, C])
            >>> print(out.shape)
            [10, 7]
2742 2743

    """
2744
    if in_dynamic_mode():
2745
        return _C_ops.multi_dot(x)
2746 2747 2748 2749 2750 2751
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
2752
                ['float16', 'float32', 'float64', 'uint16'],
2753 2754 2755 2756 2757 2758
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2759

2760 2761 2762 2763 2764
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2765
        )
2766
        return out
2767 2768 2769 2770


def eigh(x, UPLO='L', name=None):
    """
2771
    Compute the eigenvalues and eigenvectors of a
2772 2773 2774 2775 2776
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
2777 2778 2779
        UPLO (str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
            "'U' represents the upper triangular matrix.". Default: 'L'.
        name (str, optional): The default value is None. Normally there is no need for user to set this
2780 2781 2782
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2783 2784 2785 2786
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2787 2788 2789 2790

    Examples:
        .. code-block:: python

2791
            >>> import paddle
2792

2793 2794 2795 2796 2797 2798 2799 2800 2801
            >>> x = paddle.to_tensor([[1, -2j], [2j, 5]])
            >>> out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
            >>> print(out_value)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.17157286, 5.82842731])
            >>> print(out_vector)
            Tensor(shape=[2, 2], dtype=complex64, place=Place(cpu), stop_gradient=True,
            [[(-0.9238795042037964+0j), (-0.3826833963394165+0j)],
             [ 0.3826833963394165j    , -0.9238795042037964j    ]])
2802 2803

    """
2804
    if in_dynamic_mode():
2805
        return _C_ops.eigh(x, UPLO)
2806
    else:
H
hong 已提交
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
2823
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
2824
                )
2825

2826
        __check_input(x, UPLO)
2827

2828 2829 2830 2831 2832 2833 2834
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2835

2836 2837
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2838

2839 2840 2841 2842 2843 2844 2845
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2846 2847 2848 2849


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2850
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2861

A
andyjpaddle 已提交
2862 2863 2864
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2865
        x (Tensor): The input tensor. Its shape should be (*, m, n)
2866 2867
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2868 2869 2870
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.
2871
        rcond (Tensor, optional): the tolerance value to determine
2872
            when is a singular value zero. Default:1e-15.
2873
        hermitian (bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2874
            if complex or symmetric if real. Default: False.
2875 2876
        name (str, optional): The default value is None. Normally there is no need for user to set this
            property. For more information, please refer to :ref:`api_guide_Name`.
2877

A
andyjpaddle 已提交
2878
    Returns:
2879
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2880
        pseudo inverse of x. Its shape should be (*, n, m).
2881

A
andyjpaddle 已提交
2882 2883 2884
    Examples:
        .. code-block:: python

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
            >>> import paddle

            >>> x = paddle.arange(15).reshape((3, 5)).astype('float64')
            >>> input = paddle.to_tensor(x)
            >>> out = paddle.linalg.pinv(input)
            >>> print(input)
            Tensor(shape=[3, 5], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[0. , 1. , 2. , 3. , 4. ],
             [5. , 6. , 7. , 8. , 9. ],
             [10., 11., 12., 13., 14.]])

            >>> print(out)
            Tensor(shape=[5, 3], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[-0.22666667, -0.06666667,  0.09333333],
             [-0.12333333, -0.03333333,  0.05666667],
             [-0.02000000, -0.00000000,  0.02000000],
             [ 0.08333333,  0.03333333, -0.01666667],
             [ 0.18666667,  0.06666667, -0.05333333]])
A
andyjpaddle 已提交
2903 2904 2905 2906

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2907
    if in_dynamic_mode():
2908 2909
        if not hermitian:
            # combine svd and matmul op
2910 2911
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2912 2913 2914 2915
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2916

A
andyj 已提交
2917
            singular = paddle.where(s > cutoff, 1 / s, 1 / y)
2918
            st = _C_ops.unsqueeze(singular, [-2])
2919 2920 2921

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2922
            v = _C_ops.transpose(vt, perm)
2923 2924

            out_1 = v * st
2925
            out_2 = _C_ops.matmul(out_1, u, False, True)
2926 2927 2928
            return out_2
        else:
            # combine eigh and matmul op
2929
            s, u = _C_ops.eigh(x, 'UPLO')
2930
            s_abs = paddle.abs(s)
2931
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2932 2933 2934 2935 2936
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

A
andyj 已提交
2937
            singular = paddle.where(s_abs > cutoff, 1 / s, 1 / y)
2938
            st = _C_ops.unsqueeze(singular, [-2])
2939 2940

            out_1 = u * st
2941 2942
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2943
            return out_2
A
andyjpaddle 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2956
                outputs={'U': u, 'VH': vt, 'S': s},
2957 2958
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2959 2960

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2961 2962 2963 2964 2965 2966
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2967

2968
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2969 2970
            cutoff = rcond * max_singular_val
            y = float('inf')
2971
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2972

A
andyj 已提交
2973
            singular = paddle.where(s > cutoff, 1 / s, 1 / y)
A
andyjpaddle 已提交
2974 2975 2976

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2977 2978 2979 2980 2981 2982
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2983 2984 2985 2986 2987

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2988 2989 2990 2991 2992 2993
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2994 2995

            out_1 = helper.create_variable_for_type_inference(dtype)
2996 2997 2998 2999 3000 3001
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3002 3003 3004 3005 3006
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3007
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
3008
                outputs={'Out': out_2},
3009
                attrs={'trans_x': False, 'trans_y': True},
3010
            )
A
andyjpaddle 已提交
3011 3012 3013 3014 3015
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
3016 3017 3018 3019 3020
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
3031 3032 3033 3034 3035 3036
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
3037
            s_abs = helper.create_variable_for_type_inference(s_type)
3038 3039 3040
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
3041
            max_singular_val = helper.create_variable_for_type_inference(s_type)
3042 3043 3044 3045 3046 3047
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
3048

3049
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
3050 3051
            cutoff = rcond * max_singular_val
            y = float('inf')
3052
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
3053

A
andyj 已提交
3054
            singular = paddle.where(s_abs > cutoff, 1 / s, 1 / y)
A
andyjpaddle 已提交
3055 3056 3057

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
3058 3059 3060 3061 3062 3063
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
3064 3065

            out_1 = helper.create_variable_for_type_inference(dtype)
3066 3067 3068 3069 3070 3071
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
3072 3073 3074
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
3075 3076 3077
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
3078 3079 3080 3081

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
3082
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
3083
                outputs={'Out': out_2},
3084
                attrs={'trans_x': False, 'trans_y': True},
3085
            )
A
andyjpaddle 已提交
3086
            return out_2
W
Weilong Wu 已提交
3087 3088 3089 3090


def solve(x, y, name=None):
    r"""
3091

W
Weilong Wu 已提交
3092
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
3093
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
3094
    a vector/matrix or a batch of vectors/matrices, the equation should be:
3095

W
Weilong Wu 已提交
3096 3097
    .. math::
        Out = X^-1 * Y
3098 3099

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
3100

W
Weilong Wu 已提交
3101
    Args:
3102
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
3103
            more batch dimensions. Its data type should be float32 or float64.
3104
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
3105
            more batch dimensions. Its data type should be float32 or float64.
3106
        name (str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
3107
            For more information, please refer to :ref:`api_guide_Name`.
3108

W
Weilong Wu 已提交
3109
    Returns:
3110
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
3111
        Its data type should be the same as that of `x`.
3112

W
Weilong Wu 已提交
3113
    Examples:
3114

3115
        .. code-block:: python
3116

3117 3118 3119
            >>> # a square system of linear equations:
            >>> # 2*X0 + X1 = 9
            >>> # X0 + 2*X1 = 8
3120

3121
            >>> import paddle
3122

3123 3124 3125
            >>> x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            >>> y = paddle.to_tensor([9, 8], dtype="float64")
            >>> out = paddle.linalg.solve(x, y)
3126

3127 3128 3129
            >>> print(out)
            Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            [2., 3.])
W
Weilong Wu 已提交
3130
    """
3131
    if in_dynamic_mode():
3132
        return _C_ops.solve(x, y)
3133 3134 3135 3136 3137 3138
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3139

3140 3141 3142 3143
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
3144 3145


3146 3147 3148
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
3149
    r"""
3150
    Computes the solution of a system of equations with a triangular coefficient. `x` is coefficient matrix
3151
    `y` is multiple right-hand sides of equations.
3152

3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
3165 3166 3167 3168

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
3169
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
3170
            zero or more batch dimensions. Its data type should be float32 or float64.
3171
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
3172 3173
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
3174
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
3175
            to be 1 and not referenced from `x` . Default: False.
3176
        name (str, optional): Name for the operation (optional, default is None).
3177 3178 3179 3180 3181 3182
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
3183
        .. code-block:: python
3184

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201
            >>> # a square system of linear equations:
            >>> # x1 +   x2  +   x3 = 0
            >>> #      2*x2  +   x3 = -9
            >>> #               -x3 = 5

            >>> import paddle
            >>> x = paddle.to_tensor([[1, 1, 1],
            ...                       [0, 2, 1],
            ...                       [0, 0,-1]], dtype="float64")
            >>> y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            >>> out = paddle.linalg.triangular_solve(x, y, upper=True)

            >>> print(out)
            Tensor(shape=[3, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[ 7.],
             [-2.],
             [-5.]])
3202
    """
3203
    if in_dynamic_mode():
3204
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
3205 3206 3207 3208 3209
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
3210
        )
3211 3212 3213 3214
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
3215

3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
3227 3228


Z
zhiboniu 已提交
3229 3230 3231 3232 3233 3234 3235 3236
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
3237
        x (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
3238
            zero or more batch dimensions. Its data type should be float32 or float64.
3239 3240
        y (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
Z
zhiboniu 已提交
3241
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
3242
        name (str, optional): Name for the operation (optional, default is None).
Z
zhiboniu 已提交
3243 3244 3245 3246 3247 3248
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
3249
        .. code-block:: python
Z
zhiboniu 已提交
3250

3251
            >>> import paddle
Z
zhiboniu 已提交
3252

3253 3254 3255 3256 3257
            >>> u = paddle.to_tensor([[1, 1, 1],
            ...                       [0, 2, 1],
            ...                       [0, 0,-1]], dtype="float64")
            >>> b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            >>> out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3258

3259 3260 3261 3262 3263
            >>> print(out)
            Tensor(shape=[3, 1], dtype=float64, place=Place(cpu), stop_gradient=True,
            [[-2.50000000],
             [-7.        ],
             [ 9.50000000]])
Z
zhiboniu 已提交
3264
    """
3265
    if in_dynamic_mode():
3266
        return _C_ops.cholesky_solve(x, y, upper)
3267 3268 3269 3270 3271 3272 3273 3274 3275
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3276

3277 3278 3279 3280 3281 3282 3283
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3284 3285


3286 3287
def eigvalsh(x, UPLO='L', name=None):
    """
3288
    Computes the eigenvalues of a
3289 3290 3291
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3292
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

3304
            >>> import paddle
3305

3306 3307 3308 3309 3310
            >>> x = paddle.to_tensor([[1, -2j], [2j, 5]])
            >>> out_value = paddle.eigvalsh(x, UPLO='L')
            >>> print(out_value)
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [0.17157286, 5.82842731])
3311
    """
3312
    if in_dynamic_mode():
3313
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3314
        return values
3315
    else:
3316

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
3332
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
3333
                )
3334

3335
        __check_input(x, UPLO)
3336

3337 3338 3339 3340 3341 3342 3343
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3344

3345 3346
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3347

3348 3349 3350 3351 3352 3353 3354 3355
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3356 3357


3358 3359 3360 3361 3362 3363 3364 3365
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3366
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3367
            should be one of float32, float64.
3368 3369
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3370
            machine precision of x_dtype.
3371 3372 3373
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3374
            for CUDA inputs.
3375
        name(str, optional): The default value is None. Normally there is no need for user to set
3376 3377 3378
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3379 3380 3381 3382 3383 3384 3385
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3386 3387 3388 3389 3390
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
            >>> import paddle

            >>> x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            >>> y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            >>> results = paddle.linalg.lstsq(x, y, driver="gelsd")
            >>> print(results[0])
            Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.78350395, -0.22165027, -0.62371236],
             [-0.11340097,  0.78866047,  1.14948535]])
            >>> print(results[1])
            Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [19.81443405, 10.43814468, 30.56185532])
            >>> print(results[2])
            Tensor(shape=[], dtype=int32, place=Place(cpu), stop_gradient=True,
            2)
            >>> print(results[3])
            Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [9.03455734, 1.54167950])

            >>> x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            >>> y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            >>> results = paddle.linalg.lstsq(x, y, driver="gels")
            >>> print(results[0])
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.39386186,  0.10230169,  0.93606132],
             [ 0.10741688, -0.29028130,  0.11892584],
             [-0.05115093,  0.51918161, -0.19948851]])
            >>> print(results[1])
            Tensor(shape=[0], dtype=float32, place=Place(cpu), stop_gradient=True,
            [])
3421 3422
    """
    device = paddle.get_device()
3423 3424 3425
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3426 3427 3428 3429
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3430 3431 3432 3433
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3434 3435 3436 3437
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3438 3439 3440 3441
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3442
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3443 3444 3445 3446
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3462 3463 3464 3465 3466 3467
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3468
    if in_dynamic_mode():
3469 3470 3471
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3472 3473 3474 3475 3476 3477 3478
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3493

3494 3495 3496 3497 3498 3499
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3500

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3512

3513 3514 3515 3516 3517 3518 3519 3520 3521
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3522

3523
        return solution, residuals, rank, singular_values
3524 3525 3526 3527


def corrcoef(x, rowvar=True, name=None):
    """
3528

3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

3540
    Args:
3541

3542 3543 3544
        x (Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar (bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name (str, optional): Name of the output. It's used to print debug info for developers. Details: :ref:`api_guide_Name`. Default: None.
3545 3546 3547 3548 3549 3550 3551

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3552

3553 3554
            >>> import paddle
            >>> paddle.seed(2023)
3555

3556 3557 3558 3559 3560 3561
            >>> xt = paddle.rand((3,4))
            >>> print(paddle.linalg.corrcoef(xt))
            Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[ 0.99999988, -0.47689581, -0.89559376],
             [-0.47689593,  1.        ,  0.16345492],
             [-0.89559382,  0.16345496,  1.        ]])
3562 3563 3564 3565 3566

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3567 3568
            "length of Input(input) is %s." % len(x.shape)
        )
3569 3570 3571
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3572
    if c.ndim == 0:
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3587 3588 3589
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3590 3591 3592 3593
    else:
        c = paddle.clip(c, -1, 1)

    return c
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628


def cdist(
    x, y, p=2.0, compute_mode="use_mm_for_euclid_dist_if_necessary", name=None
):
    r"""

    Compute the p-norm distance between each pair of the two collections of inputs.

    This function is equivalent to `scipy.spatial.distance.cdist(input,'minkowski', p=p)`
    if :math:`p \in (0, \infty)`. When :math:`p = 0` it is equivalent to `scipy.spatial.distance.cdist(input, 'hamming') * M`.
    When :math:`p = \infty`, the closest scipy function is `scipy.spatial.distance.cdist(xn, lambda x, y: np.abs(x - y).max())`.

    Args:
        x (Tensor): A tensor with shape :math:`B \times P \times M`.
        y (Tensor): A tensor with shape :math:`B \times R \times M`.
        p (float, optional): The value for the p-norm distance to calculate between each vector pair. Default: :math:`2.0`.
        compute_mode (str, optional): The mode for compute distance.

            - ``use_mm_for_euclid_dist_if_necessary`` , for p = 2.0 and (P > 25 or R > 25), it will use matrix multiplication to calculate euclid distance if possible.
            - ``use_mm_for_euclid_dist`` , for p = 2.0, it will use matrix multiplication to calculate euclid distance.
            - ``donot_use_mm_for_euclid_dist`` , it will not use matrix multiplication to calculate euclid distance.

            Default: ``use_mm_for_euclid_dist_if_necessary``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor, the dtype is same as input tensor.

        If x has shape :math:`B \times P \times M` and y has shape :math:`B \times R \times M` then
        the output will have shape :math:`B \times P \times R`.

    Examples:
        .. code-block:: python

3629 3630 3631 3632 3633 3634 3635 3636 3637
            >>> import paddle
            >>> x = paddle.to_tensor([[0.9041,  0.0196], [-0.3108, -2.4423], [-0.4821,  1.059]], dtype=paddle.float32)
            >>> y = paddle.to_tensor([[-2.1763, -0.4713], [-0.6986,  1.3702]], dtype=paddle.float32)
            >>> distance = paddle.cdist(x, y)
            >>> print(distance)
            Tensor(shape=[3, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            [[3.11927032, 2.09589314],
             [2.71384072, 3.83217239],
             [2.28300953, 0.37910119]])
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
    """

    check_variable_and_dtype(x, 'x', ('float32', 'float64'), 'cdist')
    check_variable_and_dtype(y, 'y', ('float32', 'float64'), 'cdist')
    check_type(p, 'p', (float, int), 'cdist')

    if compute_mode not in [
        'use_mm_for_euclid_dist_if_necessary',
        'use_mm_for_euclid_dist',
        'donot_use_mm_for_euclid_dist',
    ]:
        raise ValueError(
            "The compute_mode should be 'use_mm_for_euclid_dist_if_necessary', "
            "'use_mm_for_euclid_dist' or 'donot_use_mm_for_euclid_dist', "
            "but received compute_mode is %s." % compute_mode
        )

    mode = 0
    if compute_mode == 'use_mm_for_euclid_dist_if_necessary':
        mode = 0
    elif compute_mode == 'use_mm_for_euclid_dist':
        mode = 1
    elif compute_mode == 'donot_use_mm_for_euclid_dist':
        mode = 2

    x_shape = list(x.shape)
    assert len(x_shape) >= 2, (
        "The x must be at least 2-dimensional, "
        "But received Input x's dimensional is %s.\n" % len(x_shape)
    )
    y_shape = list(y.shape)
    assert len(y_shape) >= 2, (
        "The y must be at least 2-dimensional, "
        "But received Input y's dimensional is %s.\n" % len(y_shape)
    )
    assert x_shape[-1] == y_shape[-1], (
        "The x and y must have same last dimension, "
        "But received Input x's last dimension is {}, "
        "Input y's last dimension is {}.\n".format(x_shape[-1], y_shape[-1])
    )
    assert p >= 0, (
        "The p must be greater than or equal to 0, "
        "But received p is %s.\n" % p
    )

    r1 = x.shape[-2]
    r2 = y.shape[-2]
    c1 = x.shape[-1]

    p = float(p)

    if r1 == 0 or r2 == 0:
        return paddle.empty((r1, r2), dtype=x.dtype)

    if c1 == 0:
        return paddle.zeros((r1, r2), dtype=x.dtype)

    if p == 2.0 and (mode == 1 or (mode == 0 and (r1 > 25 or r2 > 25))):
        x_norm = paddle.sum(x.pow(2), axis=-1, keepdim=True)
        y_norm = paddle.sum(y.pow(2), axis=-1, keepdim=True)
        y_transposed = paddle.transpose(
            y, perm=[*range(y.ndim - 2), y.ndim - 1, y.ndim - 2]
        )
        y_norm_transposed = paddle.transpose(
            y_norm,
            perm=[*range(y_norm.ndim - 2), y_norm.ndim - 1, y_norm.ndim - 2],
        )
        res = paddle.matmul(x, y_transposed) * -2 + y_norm_transposed + x_norm
        res = paddle.clip(res, min=0.0).sqrt()
        return res

    return paddle.linalg.norm(
        x[..., None, :] - y[..., None, :, :], p=p, axis=-1
    )