pybind.cc 110.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2
Copyright (c) 2022 NVIDIA Authors. All Rights Reserved.
3 4 5 6 7

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

8
http://www.apache.org/licenses/LICENSE-2.0
9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
15
#include <Python.h>
16 17 18 19
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
20

C
chengduoZH 已提交
21
#include <algorithm>
22
#include <cctype>
23
#include <cstdlib>
24
#include <iterator>
C
chengduoZH 已提交
25
#include <map>
S
sneaxiy 已提交
26
#include <memory>
C
chengduoZH 已提交
27
#include <mutex>  // NOLINT // for call_once
28
#include <sstream>
C
chengduoZH 已提交
29
#include <string>
30 31
#include <tuple>
#include <type_traits>
C
chengduoZH 已提交
32
#include <unordered_map>
33
#include <unordered_set>
C
chengduoZH 已提交
34 35
#include <utility>
#include <vector>
36

37
#include "paddle/fluid/framework/convert_utils.h"
38
#include "paddle/fluid/framework/custom_operator.h"
39
#include "paddle/fluid/framework/data_layout.h"
L
Leo Chen 已提交
40
#include "paddle/fluid/framework/data_type_transform.h"
41
#include "paddle/fluid/framework/details/nan_inf_utils_detail.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/executor.h"
43
#include "paddle/fluid/framework/executor_cache.h"
44
#include "paddle/fluid/framework/executor_gc_helper.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
46
#include "paddle/fluid/framework/feed_fetch_type.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
48
#include "paddle/fluid/framework/io/fs.h"
49
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
H
Huihuang Zheng 已提交
50
#include "paddle/fluid/framework/ir/cost_model.h"
51
#include "paddle/fluid/framework/ir/generate_pass.h"
52
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
53 54
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
L
liutiexing 已提交
55
#include "paddle/fluid/framework/new_executor/executor_statistics.h"
56
#include "paddle/fluid/framework/new_executor/standalone_executor.h"
S
sneaxiy 已提交
57
#include "paddle/fluid/framework/op_info.h"
58
#include "paddle/fluid/framework/op_registry.h"
59
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/framework/parallel_executor.h"
61
#include "paddle/fluid/framework/phi_utils.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/framework/prune.h"
63
#include "paddle/fluid/framework/raw_tensor.h"
Y
Refine  
Yu Yang 已提交
64
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
65
#include "paddle/fluid/framework/scope_pool.h"
66
#include "paddle/fluid/framework/selected_rows_utils.h"
67
#include "paddle/fluid/framework/tensor_util.h"
68
#include "paddle/fluid/framework/trainer.h"
69
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
70
#include "paddle/fluid/framework/version.h"
L
Leo Chen 已提交
71
#include "paddle/fluid/imperative/amp_auto_cast.h"
H
hong 已提交
72
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
73
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
74 75
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
76
#include "paddle/fluid/prim/utils/utils.h"
77 78 79
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h"
#endif
80
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
81
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
82
#include "paddle/fluid/operators/common_infer_shape_functions.h"
83
#include "paddle/fluid/operators/ops_extra_info.h"
S
sneaxiy 已提交
84
#include "paddle/fluid/operators/py_func_op.h"
85
#include "paddle/fluid/platform/cpu_helper.h"
86
#include "paddle/fluid/platform/device/device_wrapper.h"
87
#include "paddle/fluid/platform/device_context.h"
88
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
89
#include "paddle/fluid/platform/enforce.h"
90
#include "paddle/fluid/platform/init.h"
91
#include "paddle/fluid/platform/init_phi.h"
H
hutuxian 已提交
92
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
93 94
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
C
chenjian 已提交
95 96 97
#include "paddle/fluid/platform/profiler/event_python.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/profiler.h"
98
#include "paddle/fluid/pybind/cuda_streams_py.h"
99
#include "paddle/fluid/pybind/custom_device_py.h"
100
#include "paddle/fluid/pybind/distributed_py.h"
101
#include "paddle/fluid/pybind/eager.h"
J
Jiabin Yang 已提交
102
#include "paddle/fluid/pybind/imperative.h"
103
#include "paddle/fluid/pybind/io.h"
104
#include "paddle/fluid/pybind/jit.h"
J
james 已提交
105
#include "paddle/fluid/pybind/xpu_streams_py.h"
106
#include "paddle/phi/backends/cpu/cpu_info.h"
107 108
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/lod_utils.h"
109
#include "paddle/utils/none.h"
110 111 112
#ifdef PADDLE_WITH_ASCEND
#include "paddle/fluid/pybind/ascend_wrapper_py.h"
#endif
113
#include "paddle/fluid/pybind/auto_parallel_py.h"
H
Huihuang Zheng 已提交
114
#include "paddle/fluid/pybind/bind_cost_model.h"
L
LiYuRio 已提交
115
#include "paddle/fluid/pybind/bind_fleet_executor.h"
H
hutuxian 已提交
116
#include "paddle/fluid/pybind/box_helper_py.h"
117
#include "paddle/fluid/pybind/communication.h"
118
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
119
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
120
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
121
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
122
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
123
#include "paddle/fluid/pybind/generator_py.h"
124
#include "paddle/fluid/pybind/global_value_getter_setter.h"
125
#include "paddle/fluid/pybind/gloo_context_py.h"
126
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
127
#include "paddle/fluid/pybind/heter_wrapper_py.h"
F
flame 已提交
128
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
129
#include "paddle/fluid/pybind/ir.h"
130
#include "paddle/fluid/pybind/metrics_py.h"
T
Thunderbrook 已提交
131
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
132
#include "paddle/fluid/pybind/pybind_variant_caster.h"
133
#include "paddle/phi/backends/device_manager.h"
134

135
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
136
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
137
#endif
138
#include "paddle/fluid/framework/data_type.h"
139 140
#include "paddle/fluid/pybind/parallel_executor.h"
#include "paddle/fluid/pybind/place.h"
141 142
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
143
#include "paddle/fluid/pybind/reader_py.h"
144
#include "paddle/fluid/pybind/tensor.h"
Y
Yi Wang 已提交
145
#include "paddle/fluid/pybind/tensor_py.h"
146
#include "paddle/fluid/string/to_string.h"
147 148
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
Y
Yi Wang 已提交
149
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
150
#endif
151
#ifndef PADDLE_WITH_HIP
152
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
153
#endif
154
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
D
Dong Zhihong 已提交
155 156
#endif

157
#ifdef PADDLE_WITH_ASCEND_CL
158
#include "paddle/fluid/platform/collective_helper.h"
159 160
#endif

161
#ifdef PADDLE_WITH_XPU
162
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
T
TTerror 已提交
163
#include "paddle/fluid/platform/device/xpu/xpu_op_list.h"
164 165
#endif

166
#ifdef PADDLE_WITH_CUSTOM_DEVICE
167
#include "paddle/fluid/operators/custom_device_common_op_registry.h"
168 169 170
#include "paddle/phi/capi/capi.h"
#endif

171
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
A
Allen Guo 已提交
172

J
jianghaicheng 已提交
173
#ifdef PADDLE_WITH_IPU
A
Allen Guo 已提交
174 175
#include "paddle/fluid/platform/device/ipu/ipu_backend.h"
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
J
jianghaicheng 已提交
176
#endif
177

Y
Yanghello 已提交
178 179 180 181
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
182
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
183 184 185
#include "paddle/fluid/pybind/fleet_py.h"
#endif

186 187 188 189
#ifdef PADDLE_WITH_CINN
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
#endif

X
Xinger 已提交
190
#if defined(PADDLE_WITH_RPC)
191 192 193
#include "paddle/fluid/pybind/rpc.h"
#endif

194
#include "paddle/fluid/eager/api/utils/global_utils.h"
195
#include "paddle/fluid/eager/nan_inf_utils.h"
196
#include "paddle/fluid/imperative/layout_autotune.h"
197 198
#include "paddle/fluid/prim/utils/eager/eager_tensor_operants.h"
#include "paddle/fluid/prim/utils/static/static_tensor_operants.h"
199 200
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/phi/api/ext/op_meta_info.h"
201 202
#include "paddle/phi/api/include/operants_manager.h"
#include "paddle/phi/api/include/tensor_operants.h"
203 204
#include "paddle/phi/kernels/autotune/cache.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
M
minqiyang 已提交
205 206
#include "pybind11/stl.h"

207
DECLARE_bool(use_mkldnn);
208

Q
Qiao Longfei 已提交
209 210
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
211 212 213
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
214

215
DECLARE_FILE_SYMBOLS(init_phi);
216
namespace paddle {
217
namespace pybind {
218

0
0x45f 已提交
219
PyTypeObject *g_framework_scope_pytype = nullptr;
220
PyTypeObject *g_framework_lodtensorarray_pytype = nullptr;
221
PyTypeObject *g_custom_op_kernel_ctx_pytype = nullptr;
222

223 224 225 226 227 228 229 230
bool IsCompiledWithAVX() {
#ifndef PADDLE_WITH_AVX
  return false;
#else
  return true;
#endif
}

231
bool IsCompiledWithCUDA() {
232 233 234 235 236 237 238
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
  return false;
#else
  return true;
#endif
}

239 240 241 242 243 244 245 246
bool IsCompiledWithNCCL() {
#ifdef PADDLE_WITH_NCCL
  return true;
#else
  return false;
#endif
}

W
wuhuachaocoding 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
bool IsCompiledWithMPI() {
#ifdef PADDLE_WITH_MPI
  return true;
#else
  return false;
#endif
}

// NOTE some mpi lib can support cuda aware, support it in the future.
bool IsCompiledWithMPIAWARE() {
#ifdef PADDLE_WITH_MPI_AWARE
  return true;
#else
  return false;
#endif
}

264 265
bool IsCompiledWithROCM() {
#ifndef PADDLE_WITH_HIP
Q
qijun 已提交
266 267 268 269 270 271
  return false;
#else
  return true;
#endif
}

272 273 274 275 276 277 278 279
bool IsCompiledWithAscend() {
#ifndef PADDLE_WITH_ASCEND
  return false;
#else
  return true;
#endif
}

280 281 282 283 284 285 286 287
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

288 289 290 291 292 293 294 295
bool IsCompiledWithNPU() {
#ifndef PADDLE_WITH_ASCEND_CL
  return false;
#else
  return true;
#endif
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309
bool IsCompiledWithCustomDevice(std::string device_type) {
#ifndef PADDLE_WITH_CUSTOM_DEVICE
  return false;
#else
  std::vector<std::string> device_types;
  device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
  if (std::count(device_types.begin(), device_types.end(), device_type)) {
    return true;
  } else {
    return false;
  }
#endif
}

J
jianghaicheng 已提交
310 311 312 313 314 315 316 317
bool IsCompiledWithIPU() {
#ifndef PADDLE_WITH_IPU
  return false;
#else
  return true;
#endif
}

318 319 320 321 322 323 324 325
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

326 327 328 329 330 331 332 333
bool IsCompiledWithCINN() {
#ifndef PADDLE_WITH_CINN
  return false;
#else
  return true;
#endif
}

334 335 336 337 338 339 340 341
bool IsCompiledWithHETERPS() {
#ifndef PADDLE_WITH_HETERPS
  return false;
#else
  return true;
#endif
}

342 343 344 345
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
346
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_core))
347 348 349 350 351 352
    return true;
  else
    return false;
#endif
}

353 354 355 356
bool SupportsBfloat16FastPerformance() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
357
  if (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512_bf16))
358 359 360 361 362 363
    return true;
  else
    return false;
#endif
}

364 365 366 367
bool SupportsInt8() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
368 369
  return (phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx2) ||
          phi::backends::cpu::MayIUse(phi::backends::cpu::cpu_isa_t::avx512f));
370 371 372 373 374 375 376
#endif
}

bool SupportsVNNI() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
377 378
  return phi::backends::cpu::MayIUse(
      phi::backends::cpu::cpu_isa_t::avx512_core_vnni);
379 380 381
#endif
}

382
bool IsCompiledWithBrpc() {
383
#ifndef PADDLE_WITH_DISTRIBUTE
384
  return false;
385
#else
386
  return true;
387
#endif
388 389
}

Y
update  
Yancey1989 已提交
390
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
391
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
392 393 394 395 396 397
  return true;
#else
  return false;
#endif
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
struct iinfo {
  int64_t min, max;
  int bits;
  std::string dtype;

  explicit iinfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::INT16:
        min = std::numeric_limits<int16_t>::min();
        max = std::numeric_limits<int16_t>::max();
        bits = 16;
        dtype = "int16";
        break;
      case framework::proto::VarType::INT32:
        min = std::numeric_limits<int32_t>::min();
        max = std::numeric_limits<int32_t>::max();
        bits = 32;
        dtype = "int32";
        break;
      case framework::proto::VarType::INT64:
        min = std::numeric_limits<int64_t>::min();
        max = std::numeric_limits<int64_t>::max();
        bits = 64;
        dtype = "int64";
        break;
      case framework::proto::VarType::INT8:
        min = std::numeric_limits<int8_t>::min();
        max = std::numeric_limits<int8_t>::max();
        bits = 8;
        dtype = "int8";
        break;
      case framework::proto::VarType::UINT8:
        min = std::numeric_limits<uint8_t>::min();
        max = std::numeric_limits<uint8_t>::max();
        bits = 8;
        dtype = "uint8";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.iinfo can only be paddle.int8, "
            "paddle.int16, paddle.int32, paddle.int64, or paddle.uint8"));
        break;
    }
  }
};

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
struct finfo {
  int64_t bits;
  double eps;
  double min;  // lowest()
  double max;
  double tiny;
  double smallest_normal;  // min()
  double resolution;
  std::string dtype;

  explicit finfo(const framework::proto::VarType::Type &type) {
    switch (type) {
      case framework::proto::VarType::FP16:
        eps = std::numeric_limits<paddle::platform::float16>::epsilon();
        min = std::numeric_limits<paddle::platform::float16>::lowest();
        max = std::numeric_limits<paddle::platform::float16>::max();
        smallest_normal = std::numeric_limits<paddle::platform::float16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::float16>::digits10);
        bits = 16;
        dtype = "float16";
        break;
      case framework::proto::VarType::FP32:
      case framework::proto::VarType::COMPLEX64:
        eps = std::numeric_limits<float>::epsilon();
        min = std::numeric_limits<float>::lowest();
        max = std::numeric_limits<float>::max();
        smallest_normal = std::numeric_limits<float>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<float>::digits10);
        bits = 32;
        dtype = "float32";
        break;
      case framework::proto::VarType::FP64:
      case framework::proto::VarType::COMPLEX128:
        eps = std::numeric_limits<double>::epsilon();
        min = std::numeric_limits<double>::lowest();
        max = std::numeric_limits<double>::max();
        smallest_normal = std::numeric_limits<double>::min();
        tiny = smallest_normal;
        resolution = std::pow(10, -std::numeric_limits<double>::digits10);
        bits = 64;
        dtype = "float64";
        break;
      case framework::proto::VarType::BF16:
        eps = std::numeric_limits<paddle::platform::bfloat16>::epsilon();
        min = std::numeric_limits<paddle::platform::bfloat16>::lowest();
        max = std::numeric_limits<paddle::platform::bfloat16>::max();
        smallest_normal =
            std::numeric_limits<paddle::platform::bfloat16>::min();
        tiny = smallest_normal;
        resolution = std::pow(
            10, -std::numeric_limits<paddle::platform::bfloat16>::digits10);
        bits = 16;
        dtype = "bfloat16";
        break;
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "the argument of paddle.finfo can only be paddle.float32, "
            "paddle.float64, paddle.float16, paddle.bfloat16"
            "paddle.complex64, or paddle.complex128"));
        break;
    }
  }
};

H
hong 已提交
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
533 534
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
535 536
        typeid(T).name(),
        obj->ob_type->tp_name));
H
hong 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
550 551
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
552 553
    }
    vec_res.emplace_back(
554
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
555 556 557 558 559 560 561 562 563 564 565 566
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
567 568
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
569 570 571 572 573 574 575 576 577 578 579 580
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
581 582 583
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
584 585 586 587
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
588 589
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
590 591 592 593
  }
  return vec_res;
}

O
OccupyMars2025 已提交
594
static void inline CreateVariableIfNotExist(
595 596
    const py::handle &py_handle,
    const framework::Scope &scope,
597 598 599 600 601 602
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
603 604
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
605 606 607 608 609 610 611 612 613 614 615 616 617
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
618 619 620
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
621 622 623 624 625
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
626 627 628 629 630
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
631 632
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
633
        PADDLE_ENFORCE_NOT_NULL(
634 635 636
            py_var_desc,
            platform::errors::InvalidArgument(
                "The var_desc of parameter to set is None"));
637 638 639
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
640
        auto *tensor_temp = var->GetMutable<phi::DenseTensor>();
641
        tensor_temp->Resize(phi::make_ddim(var_desc.GetShape()));
642 643
        tensor_temp->mutable_data(
            exe->GetPlace(),
644
            framework::TransToPhiDataType(var_desc.GetDataType()));
645 646 647
      }
    }
  } else {
648 649
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
650 651 652 653 654
  }

  return;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
671 672
  PADDLE_ENFORCE_EQ(ops.empty(),
                    true,
673 674 675 676 677 678 679
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

Z
Zeng Jinle 已提交
680 681 682 683
#ifdef PADDLE_WITH_NCCL
static int GetNCCLVersion() {
#if NCCL_VERSION_CODE >= 2304
  int ver;
684
  PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::ncclGetVersion(&ver));
Z
Zeng Jinle 已提交
685 686 687 688 689 690 691 692
  return ver;
#else
  PADDLE_THROW(platform::errors::External(
      "Cannot get NCCL version successfully when nccl version < 2.3.4"));
#endif
}
#endif

693
PYBIND11_MODULE(libpaddle, m) {
J
Jiabin Yang 已提交
694
  BindImperative(&m);
695
  BindEager(&m);
J
Jack Zhou 已提交
696
  BindEagerStringTensor(&m);
697
  BindCudaStream(&m);
J
james 已提交
698
  BindXpuStream(&m);
699
  BindJit(&m);
700
  BindCustomDevicePy(&m);
701

Y
Yu Yang 已提交
702
  // Not used, just make sure cpu_info.cc is linked.
703
  phi::backends::cpu::CpuTotalPhysicalMemory();
Y
Yu Yang 已提交
704

Y
Refine  
Yu Yang 已提交
705
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
706

707 708
  AssertStaticGraphAndDygraphGradMakerNoDiff();

709
  m.doc() = "C++ core of PaddlePaddle";
710

711 712 713 714
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

715
  BindException(&m);
Y
Yu Yang 已提交
716

717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
  py::class_<iinfo>(m, "iinfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &iinfo::min)
      .def_readonly("max", &iinfo::max)
      .def_readonly("bits", &iinfo::bits)
      .def_readonly("dtype", &iinfo::dtype)
      .def("__repr__", [](const iinfo &a) {
        std::ostringstream oss;
        oss << "paddle.iinfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  py::class_<finfo>(m, "finfo")
      .def(py::init<const framework::proto::VarType::Type &>())
      .def_readonly("min", &finfo::min)
      .def_readonly("max", &finfo::max)
      .def_readonly("bits", &finfo::bits)
      .def_readonly("eps", &finfo::eps)
      .def_readonly("resolution", &finfo::resolution)
      .def_readonly("smallest_normal", &finfo::smallest_normal)
      .def_readonly("tiny", &finfo::tiny)
      .def_readonly("dtype", &finfo::dtype)
      .def("__repr__", [](const finfo &a) {
        std::ostringstream oss;
        oss << "paddle.finfo(min=" << a.min;
        oss << ", max=" << a.max;
        oss << ", eps=" << a.eps;
        oss << ", resolution=" << a.resolution;
        oss << ", smallest_normal=" << a.smallest_normal;
        oss << ", tiny=" << a.tiny;
        oss << ", bits=" << a.bits;
        oss << ", dtype=" << a.dtype << ")";
        return oss.str();
      });

755 756 757 758 759 760 761 762 763 764
  m.def("__set_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetBwdPrimEnabled);
  m.def("_is_bwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsBwdPrimEnabled);
  m.def("__set_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetFwdPrimEnabled);
  m.def("_is_fwd_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsFwdPrimEnabled);
  m.def("__set_all_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetAllPrimEnabled);
765 766 767 768
  m.def("_is_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::IsEagerPrimEnabled);
  m.def("__set_eager_prim_enabled",
        &paddle::prim::PrimCommonUtils::SetEagerPrimEnabled);
769 770
  m.def("_set_prim_target_grad_name",
        &paddle::prim::PrimCommonUtils::SetTargetGradName);
771 772
  m.def("set_num_threads", &platform::SetNumThreads);

773 774
  m.def("disable_signal_handler", &DisableSignalHandler);

775 776 777 778 779 780 781 782
  m.def("clear_gradients",
        [](std::vector<std::shared_ptr<imperative::VarBase>> param_list,
           bool set_to_zero) {
          for (auto param : param_list) {
            param->ClearGradient(set_to_zero);
          }
        });

783
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
784
  m.def("cudnn_version", &platform::DnnVersion);
785 786 787 788 789 790
  m.def("gpu_memory_available", []() {
    size_t available = 0;
    size_t total = 0;
    paddle::platform::GpuMemoryUsage(&available, &total);
    return available;
  });
791
#endif
792

Z
Zeng Jinle 已提交
793 794 795 796
#ifdef PADDLE_WITH_NCCL
  m.def("nccl_version", &GetNCCLVersion);
#endif

797 798
  m.def("is_cuda_graph_capturing", &platform::IsCUDAGraphCapturing);
#ifdef PADDLE_WITH_CUDA
799
  py::class_<phi::backends::gpu::CUDAGraph>(m, "CUDAGraph")
800 801 802 803 804 805
      .def_static("begin_capture",
                  [](platform::CUDAPlace place, int mode) {
                    platform::BeginCUDAGraphCapture(
                        place, static_cast<cudaStreamCaptureMode>(mode));
                  })
      .def_static("end_capture", &platform::EndCUDAGraphCapture)
806
      .def_static("gen_new_memory_pool_id",
807 808 809 810 811
                  &phi::backends::gpu::CUDAGraph::UniqueMemoryPoolID)
      .def("replay", &phi::backends::gpu::CUDAGraph::Replay)
      .def("reset", &phi::backends::gpu::CUDAGraph::Reset)
      .def("print_to_dot_files",
           &phi::backends::gpu::CUDAGraph::PrintToDotFiles);
812 813
#endif

Z
Zeng Jinle 已提交
814 815 816 817
  m.def("wait_device", [](const platform::Place &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });

6
633WHU 已提交
818 819 820
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
821 822

    PADDLE_ENFORCE_NOT_NULL(
823 824 825 826
        dmt,
        platform::errors::InvalidArgument(
            "from_dlpack received an invalid capsule. "
            "Note that a DLPack tensor can be consumed only once."));
827

6
633WHU 已提交
828 829
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
830
    phi::DenseTensor tensor;
6
633WHU 已提交
831

S
Siming Dai 已提交
832
    if (dl.device.device_type == kDLCPU) {
S
Siming Dai 已提交
833
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
834
    }
835
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
S
Siming Dai 已提交
836
    if (dl.device.device_type == kDLGPU) {
S
Siming Dai 已提交
837
      paddle::framework::TensorFromDLPack(dmt, &tensor);
6
633WHU 已提交
838 839 840 841
    }
#endif
    return tensor;
  });
H
hong 已提交
842

843
  m.def("_create_loaded_parameter",
844 845
        [](const py::handle &vec_var_list,
           const Scope &scope,
846
           const Executor *executor) {
O
OccupyMars2025 已提交
847
          CreateVariableIfNotExist(vec_var_list, scope, executor);
848 849
        });

850 851 852 853 854 855
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
856 857
  });

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

883 884 885 886 887 888
  m.def(
      "broadcast_shape",
      [](const std::vector<int64_t> &x_dim, const std::vector<int64_t> &y_dim) {
        return phi::vectorize(operators::details::BroadcastTwoDims(
            phi::make_ddim(x_dim), phi::make_ddim(y_dim), -1));
      });
L
Leo Chen 已提交
889

S
sneaxiy 已提交
890
  m.def(
S
sneaxiy 已提交
891
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
892 893 894 895
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
896 897 898
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
  m.def(
      "_get_all_register_op_kernels",
      [](const std::string &lib) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        if (lib == "fluid" || lib == "all") {
          auto &all_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();

          for (auto &kernel_pair : all_kernels) {
            auto op_type = kernel_pair.first;
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              paddle::framework::OpKernelType kernel_type = info_pair.first;
              kernel_types.emplace_back(
                  paddle::framework::KernelTypeToString(kernel_type));
915
            }
916
            all_kernels_info.emplace(op_type, kernel_types);
917
          }
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
        }
        if (lib == "phi" || lib == "all") {
          auto phi_kernels = phi::KernelFactory::Instance().kernels();
          for (auto &kernel_pair : phi_kernels) {
            auto op_type = phi::TransToFluidOpName(kernel_pair.first);
            std::vector<std::string> kernel_types;
            for (auto &info_pair : kernel_pair.second) {
              framework::OpKernelType kernel_type =
                  framework::TransPhiKernelKeyToOpKernelType(info_pair.first);
              auto kernel_type_str = framework::KernelTypeToString(kernel_type);
              if (all_kernels_info.count(op_type)) {
                if (std::find(all_kernels_info[op_type].begin(),
                              all_kernels_info[op_type].end(),
                              kernel_type_str) ==
                    all_kernels_info[op_type].end()) {
                  all_kernels_info[op_type].emplace_back(kernel_type_str);
934
                }
935 936
              } else {
                kernel_types.emplace_back(kernel_type_str);
937
              }
938
            }
939 940 941
            if (!kernel_types.empty()) {
              all_kernels_info.emplace(op_type, kernel_types);
            }
942
          }
943
        }
944

945 946 947 948
        return all_kernels_info;
      },
      py::arg("lib") = "all",
      R"DOC(
949 950 951
           Return the registered kernels in paddle.

           Args:
952
               lib[string]: the libarary, could be 'phi', 'fluid' and 'all'.
953
           )DOC");
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
  m.def(
      "_get_registered_phi_kernels",
      [](const std::string &kernel_registered_type) {
        std::unordered_map<std::string, std::vector<std::string>>
            all_kernels_info;
        auto phi_kernels = phi::KernelFactory::Instance().kernels();
        for (auto &kernel_pair : phi_kernels) {
          auto kernel_name = kernel_pair.first;
          std::vector<std::string> kernel_keys;
          for (auto &info_pair : kernel_pair.second) {
            bool get_function_kernel =
                kernel_registered_type == "function" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::FUNCTION;
            bool get_structure_kernel =
                kernel_registered_type == "structure" &&
                info_pair.second.GetKernelRegisteredType() ==
                    phi::KernelRegisteredType::STRUCTURE;
            if (kernel_registered_type == "all" || get_function_kernel ||
                get_structure_kernel) {
              std::ostringstream stream;
              stream << info_pair.first;
              std::string kernel_key_str = stream.str();
              if (all_kernels_info.count(kernel_name)) {
                bool kernel_exist =
                    std::find(all_kernels_info[kernel_name].begin(),
                              all_kernels_info[kernel_name].end(),
                              kernel_key_str) !=
                    all_kernels_info[kernel_name].end();
                if (!kernel_exist) {
                  all_kernels_info[kernel_name].emplace_back(kernel_key_str);
                }
              } else {
                kernel_keys.emplace_back(kernel_key_str);
              }
            }
          }
          if (!kernel_keys.empty()) {
            all_kernels_info.emplace(kernel_name, kernel_keys);
          }
        }

        return all_kernels_info;
      },
      py::arg("kernel_registered_type") = "function",
      R"DOC(
           Return the registered kernels in phi.

           Args:
               kernel_registered_type[string]: the libarary, could be 'function', 'structure', and 'all'.
           )DOC");

1007 1008 1009 1010 1011 1012
  // NOTE(Aganlengzi): KernelFactory static instance is initialized BEFORE
  // plugins are loaded for custom kernels, but de-initialized AFTER they are
  // unloaded. We need manually clear symbols(may contain plugins' symbols)
  // stored in this static instance to avoid illegal memory access.
  m.def("clear_kernel_factory",
        []() { phi::KernelFactory::Instance().kernels().clear(); });
1013 1014 1015 1016 1017
  m.def("clear_device_manager", []() {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    phi::DeviceManager::Clear();
#endif
  });
1018

S
sneaxiy 已提交
1019 1020 1021
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
1022
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
1023

1024
  m.def("_set_fuse_parameter_group_size",
1025
        &paddle::framework::ir::SetFuseParameterGroupsSize);
1026
  m.def("_set_fuse_parameter_memory_size",
1027
        &paddle::framework::ir::SetFuseParameterMemorySize);
1028

S
sneaxiy 已提交
1029 1030 1031
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

1032 1033
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

L
Leo Chen 已提交
1034 1035
  m.def("set_current_thread_name", &paddle::platform::SetCurrentThreadName);

1036 1037 1038
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
  py::class_<paddle::CustomOpKernelContext> custom_op_kernel_ctx(
      m, "CustomOpKernelContext", R"DOC()DOC");
  g_custom_op_kernel_ctx_pytype =
      reinterpret_cast<PyTypeObject *>(custom_op_kernel_ctx.ptr());
  custom_op_kernel_ctx.def(py::init<>())
      .def("add_inputs",
           [](paddle::CustomOpKernelContext &self, const py::handle &input) {
             PyObject *obj = input.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackInputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
1050 1051 1052
             } else if (obj == Py_None) {
               // Check optional Tensor, use one un-initialized tensor to
               // indicate both Tensor and vector<Tensor> inputs
1053
               self.EmplaceBackInput(std::move(paddle::Tensor()));
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
             } else {
               self.EmplaceBackInput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
      .def("add_outputs",
           [](paddle::CustomOpKernelContext &self, py::handle &outputs) {
             PyObject *obj = outputs.ptr();
             if (PyList_Check(obj) || PyTuple_Check(obj)) {
               self.EmplaceBackOutputs(
                   std::move(CastPyArg2VectorOfTensor(obj, 1)));
             } else {
               self.EmplaceBackOutput(std::move(CastPyArg2Tensor(obj, 1)));
             }
           })
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, bool attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, float attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, int64_t attr) {
             self.EmplaceBackAttr(attr);
           })
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self, const std::string &attr) {
             self.EmplaceBackAttr(attr);
           })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<float> &attr) { self.EmplaceBackAttr(attr); })
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<int64_t> &attr) { self.EmplaceBackAttr(attr); })
1097 1098 1099 1100 1101
      .def("add_attr",
           [](paddle::CustomOpKernelContext &self,
              const std::vector<std::string> &attr) {
             self.EmplaceBackAttr(attr);
           });
1102

1103
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1104 1105 1106

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1107
      .def(py::init<>())
1108
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1109
      .def("set_int",
1110 1111
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1112 1113 1114 1115 1116 1117 1118
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
1119 1120
      .def(
          "get_tensor",
1121 1122
          [](Variable &self) -> phi::DenseTensor * {
            return self.GetMutable<phi::DenseTensor>();
1123 1124
          },
          py::return_value_policy::reference)
1125 1126
      .def("get_bytes",
           [](Variable &self) {
1127 1128 1129 1130 1131 1132
             if (self.IsType<String>()) {
               return py::bytes(*(self.GetMutable<String>()));
             } else {
               return py::bytes(
                   *(self.GetMutable<RawTensor>()->GetMutable<std::string>()));
             }
1133
           })
S
Steffy-zxf 已提交
1134
      .def("set_string_list",
1135
           [](Variable &self, std::vector<std::string> str_list) {
S
Steffy-zxf 已提交
1136 1137
             *self.GetMutable<Strings>() = str_list;
           })
1138
      .def("set_vocab",
1139 1140
           [](Variable &self,
              const std::unordered_map<std::wstring, std::int32_t> &vocab) {
1141 1142
             *self.GetMutable<Vocab>() = vocab;
           })
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
      .def(
          "get_string_tensor",
          [](Variable &self) { return self.GetMutable<Strings>(); },
          py::return_value_policy::reference)
      .def(
          "get_map_tensor",
          [](Variable &self) { return self.GetMutable<Vocab>(); },
          py::return_value_policy::reference)
      .def(
          "get_lod_rank_table",
          [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
          py::return_value_policy::reference)
      .def(
          "get_selected_rows",
          [](Variable &self) -> phi::SelectedRows * {
            return self.GetMutable<phi::SelectedRows>();
          },
          py::return_value_policy::reference)
      .def(
          "get_lod_tensor_array",
          [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
          py::return_value_policy::reference)
      .def(
          "get_fetch_list",
          [](Variable &self) { return self.GetMutable<FetchList>(); },
          py::return_value_policy::reference)
1169
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
1170 1171 1172 1173 1174 1175
      .def(
          "get_communicator",
          [](Variable &self) -> platform::Communicator * {
            return self.GetMutable<platform::Communicator>();
          },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
1176
#endif
1177 1178 1179
      .def(
          "get_reader",
          [](Variable &self) -> framework::ReaderHolder * {
1180 1181
            PADDLE_ENFORCE_EQ(self.IsType<framework::ReaderHolder>(),
                              true,
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
                              platform::errors::InvalidArgument(
                                  "The variable is not type of ReaderHolder."));
            return self.GetMutable<framework::ReaderHolder>();
          },
          py::return_value_policy::reference)
      .def(
          "get_scope",
          [](Variable &self) -> Scope * {
            auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
            PADDLE_ENFORCE_GT(
1192 1193
                scope_vec->size(),
                0,
1194 1195 1196 1197 1198
                platform::errors::InvalidArgument(
                    "The size of scope_vec should be greater than 0"));
            return scope_vec->front();
          },
          py::return_value_policy::reference)
1199 1200 1201 1202
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1203

S
sneaxiy 已提交
1204
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1205

0
0x45f 已提交
1206
  py::class_<Scope> _Scope(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1220
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1221 1222 1223 1224 1225
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

0
0x45f 已提交
1226 1227 1228
        )DOC");
  g_framework_scope_pytype = reinterpret_cast<PyTypeObject *>(_Scope.ptr());
  _Scope
S
sneaxiy 已提交
1229 1230
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
1231 1232 1233 1234 1235 1236 1237
      .def(
          "var",
          [](Scope &self, const std::string &name) -> Variable * {
            return self.Var(name);
          },
          py::arg("name"),
          R"DOC(
1238
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1239

1240
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1241
           current scope, the variable would be created. Otherwise,
1242
           return the existing variable.
S
sneaxiy 已提交
1243 1244

           Args:
1245 1246
               name (str): the variable name.

S
sneaxiy 已提交
1247
           Returns:
1248
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1249
           )DOC",
1250
          py::return_value_policy::reference)
1251 1252 1253
      .def("find_var",
           &Scope::FindVar,
           py::arg("name"),
S
sneaxiy 已提交
1254
           R"DOC(
1255
           Find variable named :code:`name` in the current scope or
1256
           its parent scope. Return None if not found.
1257

S
sneaxiy 已提交
1258 1259
           Args:
               name (str): the variable name.
1260

S
sneaxiy 已提交
1261
           Returns:
1262
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1263
           )DOC",
1264
           py::return_value_policy::reference)
1265
      .def("size", &Scope::Size)
1266 1267 1268
      .def("erase",
           &Scope::EraseVars,
           py::arg("names"),
1269 1270
           R"DOC(
           Find variable named :code:`name` in the current scope or
1271
           its parent scope. Return None if not found.
1272 1273 1274 1275 1276 1277 1278 1279

           Args:
               name (str): the variable names to be erase.

           Returns:
               None
           )DOC",
           py::return_value_policy::reference)
1280
      .def(
1281 1282
          "new_scope",
          [](Scope &self) -> Scope * { return &self.NewScope(); },
1283
          R"DOC(
S
sneaxiy 已提交
1284 1285 1286 1287 1288
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1289
          py::return_value_policy::reference)
1290 1291
      .def("drop_kids",
           &Scope::DropKids,
S
sneaxiy 已提交
1292 1293
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1294
           )DOC")
1295 1296
      .def("_kids", &Scope::kids)
      .def_property("_can_reuesd", &Scope::CanReuesd, &Scope::SetCanReuesd);
1297

1298 1299 1300 1301 1302 1303 1304 1305
  m.def(
      "Scope",
      []() -> Scope * {
        auto *s = new Scope();
        ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
        return s;
      },
      R"DOC(
S
sneaxiy 已提交
1306
        Create a new scope.
1307

S
sneaxiy 已提交
1308 1309 1310
        Returns:
            out (core._Scope): the created scope.
        )DOC",
1311
      py::return_value_policy::reference);
S
sneaxiy 已提交
1312

Y
Yu Yang 已提交
1313 1314
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1315 1316
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1317 1318 1319 1320
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1321
        PADDLE_ENFORCE_EQ(
1322 1323
            info.Proto().SerializeToString(&str),
            true,
1324 1325
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1326 1327 1328
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1329 1330
    return ret_values;
  });
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
  m.def(
      "get_all_op_names",
      [](const std::string &lib) {
        std::vector<std::string> op_names;
        for (auto &iter : OpInfoMap::Instance().map()) {
          op_names.emplace_back(iter.first);
        }
        if (lib == "phi") {
          std::vector<std::string> ops_with_phi_kernel;
          for (const auto &op_name : op_names) {
            if (phi::KernelFactory::Instance().HasCompatiblePhiKernel(
                    op_name)) {
              ops_with_phi_kernel.emplace_back(op_name);
            }
          }
          return ops_with_phi_kernel;
        } else if (lib == "fluid") {
          std::vector<std::string> ops_with_fluid_kernel;
          auto all_fluid_op_kernels =
              paddle::framework::OperatorWithKernel::AllOpKernels();
          for (const auto &op_name : op_names) {
            if (all_fluid_op_kernels.find(op_name) !=
                all_fluid_op_kernels.end()) {
              ops_with_fluid_kernel.emplace_back(op_name);
            }
          }
          return ops_with_fluid_kernel;
        } else {
          return op_names;
        }
      },
      py::arg("lib") = "all",
      R"DOC(
      Return the operator names in paddle.

      Args:
          lib[string]: the library contains corresponding OpKernel, could be 'phi', 'fluid' and 'all'. Default value is 'all'.
  )DOC");
1369 1370 1371 1372 1373 1374 1375 1376
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
1377
              res = op_checker->GetDefaultAttrsMap();
1378 1379 1380 1381
            }
          }
          return res;
        });
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
  m.def(
      "get_op_extra_attrs",
      [](const std::string &op_type)
          -> const paddle::framework::AttributeMap & {
        return operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type);
      });
  m.def(
      "get_attrtibute_type",
      [](const std::string &op_type,
         const std::string &attr_name) -> paddle::framework::proto::AttrType {
        const auto &defalut_val =
            operators::ExtraInfoUtils::Instance().GetExtraAttrsMap(op_type).at(
                attr_name);
        return static_cast<paddle::framework::proto::AttrType>(
            defalut_val.index() - 1);
      });
1398 1399 1400
  m.def("_add_skip_comp_ops", &paddle::prim::PrimCommonUtils::AddSkipCompOps);
  m.def("_remove_skip_comp_ops",
        &paddle::prim::PrimCommonUtils::RemoveSkipCompOps);
1401 1402 1403 1404 1405
  m.def("get_grad_op_desc",
        [](const OpDesc &op_desc,
           const std::unordered_set<std::string> &no_grad_set,
           const std::vector<BlockDesc *> &grad_sub_block) {
          std::unordered_map<std::string, std::string> grad_to_var;
J
Jiabin Yang 已提交
1406 1407 1408

          auto op_info = framework::OpInfoMap::Instance().Get(op_desc.Type());
          auto grad_op_maker = op_info.GradOpMaker();
1409
          auto grad_comp_op_maker = op_info.CompGradOpMaker();
J
Jiabin Yang 已提交
1410 1411 1412 1413 1414 1415 1416

          if ((grad_op_maker == nullptr) && (grad_comp_op_maker == nullptr)) {
            // Normally, proto_ should not be null, except some special
            // operators, such as LeaklyReluDoubleGrad op.
            std::string type =
                op_info.proto_ ? op_info.proto_->type() : "unknown";
            PADDLE_THROW(platform::errors::NotFound(
1417
                "Neither operator %s's GradOpMaker nor CompGradOpMaker has "
J
Jiabin Yang 已提交
1418 1419 1420 1421 1422 1423 1424 1425
                "been registered.\nPlease check whether (%s) operator has "
                "gradient operator.\nIf not, please set stop_gradient to be "
                "True for its input and output variables using "
                "var.stop_gradient=True.",
                type.c_str(),
                type.c_str()));
          }

1426
          // In PrimEnabled mode, the priority of CompGradOpMaker is greater
J
Jiabin Yang 已提交
1427 1428
          // than GradCompMaker as we need split first-order grad operator into
          // primitive operators for compiler. In PrimDisabled mode, the
1429
          // priority of CompGradOpMaker is less than GradCompMaker for better
J
Jiabin Yang 已提交
1430 1431
          // performance.
          std::vector<std::unique_ptr<OpDesc>> grad_op_descs;
1432 1433 1434
          auto need_skip =
              paddle::prim::PrimCommonUtils::CheckSkipCompOps(op_desc.Type());
          VLOG(3) << "need skip: " << need_skip << std::endl;
1435
          if (paddle::prim::PrimCommonUtils::IsBwdPrimEnabled()) {
1436
            if ((grad_comp_op_maker != nullptr) && (!need_skip)) {
1437
              VLOG(3) << "Runing composite fun for " << op_desc.Type();
J
Jiabin Yang 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            } else {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            }
          } else {
            if (grad_op_maker != nullptr) {
              grad_op_descs = grad_op_maker(
                  op_desc, no_grad_set, &grad_to_var, grad_sub_block);
            } else {
              grad_op_descs = grad_comp_op_maker(op_desc,
                                                 no_grad_set,
                                                 &grad_to_var,
                                                 op_desc.Block(),
                                                 grad_sub_block);
            }
          }

1460 1461 1462 1463 1464 1465 1466 1467
          std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
          std::transform(
              grad_op_descs.begin(),
              grad_op_descs.end(),
              grad_op_desc_ptrs.begin(),
              [](std::unique_ptr<OpDesc> &p) { return p.release(); });
          return std::make_pair(grad_op_desc_ptrs, grad_to_var);
        });
1468 1469 1470
  m.def("has_comp_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasCompGradOpMaker();
  });
1471 1472 1473
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1474 1475 1476 1477 1478
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1479 1480 1481
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1482
  m.def("infer_no_need_buffer_slots",
1483 1484
        [](const std::string op_type,
           const framework::VariableNameMap &inputs,
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
  m.def("prune",
        [](const ProgramDesc &origin,
           const std::set<std::string> &feeded_var_names,
           const std::vector<std::array<size_t, 2>> &targets) {
          ProgramDesc prog_with_targets(origin);

          for (const auto &t : targets) {
            prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
          }
          proto::ProgramDesc pruned_desc;
          auto pruned_origin_block_id_map =
              Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
          return std::make_tuple(ProgramDesc(pruned_desc),
                                 pruned_origin_block_id_map);
        });
1512 1513 1514 1515 1516 1517
  m.def(
      "prune_backward",
      [](const framework::ProgramDesc &program) {
        return PruneBackward(program);
      },
      R"DOC(
1518 1519
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
1520

1521
            Args:
1522 1523 1524
                   program (ProgramDesc): The original program.

             Returns:
1525
                   tuple(ProgramDesc, map<int, int>): The first part is
1526 1527 1528 1529
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1530 1531 1532 1533
  m.def("get_serialize_comile_key", [](int64_t compilation_key) {
#ifdef PADDLE_WITH_CINN
    auto compiler = framework::paddle2cinn::CinnCompiler::GetInstance();
    auto s = compiler->SerializeKey(compilation_key);
1534 1535
    VLOG(4) << s;
    return s;
1536 1537 1538 1539 1540 1541
#else
    PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot get compilation key in non-CINN version, "
                 "Please recompile or reinstall Paddle with CINN support."));
#endif
1542
  });
1543 1544 1545 1546
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1547 1548 1549
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1550 1551
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
1552

Y
Yu Yang 已提交
1553
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1554
      .def_static("create",
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
                  [](paddle::platform::CPUPlace &place)
                      -> paddle::platform::DeviceContext * {
                    auto *context = new phi::CPUContext();
                    context->SetAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(place)
                            .get());
                    context->SetHostAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetAllocator(paddle::platform::CPUPlace())
                            .get());
                    context->SetZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(place)
                            .get());
1570 1571 1572 1573
                    context->SetHostZeroAllocator(
                        paddle::memory::allocation::AllocatorFacade::Instance()
                            .GetZeroAllocator(paddle::platform::CPUPlace())
                            .get());
1574
                    return context;
Q
qijun 已提交
1575
                  })
1576 1577 1578 1579
      .def_static(
          "create",
          [](paddle::platform::XPUPlace &place)
              -> paddle::platform::DeviceContext * {
1580
#ifndef PADDLE_WITH_XPU
1581 1582 1583
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use XPUPlace in CPU/GPU version, "
                "Please recompile or reinstall Paddle with XPU support."));
1584
#else
W
Wilber 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
      auto* context = new paddle::platform::XPUDeviceContext(place);
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place)
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(place)
          .get());
1598 1599 1600 1601
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetZeroAllocator(paddle::platform::CPUPlace())
          .get());
W
Wilber 已提交
1602
      return context;
1603
#endif
1604 1605 1606 1607 1608
          })
      .def_static(
          "create",
          [](paddle::platform::NPUPlace &place)
              -> paddle::platform::DeviceContext * {
1609
#ifndef PADDLE_WITH_ASCEND_CL
1610 1611 1612
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use NPUPlace in CPU/GPU/XPU version, "
                "Please recompile or reinstall Paddle with NPU support."));
1613 1614
#else
                return new paddle::platform::NPUDeviceContext(place);
R
ronnywang 已提交
1615
#endif
1616 1617 1618 1619
          })
      .def_static("create",
                  [](paddle::platform::CustomPlace &place)
                      -> paddle::platform::DeviceContext * {
R
ronnywang 已提交
1620
#ifndef PADDLE_WITH_CUSTOM_DEVICE
1621 1622 1623 1624
                    PADDLE_THROW(platform::errors::PermissionDenied(
                        "Cannot use CustomPlace in CPU/GPU/XPU version, "
                        "Please recompile or reinstall Paddle with "
                        "CustomDevice support."));
R
ronnywang 已提交
1625 1626
#else
                return new paddle::platform::CustomDeviceContext(place);
1627
#endif
1628 1629 1630 1631 1632
                  })
      .def_static(
          "create",
          [](paddle::platform::CUDAPlace &place)
              -> paddle::platform::DeviceContext * {
1633
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1634 1635 1636
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1637
#else
L
Leo Chen 已提交
1638
      auto* context = new phi::GPUContext(place);
W
Wilber 已提交
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
      context->SetAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(place, context->stream())
          .get());
      context->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CPUPlace())
          .get());
      context->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(place)
        .get());
1651 1652 1653 1654
      context->SetHostZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
        .GetZeroAllocator(paddle::platform::CPUPlace())
        .get());
W
wanghuancoder 已提交
1655 1656 1657 1658
      context->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
1659 1660
      context->PartialInitWithAllocator();
      return context;
Q
qijun 已提交
1661
#endif
1662 1663 1664 1665 1666
          })
      .def_static(
          "create",
          [](paddle::platform::CUDAPinnedPlace &place)
              -> paddle::platform::DeviceContext * {
1667
#if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP)
1668 1669 1670
            PADDLE_THROW(platform::errors::PermissionDenied(
                "Cannot use CUDAPinnedPlace in CPU only version, "
                "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1671 1672 1673
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
1674
          });
1675
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
Dong Zhihong 已提交
1676 1677
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1678 1679 1680
  m.def("get_all_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1681
    device_types = phi::DeviceManager::GetAllDeviceTypes();
1682
#else
R
ronnywang 已提交
1683
          VLOG(1) << string::Sprintf(
1684 1685 1686 1687
              "Cannot use get_all_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_device_type, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1688
              "PaddlePaddle by: pip install paddlepaddle\n");
1689 1690 1691 1692 1693 1694
#endif
    return device_types;
  });
  m.def("get_all_custom_device_type", []() {
    std::vector<std::string> device_types;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1695
    device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
1696
#else
R
ronnywang 已提交
1697
          VLOG(1) << string::Sprintf(
1698 1699 1700 1701
              "Cannot use get_all_custom_device_type because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_all_custom_device_type, please try to "
              "install CustomDevice version "
R
ronnywang 已提交
1702
              "PaddlePaddle by: pip install paddlepaddle\n");
1703 1704 1705 1706 1707 1708
#endif
    return device_types;
  });
  m.def("get_available_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1709
    devices = phi::DeviceManager::GetAllDeviceList();
1710
#else
R
ronnywang 已提交
1711
          VLOG(1) << string::Sprintf(
1712 1713 1714 1715
              "Cannot use get_available_device because you have installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_device, please try to install"
              "CustomDevice version "
R
ronnywang 已提交
1716
              "PaddlePaddle by: pip install paddlepaddle\n");
1717 1718 1719 1720 1721 1722
#endif
    return devices;
  });
  m.def("get_available_custom_device", [] {
    std::vector<std::string> devices;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
1723
    devices = phi::DeviceManager::GetAllCustomDeviceList();
1724
#else
R
ronnywang 已提交
1725
          VLOG(1) << string::Sprintf(
1726 1727 1728 1729 1730 1731
              "Cannot use get_available_custom_device because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_available_custom_device, please try to "
              "install"
              "CustomDevice version "
R
ronnywang 已提交
1732
              "PaddlePaddle by: pip install paddlepaddle\n");
1733 1734 1735
#endif
    return devices;
  });
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
  m.def("get_custom_device_count", [](const std::string &device_type) {
    size_t device_count = 0;
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    // TODO(duanyanhui): Optimize DeviceManager::GetDeviceCount to support
    // returning default device when only one device is registered in
    // DeviceManager.
    device_count = phi::DeviceManager::GetDeviceCount(device_type);
#else
          VLOG(1) << string::Sprintf(
              "Cannot use get_custom_device_count because you have "
              "installed"
              "CPU/GPU version PaddlePaddle.\n"
              "If you want to use get_custom_device_count, please try to "
              "install"
              "CustomDevice version "
              "PaddlePaddle by: pip install paddlepaddle\n");
#endif
    return device_count;
  });
Y
Yu Yang 已提交
1755

Y
Yu Yang 已提交
1756
  py::class_<OperatorBase>(m, "Operator")
1757 1758 1759 1760 1761 1762 1763
      .def_static("create",
                  [](py::bytes protobin) {
                    proto::OpDesc desc;
                    PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin),
                                      true,
                                      platform::errors::InvalidArgument(
                                          "Cannot parse user input to OpDesc"));
1764 1765
                    PADDLE_ENFORCE_EQ(desc.IsInitialized(),
                                      true,
1766 1767 1768 1769 1770 1771
                                      platform::errors::InvalidArgument(
                                          "The provided OpDesc is not "
                                          "initialized, the reason is: %s",
                                          desc.InitializationErrorString()));
                    return OpRegistry::CreateOp(desc);
                  })
1772
      .def("run",
1773 1774
           [](OperatorBase &self,
              const Scope &scope,
1775 1776 1777 1778
              const platform::CPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1779
      .def("run",
1780 1781
           [](OperatorBase &self,
              const Scope &scope,
1782 1783 1784 1785
              const platform::XPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
1786
      .def("run",
1787 1788
           [](OperatorBase &self,
              const Scope &scope,
1789 1790 1791 1792
              const platform::NPUPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
D
dzhwinter 已提交
1793
      .def("run",
1794 1795
           [](OperatorBase &self,
              const Scope &scope,
1796 1797 1798 1799
              const platform::CUDAPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
C
chengduoZH 已提交
1800
      .def("run",
1801 1802
           [](OperatorBase &self,
              const Scope &scope,
C
chengduoZH 已提交
1803
              const platform::CUDAPinnedPlace &place) {
1804
             pybind11::gil_scoped_release release;
C
chengduoZH 已提交
1805 1806
             self.Run(scope, place);
           })
R
ronnywang 已提交
1807
      .def("run",
1808 1809
           [](OperatorBase &self,
              const Scope &scope,
R
ronnywang 已提交
1810 1811 1812 1813
              const platform::CustomPlace &place) {
             pybind11::gil_scoped_release release;
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1814 1815 1816 1817 1818
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
1819 1820
             return op.Outputs();
           })
Q
qijun 已提交
1821 1822
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1823
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1824
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1825 1826 1827 1828
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1829

1830 1831 1832
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1833 1834
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
1835 1836 1837 1838 1839 1840
      .def(
          "get_worker_scope",
          [](TrainerBase &self, int thread_id) -> Scope * {
            return self.GetWorkerScope(thread_id);
          },
          py::return_value_policy::reference)
1841 1842
      .def("finalize", &TrainerBase::Finalize)
      .def("ResetDataset", &TrainerBase::ResetDataset);
1843

1844 1845
  m.def("_get_eager_deletion_vars", &framework::GetEagerDeletionCleanVars);

F
fengjiayi 已提交
1846
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1847
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1848
      .def("close", &Executor::Close)
1849 1850
      .def("run_from_dataset",
           &Executor::RunFromDataset,
1851
           py::call_guard<py::gil_scoped_release>())
1852 1853
      .def("release_trainer",
           &Executor::ReleaseTrainer,
D
Dong Daxiang 已提交
1854
           py::call_guard<py::gil_scoped_release>())
1855
      .def("init_for_dataset",
1856 1857 1858 1859
           [](Executor &self,
              const ProgramDesc &prog,
              const std::string &trainer_desc,
              Scope *scope,
1860
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1861
             pybind11::gil_scoped_release release;
1862 1863 1864 1865 1866 1867 1868
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1869
      .def("run_prepared_ctx",
1870 1871 1872
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
1873
              std::map<std::string, const phi::DenseTensor *> *feed_targets,
1874
              std::map<std::string, FetchType *> *fetch_targets,
1875 1876
              bool create_local_scope = true,
              bool create_vars = true,
1877 1878 1879
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
1880 1881 1882 1883 1884 1885 1886 1887
             self.RunPreparedContext(ctx,
                                     scope,
                                     feed_targets,
                                     fetch_targets,
                                     create_local_scope,
                                     create_vars,
                                     feed_holder_name,
                                     fetch_holder_name);
1888
           })
1889
      .def("run_prepared_ctx",
1890 1891 1892 1893 1894
           [](Executor &self,
              ExecutorPrepareContext *ctx,
              Scope *scope,
              bool create_local_scope = true,
              bool create_vars = true,
G
guru4elephant 已提交
1895 1896
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
1897 1898
             self.RunPreparedContext(
                 ctx, scope, create_local_scope, create_vars, keep_kids);
G
guru4elephant 已提交
1899
           })
1900
      .def("prepare",
1901 1902 1903
           [](Executor &self,
              const ProgramDesc &program,
              int block_id,
1904 1905 1906 1907
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
1908 1909
             return self.Prepare(
                 program, block_id, skip_ref_cnt_vars, force_disable_gc);
1910 1911
           })
      .def("create_variables", &Executor::CreateVariables)
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
      .def("run",
           [](Executor &self,
              const ProgramDesc &prog,
              Scope *scope,
              int block_id,
              bool create_local_scope,
              bool create_vars,
              const std::vector<std::string> &fetch_vars) {
             pybind11::gil_scoped_release release;
             self.Run(prog,
                      scope,
                      block_id,
                      create_local_scope,
                      create_vars,
                      fetch_vars);
           });
S
sneaxiy 已提交
1928

1929
  py::class_<framework::interpreter::CostInfo>(m, "CostInfo")
1930
      .def(py::init<>())
1931 1932 1933 1934 1935
      .def("total_time",
           [](interpreter::CostInfo &self) { return self.total_time; })
      .def("device_memory_bytes", [](interpreter::CostInfo &self) {
        return self.device_memory_bytes;
      });
1936

1937
  py::class_<framework::StandaloneExecutor>(m, "StandaloneExecutor")
L
Leo Chen 已提交
1938
      .def(py::init<const platform::Place &, const ProgramDesc &>())
1939
      .def("run",
1940
           [](StandaloneExecutor &self,
1941
              Scope *scope,
1942
              std::vector<std::string> feed_names,
1943 1944 1945 1946
              std::vector<std::string> fetch_names) {
             paddle::framework::FetchList ret;
             {
               pybind11::gil_scoped_release release;
1947
               ret = self.Run(scope, feed_names, fetch_names);
1948 1949 1950
             }
             return py::cast(std::move(ret));
           })
1951 1952
      .def("dry_run",
           [](StandaloneExecutor &self,
1953
              Scope *scope,
1954
              const std::unordered_map<std::string, py::array> &input_dict) {
1955
             std::vector<phi::DenseTensor> feed_tensors;
1956 1957 1958
             std::vector<std::string> feed_names;

             for (auto &item : input_dict) {
1959
               phi::DenseTensor t;
1960 1961 1962 1963 1964 1965
               SetTensorFromPyArray<platform::CPUPlace>(
                   &t, item.second, platform::CPUPlace(), false);
               feed_names.push_back(item.first);
               feed_tensors.push_back(t);
             }

1966
             framework::interpreter::CostInfo cost_info;
1967 1968
             {
               pybind11::gil_scoped_release release;
1969
               cost_info = self.DryRun(scope, feed_names, feed_tensors);
1970 1971
             }
             return cost_info;
H
hong 已提交
1972 1973
           });

D
dzhwinter 已提交
1974
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1975
  m.def("init_glog", framework::InitGLOG);
1976
  m.def("init_memory_method", framework::InitMemoryMethod);
1977 1978 1979 1980
  m.def("load_op_meta_info_and_register_op", [](const std::string dso_name) {
    egr::Controller::Instance().MergeOpMetaInfoMap(
        framework::LoadOpMetaInfoAndRegisterOp(dso_name));
  });
1981 1982 1983 1984 1985 1986 1987 1988
  m.def("init_devices", []() {
    framework::InitDevices();
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    for (auto &dev_type : phi::DeviceManager::GetAllCustomDeviceTypes()) {
      paddle::operators::RegisterCustomDeviceCommonKernel(dev_type);
    }
#endif
  });
1989 1990
  m.def("init_default_kernel_signatures",
        []() { framework::InitDefaultKernelSignatureMap(); });
1991 1992 1993 1994 1995 1996 1997 1998 1999
  m.def("init_tensor_operants", []() {
    paddle::OperantsManager::Instance().eager_operants.reset(
        new paddle::prim::EagerTensorOperants());
    paddle::OperantsManager::Instance().static_operants.reset(
        new paddle::prim::StaticTensorOperants());
    paddle::OperantsManager::Instance().phi_operants.reset(
        new paddle::operants::PhiTensorOperants());
    VLOG(4) << "Initialize tensor operants successfully";
  });
2000
  m.def("is_compiled_with_avx", IsCompiledWithAVX);
2001
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
2002
  m.def("is_compiled_with_ascend", IsCompiledWithAscend);
2003
  m.def("is_compiled_with_rocm", IsCompiledWithROCM);
2004
  m.def("is_compiled_with_npu", IsCompiledWithNPU);
2005
  m.def("is_compiled_with_custom_device", IsCompiledWithCustomDevice);
J
jianghaicheng 已提交
2006
  m.def("is_compiled_with_ipu", IsCompiledWithIPU);
2007
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
2008
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
2009
  m.def("is_compiled_with_nccl", IsCompiledWithNCCL);
W
wuhuachaocoding 已提交
2010 2011
  m.def("is_compiled_with_mpi", IsCompiledWithMPI);
  m.def("is_compiled_with_mpi_aware", IsCompiledWithMPIAWARE);
2012
  m.def("is_compiled_with_cinn", IsCompiledWithCINN);
2013
  m.def("_is_compiled_with_heterps", IsCompiledWithHETERPS);
2014
  m.def("supports_bfloat16", SupportsBfloat16);
2015
  m.def("supports_bfloat16_fast_performance", SupportsBfloat16FastPerformance);
2016 2017
  m.def("supports_int8", SupportsInt8);
  m.def("supports_vnni", SupportsVNNI);
L
Leo Chen 已提交
2018
  m.def("op_supported_infos", imperative::OpSupportedInfos);
2019
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
2020
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
2021 2022 2023
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
2043 2044 2045
  m.def("device_memory_stat_current_value",
        memory::DeviceMemoryStatCurrentValue);
  m.def("device_memory_stat_peak_value", memory::DeviceMemoryStatPeakValue);
2046 2047
  m.def(
      "run_cmd",
2048 2049
      [](const std::string &cmd,
         int time_out = -1,
2050
         int sleep_inter = -1) -> const std::string {
2051 2052
        return paddle::framework::shell_get_command_output(
            cmd, time_out, sleep_inter);
2053
      },
2054 2055 2056
      py::arg("cmd"),
      py::arg("time_out") = -1,
      py::arg("sleep_inter") = -1);
2057 2058
  m.def(
      "shell_execute_cmd",
2059 2060 2061
      [](const std::string &cmd,
         int time_out = 0,
         int sleep_inter = 0,
2062
         bool redirect_stderr = false) -> std::vector<std::string> {
2063 2064
        return paddle::framework::shell_execute_cmd(
            cmd, time_out, sleep_inter, redirect_stderr);
2065
      },
2066 2067 2068
      py::arg("cmd"),
      py::arg("time_out") = 0,
      py::arg("sleep_inter") = 0,
2069
      py::arg("redirect_stderr") = false);
G
gongweibao 已提交
2070

2071
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2072 2073
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
2074
    return platform::GetGPUComputeCapability(place.device) >= 53;
2075
  });
2076 2077 2078 2079
  m.def("is_bfloat16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 80 support bfloat16
    return platform::GetGPUComputeCapability(place.device) >= 80;
  });
2080
#endif
2081

S
Steffy-zxf 已提交
2082
  m.def("set_feed_variable",
2083 2084
        static_cast<void (*)(  // NOLINT
            Scope *,
2085
            const phi::DenseTensor &,
2086 2087
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
S
Steffy-zxf 已提交
2088
  m.def("set_feed_variable",
2089 2090
        static_cast<void (*)(  // NOLINT
            Scope *,
2091
            const std::vector<std::string> &,
2092 2093
            const std::string &,
            size_t)>(&framework::SetFeedVariable));
2094
  m.def("get_fetch_variable",
2095 2096
        [](const Scope &scope,
           const std::string &var_name,
2097 2098 2099
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
2100
            return py::cast(PADDLE_GET(phi::DenseTensor, var));
2101
          } else {
R
Ruibiao Chen 已提交
2102
            return py::cast(PADDLE_GET(LoDTensorArray, var));
2103 2104
          }
        });
2105
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
2106

X
Xin Pan 已提交
2107 2108
  m.def("_is_program_version_supported", IsProgramVersionSupported);

2109 2110 2111 2112
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
H
Huihuang Zheng 已提交
2113
  BindCostModel(&m);
2114
  BindConstValue(&m);
2115
  BindGlobalValueGetterSetter(&m);
L
LiYuRio 已提交
2116
  BindFleetExecutor(&m);
2117
  BindTCPStore(&m);
2118
  BindCommContextManager(&m);
2119
  BindAutoParallel(&m);
2120
  BindJitProperty(&m);
Y
Yu Yang 已提交
2121

Y
Yu Yang 已提交
2122 2123 2124 2125 2126 2127 2128 2129 2130
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

2131
  py::class_<LoDTensorArray> pylodtensorarray(m, "LoDTensorArray", R"DOC(
2132
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
2133 2134 2135

    Examples:
        .. code-block:: python
2136

Z
Zeng Jinle 已提交
2137 2138 2139
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
2140 2141 2142 2143
)DOC");
  g_framework_lodtensorarray_pytype =
      reinterpret_cast<PyTypeObject *>(pylodtensorarray.ptr());
  pylodtensorarray
S
sneaxiy 已提交
2144 2145
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
2146 2147 2148 2149
      .def(
          "__getitem__",
          [](LoDTensorArray &self, size_t i) { return &self.at(i); },
          py::return_value_policy::reference)
Y
Yu Yang 已提交
2150 2151
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
2152
           [](LoDTensorArray &self, size_t i, const phi::DenseTensor &t) {
2153 2154
             PADDLE_ENFORCE_LT(i,
                               self.size(),
2155 2156 2157
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
2158 2159 2160
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
2161 2162
      .def(
          "append",
2163
          [](LoDTensorArray &self, const phi::DenseTensor &t) {
2164 2165 2166 2167
            self.emplace_back();
            self.back().ShareDataWith(t);
            self.back().set_lod(t.lod());
          },
2168 2169
          py::arg("tensor"),
          R"DOC(
Z
Zeng Jinle 已提交
2170
             Append a LoDensor to LoDTensorArray.
2171

2172 2173 2174 2175 2176
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
2188
           )DOC")
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
      .def(
          "_move_to_list",
          [](LoDTensorArray &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              res[i] = py::cast(std::move(self[i]));
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
2200

2201
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
R
Ruibiao Chen 已提交
2202
        vector of paddle::variant<LoDTensor, LoDTensorArray>.
2203
        )DOC")
2204 2205 2206 2207 2208 2209
      .def(
          "_move_to_list",
          [](FetchList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              if (data_is_lod_tensor(self[i])) {
2210
                auto &data = PADDLE_GET(phi::DenseTensor, self[i]);
2211
                res[i] = py::cast(std::move(data));
2212 2213 2214
              } else if (data_is_sparse_coo_tensor(self[i])) {
                auto &data = PADDLE_GET(phi::SparseCooTensor, self[i]);
                res[i] = py::cast(std::move(data));
2215
              } else {
R
Ruibiao Chen 已提交
2216
                auto &data = PADDLE_GET(LoDTensorArray, self[i]);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
                py::list tmp(data.size());
                for (size_t j = 0; j < data.size(); ++j) {
                  tmp[j] = py::cast(std::move(data[j]));
                }
                res[i] = std::move(tmp);
              }
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership)
2228

2229 2230
      .def(
          "append",
2231
          [](FetchList &self, const phi::DenseTensor &t) {
2232
            self.emplace_back();
2233
            auto &lod_tensor = PADDLE_GET(phi::DenseTensor, self.back());
2234 2235 2236 2237 2238 2239 2240 2241 2242
            lod_tensor.ShareDataWith(t);
            lod_tensor.set_lod(t.lod());
          },
          py::arg("var"))

      .def(
          "append",
          [](FetchList &self, const LoDTensorArray &t) {
            self.emplace_back();
R
Ruibiao Chen 已提交
2243
            auto &lod_tensor_array = PADDLE_GET(LoDTensorArray, self.back());
2244 2245 2246 2247 2248 2249
            for (size_t i = 0; i < t.size(); ++i) {
              lod_tensor_array[i].ShareDataWith(t[i]);
              lod_tensor_array[i].set_lod(t[i].lod());
            }
          },
          py::arg("var"));
2250 2251

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
R
Ruibiao Chen 已提交
2252
        FetchUnmergedList is 2-D array of FetchType(paddle::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
2253
        )DOC")
2254 2255 2256 2257 2258 2259 2260 2261
      .def(
          "_move_to_list",
          [](FetchUnmergedList &self) -> py::list {
            py::list res(self.size());
            for (size_t i = 0; i < self.size(); ++i) {
              py::list tmp(self[i].size());
              for (size_t j = 0; j < self[i].size(); ++j) {
                if (data_is_lod_tensor(self[i][j])) {
2262
                  auto &var = PADDLE_GET(phi::DenseTensor, self[i][j]);
2263 2264
                  tmp[j] = py::cast(std::move(var));
                } else {
R
Ruibiao Chen 已提交
2265
                  auto &var = PADDLE_GET(LoDTensorArray, self[i][j]);
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
                  py::list tmp_array(var.size());
                  for (size_t k = 0; k < var.size(); ++k) {
                    tmp_array[k] = std::move(var[k]);
                  }
                  tmp[j] = std::move(tmp_array);
                }
              }
              res[i] = std::move(tmp);
              self[i].clear();
            }
            self.clear();
            return res;
          },
          py::return_value_policy::take_ownership);
Z
Zhen Wang 已提交
2280

Y
Yu Yang 已提交
2281
  m.def("op_support_gpu", OpSupportGPU);
2282
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2283
  m.def("get_cuda_device_count", platform::GetGPUDeviceCount);
2284
  m.def("get_cuda_current_device_id", &platform::GetCurrentDeviceId);
2285 2286 2287 2288 2289 2290 2291 2292
  m.def("cuda_empty_cache", [] {
    for (int dev_id : platform::GetSelectedDevices()) {
      auto *dev_ctx = platform::DeviceContextPool::Instance().GetByPlace(
          platform::CUDAPlace(dev_id));
      dev_ctx->cudnn_workspace_handle().ResetWorkspace();
    }
    platform::EmptyCache();
  });
2293 2294 2295 2296 2297 2298
  m.def(
      "get_device_properties",
      [](int id) -> const gpuDeviceProp & {
        return platform::GetDeviceProperties(id);
      },
      py::return_value_policy::copy);
2299 2300

  py::class_<gpuDeviceProp>(m, "_gpuDeviceProperties")
Y
Yanxing Shi 已提交
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
      .def_property_readonly(
          "name", [](const gpuDeviceProp &prop) { return prop.name; })
      .def_property_readonly(
          "major", [](const gpuDeviceProp &prop) { return prop.major; })
      .def_property_readonly(
          "minor", [](const gpuDeviceProp &prop) { return prop.minor; })
      .def_property_readonly(
          "total_memory",
          [](const gpuDeviceProp &prop) { return prop.totalGlobalMem; })
      .def_property_readonly(
          "multi_processor_count",
          [](const gpuDeviceProp &prop) { return prop.multiProcessorCount; })
      .def_property_readonly(
          "is_multi_gpu_board",
          [](const gpuDeviceProp &prop) { return prop.isMultiGpuBoard; })
      .def_property_readonly(
          "is_integrated",
          [](const gpuDeviceProp &prop) { return prop.integrated; })
      .def("__repr__", [](const gpuDeviceProp &prop) {
        std::stringstream ostr;
        ostr << "_gpuDeviceProperties(name='" << prop.name
             << "', major=" << prop.major << ", minor=" << prop.minor
             << ", total_memory=" << prop.totalGlobalMem / (1024 * 1024)
             << "MB, multi_processor_count=" << prop.multiProcessorCount << ")";
        return ostr.str();
2326
      });
D
dangqingqing 已提交
2327

2328
#if !defined(PADDLE_WITH_HIP) && !defined(_WIN32)
D
dangqingqing 已提交
2329 2330 2331
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
2332 2333 2334
  m.def("nvprof_nvtx_push", [](const std::string &name) {
    platform::CudaNvtxRangePush(name, platform::NvtxRangeColor::Green);
  });
2335 2336 2337
  m.def("nvprof_nvtx_pop", platform::CudaNvtxRangePop);
  m.def("nvprof_enable_record_event", platform::NvprofEnableRecordEvent);
  m.def("nvprof_disable_record_event", platform::NvprofDisableRecordEvent);
D
Dong Zhihong 已提交
2338
#endif
P
peizhilin 已提交
2339
#endif
Y
Yu Yang 已提交
2340

2341 2342
#ifdef PADDLE_WITH_ASCEND_CL
  m.def("get_npu_device_count", platform::GetNPUDeviceCount);
2343
  m.def("npu_finalize", []() {
2344 2345
    platform::HCCLCommContext::Instance().ReleaseHCCLComms();

2346 2347 2348
    auto &pool = platform::DeviceContextPool::Instance();
    auto devices = platform::GetSelectedNPUDevices();
    for (size_t i = 0; i < devices.size(); ++i) {
R
ronnywang 已提交
2349
      platform::NPUDeviceGuard guard(devices[i]);
2350 2351 2352 2353
      pool.Get(platform::NPUPlace(devices[i]))->Wait();
    }
    platform::AclInstance::Instance().Finalize();
  });
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

  py::class_<platform::NPUProfConfigWrapper>(m, "NPUProfConfigWrapper");

  m.def("npu_prof_init", platform::NPUProfilerInit);
  m.def("npu_prof_start", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStart(c.ptr());
  });
  m.def("npu_prof_stop", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerStop(c.ptr());
  });
  m.def("npu_prof_finalize", platform::NPUProfilerFinalize);
  m.def("npu_prof_create_config", []() {
    return platform::NPUProfConfigWrapper(platform::NPUProfilerCreateConfig());
  });

  m.def("npu_prof_destropy_config", [](platform::NPUProfConfigWrapper c) {
    platform::NPUProfilerDestroyConfig(c.ptr());
  });
#endif

J
jianghaicheng 已提交
2374 2375 2376 2377
#ifdef PADDLE_WITH_IPU
  m.def("get_ipu_device_count", platform::GetIPUDeviceCount);
#endif

2378 2379 2380 2381 2382 2383
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

2384 2385 2386 2387
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
2388
      .value("kAll", platform::ProfilerState::kAll)
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

2400
  m.def("set_tracer_option", platform::SetTracerOption);
2401 2402
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
2403
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
2404
  m.def("reset_profiler", platform::ResetProfiler);
W
wuhuanzhou 已提交
2405
  m.def("register_pass", [](const std::string &pass_type, py::object callable) {
2406
    PADDLE_ENFORCE_EQ(
2407 2408
        framework::ir::PassRegistry::Instance().Has(pass_type),
        false,
2409 2410 2411
        platform::errors::AlreadyExists("Pass '%s' is registered more than "
                                        "once. Please use another name.",
                                        pass_type));
W
wuhuanzhou 已提交
2412
    callable.inc_ref();
2413 2414 2415 2416 2417 2418 2419 2420
    framework::ir::PassRegistry::Instance().Insert(
        pass_type, [pass_type, callable]() {
          py::gil_scoped_acquire guard;
          std::unique_ptr<framework::ir::Pass> pass(
              new framework::ir::GeneratePass(
                  py::cast<std::string>(callable())));
          return pass;
        });
2421
  });
2422
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
2423 2424 2425
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
2426

2427
  m.def("size_of_dtype", framework::SizeOfType);
C
chenjian 已提交
2428 2429
  py::class_<paddle::platform::ProfilerResult>(m, "_ProfilerResult")
      .def(py::init<>())
2430 2431
      .def("get_data",
           &paddle::platform::ProfilerResult::GetData,
C
chenjian 已提交
2432 2433
           py::return_value_policy::automatic_reference)
      .def("save", &paddle::platform::ProfilerResult::Save)
2434 2435 2436 2437 2438 2439 2440 2441 2442
      .def("get_extra_info", &paddle::platform::ProfilerResult::GetExtraInfo)
      .def("get_version", &paddle::platform::ProfilerResult::GetVersion)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx)
      .def("get_device_property",
           &paddle::platform::ProfilerResult::GetDeviceProperty);
#else
      .def("get_span_indx", &paddle::platform::ProfilerResult::GetSpanIndx);
#endif
C
chenjian 已提交
2443

2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
  py::class_<paddle::platform::MemPythonNode>(m, "MemPythonNode")
      .def(py::init<>())
      .def_readwrite("timestamp_ns",
                     &paddle::platform::MemPythonNode::timestamp_ns)
      .def_readwrite("addr", &paddle::platform::MemPythonNode::addr)
      .def_readwrite("type", &paddle::platform::MemPythonNode::type)
      .def_readwrite("process_id", &paddle::platform::MemPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::MemPythonNode::thread_id)
      .def_readwrite("increase_bytes",
                     &paddle::platform::MemPythonNode::increase_bytes)
      .def_readwrite("place", &paddle::platform::MemPythonNode::place)
      .def_readwrite("current_allocated",
                     &paddle::platform::MemPythonNode::current_allocated)
      .def_readwrite("current_reserved",
                     &paddle::platform::MemPythonNode::current_reserved)
      .def_readwrite("peak_allocated",
                     &paddle::platform::MemPythonNode::peak_allocated)
      .def_readwrite("peak_reserved",
                     &paddle::platform::MemPythonNode::peak_reserved);

C
chenjian 已提交
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
  py::class_<paddle::platform::DevicePythonNode>(m, "DevicePythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::DevicePythonNode::name)
      .def_readwrite("type", &paddle::platform::DevicePythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::DevicePythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::DevicePythonNode::end_ns)
      .def_readwrite("device_id",
                     &paddle::platform::DevicePythonNode::device_id)
      .def_readwrite("context_id",
                     &paddle::platform::DevicePythonNode::context_id)
      .def_readwrite("stream_id",
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
                     &paddle::platform::DevicePythonNode::stream_id)
      .def_readwrite("correlation_id",
                     &paddle::platform::DevicePythonNode::correlation_id)
      .def_readwrite("block_x", &paddle::platform::DevicePythonNode::block_x)
      .def_readwrite("block_y", &paddle::platform::DevicePythonNode::block_y)
      .def_readwrite("block_z", &paddle::platform::DevicePythonNode::block_z)
      .def_readwrite("grid_x", &paddle::platform::DevicePythonNode::grid_x)
      .def_readwrite("grid_y", &paddle::platform::DevicePythonNode::grid_y)
      .def_readwrite("grid_z", &paddle::platform::DevicePythonNode::grid_z)
      .def_readwrite("shared_memory",
                     &paddle::platform::DevicePythonNode::shared_memory)
      .def_readwrite("registers_per_thread",
                     &paddle::platform::DevicePythonNode::registers_per_thread)
      .def_readwrite("blocks_per_sm",
                     &paddle::platform::DevicePythonNode::blocks_per_sm)
      .def_readwrite("warps_per_sm",
                     &paddle::platform::DevicePythonNode::warps_per_sm)
      .def_readwrite("occupancy",
                     &paddle::platform::DevicePythonNode::occupancy)
      .def_readwrite("num_bytes",
                     &paddle::platform::DevicePythonNode::num_bytes)
      .def_readwrite("value", &paddle::platform::DevicePythonNode::value);
C
chenjian 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506

  py::class_<paddle::platform::HostPythonNode>(m, "HostPythonNode")
      .def(py::init<>())
      .def_readwrite("name", &paddle::platform::HostPythonNode::name)
      .def_readwrite("type", &paddle::platform::HostPythonNode::type)
      .def_readwrite("start_ns", &paddle::platform::HostPythonNode::start_ns)
      .def_readwrite("end_ns", &paddle::platform::HostPythonNode::end_ns)
      .def_readwrite("process_id",
                     &paddle::platform::HostPythonNode::process_id)
      .def_readwrite("thread_id", &paddle::platform::HostPythonNode::thread_id)
2507 2508
      .def_readwrite("correlation_id",
                     &paddle::platform::HostPythonNode::correlation_id)
2509 2510 2511 2512
      .def_readwrite("input_shapes",
                     &paddle::platform::HostPythonNode::input_shapes)
      .def_readwrite("dtypes", &paddle::platform::HostPythonNode::dtypes)
      .def_readwrite("callstack", &paddle::platform::HostPythonNode::callstack)
2513 2514 2515
      .def_readwrite("attributes",
                     &paddle::platform::HostPythonNode::attributes)
      .def_readwrite("op_id", &paddle::platform::HostPythonNode::op_id)
C
chenjian 已提交
2516 2517 2518 2519 2520
      .def_readwrite("children_node",
                     &paddle::platform::HostPythonNode::children_node_ptrs)
      .def_readwrite("runtime_node",
                     &paddle::platform::HostPythonNode::runtime_node_ptrs)
      .def_readwrite("device_node",
2521 2522 2523
                     &paddle::platform::HostPythonNode::device_node_ptrs)
      .def_readwrite("mem_node",
                     &paddle::platform::HostPythonNode::mem_node_ptrs);
C
chenjian 已提交
2524 2525

  py::class_<paddle::platform::Profiler>(m, "_Profiler")
2526 2527
      .def("create",
           &paddle::platform::Profiler::Create,
C
chenjian 已提交
2528
           py::return_value_policy::take_ownership)
C
chenjian 已提交
2529
      .def("is_cupti_supported", &paddle::platform::Profiler::IsCuptiSupported)
F
fwenguang 已提交
2530 2531
      .def("is_cnpapi_supported",
           &paddle::platform::Profiler::IsCnpapiSupported)
C
chenjian 已提交
2532 2533 2534 2535 2536 2537
      .def("prepare",
           [](paddle::platform::Profiler *profiler) {
             platform::EnableHostEventRecorder();
             profiler->Prepare();
           })
      .def("start", &paddle::platform::Profiler::Start)
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
      .def(
          "stop",
          [](paddle::platform::Profiler *profiler) {
            platform::DisableHostEventRecorder();
            auto result = profiler->Stop();
            framework::StaticGraphExecutorPerfStatistics(
                result->GetNodeTrees());
            return result;
          },
          py::return_value_policy::automatic_reference);
C
chenjian 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560

  py::class_<paddle::platform::ProfilerOptions>(m, "ProfilerOptions")
      .def(py::init<>())
      .def_readwrite("trace_switch",
                     &paddle::platform::ProfilerOptions::trace_switch);

  py::class_<platform::RecordEvent>(m, "_RecordEvent")
      .def(py::init([](std::string name, platform::TracerEventType type) {
        return std::make_unique<platform::RecordEvent>(
            name, type, 1, paddle::platform::EventRole::kOrdinary);
      }))
      .def("end", [](platform::RecordEvent *event) { event->End(); });

2561 2562 2563 2564 2565 2566 2567 2568
  py::enum_<paddle::platform::TracerMemEventType>(m, "TracerMemEventType")
      .value("Allocate", paddle::platform::TracerMemEventType::Allocate)
      .value("Free", paddle::platform::TracerMemEventType::Free)
      .value("ReservedAllocate",
             paddle::platform::TracerMemEventType::ReservedAllocate)
      .value("ReservedFree",
             paddle::platform::TracerMemEventType::ReservedFree);

C
chenjian 已提交
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
  py::enum_<paddle::platform::TracerEventType>(m, "TracerEventType")
      .value("Operator", paddle::platform::TracerEventType::Operator)
      .value("Dataloader", paddle::platform::TracerEventType::Dataloader)
      .value("ProfileStep", paddle::platform::TracerEventType::ProfileStep)
      .value("CudaRuntime", paddle::platform::TracerEventType::CudaRuntime)
      .value("Kernel", paddle::platform::TracerEventType::Kernel)
      .value("Memcpy", paddle::platform::TracerEventType::Memcpy)
      .value("Memset", paddle::platform::TracerEventType::Memset)
      .value("UserDefined", paddle::platform::TracerEventType::UserDefined)
      .value("OperatorInner", paddle::platform::TracerEventType::OperatorInner)
      .value("Forward", paddle::platform::TracerEventType::Forward)
      .value("Backward", paddle::platform::TracerEventType::Backward)
      .value("Optimization", paddle::platform::TracerEventType::Optimization)
      .value("Communication", paddle::platform::TracerEventType::Communication)
      .value("PythonOp", paddle::platform::TracerEventType::PythonOp)
      .value("PythonUserDefined",
             paddle::platform::TracerEventType::PythonUserDefined);
  m.def("load_profiler_result", &paddle::platform::LoadProfilerResult);
2587 2588
  m.def("enable_memory_recorder", &paddle::platform::EnableMemoryRecorder);
  m.def("disable_memory_recorder", &paddle::platform::DisableMemoryRecorder);
2589 2590
  m.def("enable_op_info_recorder", &phi::EnableOpInfoRecorder);
  m.def("disable_op_info_recorder", &phi::DisableOpInfoRecorder);
2591

2592
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
2593 2594 2595 2596
  m.def("set_cublas_switch", phi::SetAllowTF32Cublas);
  m.def("get_cublas_switch", phi::AllowTF32Cublas);
  m.def("set_cudnn_switch", phi::SetAllowTF32Cudnn);
  m.def("get_cudnn_switch", phi::AllowTF32Cudnn);
2597
#endif  // PADDLE_WITH_CUDA
2598 2599 2600 2601 2602 2603 2604 2605
  m.def("clear_executor_cache", []() {
    pybind11::gil_scoped_release release;
    framework::ExecutorInfoCache::Instance().Finalize();
    framework::InterpreterCoreInfoCache::Instance().Finalize();
  });

  m.def("parse_safe_eager_deletion_skip_vars",
        paddle::framework::details::ParseSafeEagerDeletionSkipVarsSet);
2606

J
jianghaicheng 已提交
2607 2608
#ifdef PADDLE_WITH_IPU
  py::class_<platform::ipu::IpuBackend,
2609 2610 2611
             std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>>(
      m, "IpuBackend")
      // manage IpuBackend in C++
2612 2613 2614 2615 2616 2617 2618
      .def(
          "get_instance",
          []() {
            return std::unique_ptr<platform::ipu::IpuBackend, py::nodelete>(
                platform::ipu::IpuBackend::GetInstance());
          },
          py::return_value_policy::reference)
A
Allen Guo 已提交
2619
      .def("weights_to_host", &platform::ipu::IpuBackend::WeightsToHost)
2620 2621
      .def("detach", &platform::ipu::IpuBackend::Detach)
      .def("reset", &platform::ipu::IpuBackend::Reset)
J
jianghaicheng 已提交
2622
      .def("set_scope", &platform::ipu::IpuBackend::SetScope)
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
      .def("set_ipu_strategy", &platform::ipu::IpuBackend::SetIpuStrategy)
      .def("save_model_proto", &platform::ipu::IpuBackend::SaveModelProto);

  py::class_<platform::ipu::IpuStrategy>(m, "IpuStrategy")
      .def(py::init())
      .def("set_options",
           [](platform::ipu::IpuStrategy &self, const py::dict &opt) {
             for (auto element : opt) {
               auto option_name = element.first.cast<std::string>();
               VLOG(10) << "Set option: " << option_name;
A
Allen Guo 已提交
2633 2634 2635 2636
               if (option_name == "compilation_progress_logger") {
                 self.SetCompilationProgressLogger(
                     element.second.cast<py::function>());
               } else if (py::isinstance<py::bool_>(element.second)) {
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
                 self.AddBoolOption(option_name, element.second.cast<bool>());
               } else if (py::isinstance<py::float_>(element.second)) {
                 self.AddDoubleOption(option_name,
                                      element.second.cast<double>());
               } else if (py::isinstance<py::int_>(element.second)) {
                 self.AddUint64Option(option_name,
                                      element.second.cast<std::uint64_t>());
               } else if (py::isinstance<py::str>(element.second)) {
                 self.AddStringOption(option_name,
                                      element.second.cast<std::string>());
               } else if (py::isinstance<py::set>(element.second) ||
                          py::isinstance<py::list>(element.second)) {
                 for (auto option : element.second.cast<py::list>()) {
                   std::string option_val;
                   if (py::isinstance<py::str>(option)) {
                     option_val = option.cast<std::string>();
                   } else if (py::isinstance<py::int_>(option)) {
                     option_val = std::to_string(option.cast<std::uint64_t>());
                   } else {
                     PADDLE_THROW(platform::errors::Unimplemented(
                         "Failed to convert type: %s when set IpuStrategy "
                         "option: %s",
2659 2660
                         option.get_type(),
                         option_name));
2661 2662 2663 2664 2665 2666 2667
                   }
                   self.InsertStringOption(option_name, option_val);
                 }
               } else if (py::isinstance<py::dict>(element.second)) {
                 if (option_name.rfind("location_", 0) == 0) {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetTensorLocation(
2668 2669
                         option_name,
                         option.first.cast<std::string>(),
2670 2671
                         option.second.cast<std::uint64_t>());
                   }
2672 2673 2674 2675 2676 2677
                 } else if (option_name == "replicated_collectives_settings") {
                   for (auto option : element.second.cast<py::dict>()) {
                     self.SetReplicatedCollectivesSettings(
                         option.first.cast<std::string>(),
                         option.second.cast<bool>());
                   }
A
Allen Guo 已提交
2678 2679 2680 2681 2682 2683 2684 2685 2686
                 } else if (option_name == "accumulate_outer_fragment") {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::vector<int> values;
                     for (auto value : option.second.cast<py::list>()) {
                       values.push_back(value.cast<int>());
                     }
                     self.SetAccumulateOuterFragmentSettings(
                         option.first.cast<std::uint64_t>(), values);
                   }
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
                 } else if (option_name == "custom_op") {
                   std::string paddle_op;
                   std::string popart_op;
                   std::string domain;
                   int version = -1;
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     if (option_key == "paddle_op") {
                       paddle_op = option.second.cast<std::string>();
                     } else if (option_key == "popart_op") {
                       popart_op = option.second.cast<std::string>();
                     } else if (option_key == "domain") {
                       domain = option.second.cast<std::string>();
                     } else if (option_key == "version") {
                       version = option.second.cast<int>();
                     } else {
                       PADDLE_THROW(platform::errors::InvalidArgument(
                           "Invalid argument, key must be one of paddle_op, "
                           "popart_op, domain or version, but revecived %s",
                           option_key));
                     }
                   }
                   self.AddCustomOp(paddle_op, popart_op, domain, version);
                 } else {
                   for (auto option : element.second.cast<py::dict>()) {
                     std::string option_key = option.first.cast<std::string>();
                     std::string option_val;
                     if (py::isinstance<py::str>(option.second)) {
                       option_val = option.second.cast<std::string>();
                     } else if (py::isinstance<py::int_>(option.second)) {
                       option_val =
                           std::to_string(option.second.cast<std::uint64_t>());
                     } else {
                       PADDLE_THROW(platform::errors::Unimplemented(
                           "Failed to convert value type: %s when set "
                           "IpuStrategy option: %s",
2723 2724
                           option.second.get_type(),
                           option_key));
2725
                     }
2726 2727
                     self.InsertStringPairOption(
                         option_name, option_key, option_val);
2728 2729 2730 2731 2732 2733
                   }
                 }
               } else {
                 PADDLE_THROW(platform::errors::InvalidArgument(
                     "Invalid IpuStrategy option value type: %s, please check "
                     "input value for option: %s",
2734 2735
                     element.second.get_type(),
                     option_name));
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
               }
             }
           })
      .def("get_option",
           [](platform::ipu::IpuStrategy &self, const std::string &name) {
             py::dict res;
             auto option_type = self.GetOptionType(name);
             res["name"] = name;
             res["type"] = option_type;
             if (option_type == "vector") {
               auto value = self.GetVectorOption(name);
               res["value"] = value;
             } else if (option_type == "map") {
               auto value = self.GetMapOption(name);
               res["value"] = value;
             } else {
               auto value_s = self.GetOption(name);
               res["value_s"] = value_s;
               if (option_type == "bool") {
                 res["value"] = static_cast<bool>(std::stoi(value_s));
               } else if (option_type == "uint64") {
                 res["value"] = std::stoul(value_s);
               } else if (option_type == "double") {
                 res["value"] = std::stod(value_s);
               } else if (option_type == "string") {
                 res["value"] = value_s;
               }
             }
             return res;
           })
2766 2767
      .def("get_all_option_names",
           &platform::ipu::IpuStrategy::GetAllOptionNames)
2768 2769 2770
      .def("enable_pattern", &platform::ipu::IpuStrategy::EnablePattern)
      .def("disable_pattern", &platform::ipu::IpuStrategy::DisablePattern)
      .def("is_pattern_enabled", &platform::ipu::IpuStrategy::IsPatternEnabled);
J
jianghaicheng 已提交
2771 2772
#endif

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
  m.def("get_low_precision_op_list", [] {
    py::dict op_list;
    auto list_op = phi::KernelFactory::Instance().GetLowPrecisionKernelList();
    for (auto iter = list_op.begin(); iter != list_op.end(); iter++) {
      auto op_name = (iter->first).c_str();
      auto counts = iter->second;
      op_list[op_name] = std::to_string(counts.fp16_called_) + "," +
                         std::to_string(counts.bf16_called_) + "," +
                         std::to_string(counts.fp32_called_) + "," +
                         std::to_string(counts.other_called_);
    }
    return op_list;
  });

  m.def("clear_low_precision_op_list",
        [] { phi::KernelFactory::Instance().ClearLowPrecisionKernelList(); });

2790 2791 2792 2793 2794 2795 2796 2797
  m.def("enable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().EnableAutoTune();
  });

  m.def("disable_autotune", [] {
    return phi::autotune::AutoTuneStatus::Instance().DisableAutoTune();
  });

2798
  m.def("set_autotune_range", [](int64_t start, int64_t stop) {
2799 2800 2801 2802 2803 2804 2805 2806 2807
    return phi::autotune::AutoTuneStatus::Instance().SetAutoTuneRange(start,
                                                                      stop);
  });

  m.def("update_autotune_status",
        [] { return phi::autotune::AutoTuneStatus::Instance().Update(); });

  m.def("autotune_status", [] {
    py::dict res;
2808
    phi::autotune::AutoTuneCache::Instance().UpdateStatus();
2809 2810 2811 2812 2813 2814 2815
    res["step_id"] = phi::autotune::AutoTuneStatus::Instance().StepID();
    res["cache_size"] = phi::autotune::AutoTuneCache::Instance().Size();
    res["cache_hit_rate"] =
        phi::autotune::AutoTuneCache::Instance().CacheHitRate();
    return res;
  });

2816 2817
  m.def("enable_layout_autotune",
        [] { return egr::Controller::Instance().EnableLayoutAutoTune(); });
2818

2819 2820
  m.def("disable_layout_autotune",
        [] { return egr::Controller::Instance().DisableLayoutAutoTune(); });
2821

2822 2823
  m.def("use_layout_autotune",
        [] { return egr::Controller::Instance().UseLayoutAutoTune(); });
2824 2825 2826
  // Add the api for nan op debug
  m.def("set_nan_inf_debug_path",
        &paddle::framework::details::SetNanInfDebugPath);
2827

2828 2829 2830 2831 2832 2833
  m.def("check_numerics",
        [](const std::string &op_name, const paddle::Tensor &tensor) {
          VLOG(4) << "Check tensor whether has nan or inf.";
          egr::CheckTensorHasNanOrInf(op_name, tensor);
        });

D
dongdaxiang 已提交
2834
  BindFleetWrapper(&m);
2835
  BindIO(&m);
2836 2837 2838
  BindParallelExecutor(m);
  BindPlace(m);
  BindTensor(m);
T
Thunderbrook 已提交
2839

T
Thunderbrook 已提交
2840
#if defined(PADDLE_WITH_PSLIB) && !defined(PADDLE_WITH_HETERPS)
T
Thunderbrook 已提交
2841
  BindHeterWrapper(&m);
2842
  BindMetrics(&m);
T
Thunderbrook 已提交
2843
#endif
T
Thunderbrook 已提交
2844
#ifdef PADDLE_WITH_HETERPS
T
Thunderbrook 已提交
2845
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2846 2847 2848
#ifdef PADDLE_WITH_PSLIB
  BindAfsWrapper(&m);
#endif
T
Thunderbrook 已提交
2849
#endif
2850
  BindGlooWrapper(&m);
H
hutuxian 已提交
2851
  BindBoxHelper(&m);
H
hutuxian 已提交
2852 2853 2854
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2855
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
D
dongdaxiang 已提交
2856
  BindNCCLWrapper(&m);
2857 2858 2859
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2860
#endif
F
flame 已提交
2861 2862
  BindGraph(&m);
  BindNode(&m);
2863
  BindPass(&m);
F
flame 已提交
2864
  BindInferenceApi(&m);
2865
  BindCompatible(&m);
2866
  BindDataset(&m);
Y
yaoxuefeng 已提交
2867
  BindGenerator(&m);
2868
#ifndef PADDLE_NO_PYTHON
2869 2870
  BindDistributed(&m);
#endif
2871 2872 2873
#ifdef PADDLE_WITH_ASCEND
  BindAscendWrapper(&m);
  BindAscendGraph(&m);
2874
  BindAscendDevice(&m);
2875
#endif
Y
Yanghello 已提交
2876 2877 2878
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2879

T
tangwei12 已提交
2880
#if defined PADDLE_WITH_PSCORE
T
tangwei12 已提交
2881 2882
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2883
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2884 2885
  BindDistCommunicator(&m);
  BindHeterClient(&m);
S
seemingwang 已提交
2886 2887 2888 2889 2890
  BindGraphPyFeatureNode(&m);
  BindGraphNode(&m);
  BindGraphPyService(&m);
  BindGraphPyServer(&m);
  BindGraphPyClient(&m);
1
123malin 已提交
2891 2892 2893 2894
  BindIndexNode(&m);
  BindTreeIndex(&m);
  BindIndexWrapper(&m);
  BindIndexSampler(&m);
2895
#ifdef PADDLE_WITH_HETERPS
2896 2897
  BindNodeQueryResult(&m);
  BindNeighborSampleQuery(&m);
2898 2899 2900
  BindNeighborSampleResult(&m);
  BindGraphGpuWrapper(&m);
#endif
2901
#endif
X
Xinger 已提交
2902
#if defined(PADDLE_WITH_RPC)
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
  BindWorkerInfo(&m);
  BindFuture(&m);
  InitAndSetAgentInstance(&m);
  InvokeRpc(&m);
  StartWorker(&m);
  StartClient(&m);
  StopWorker(&m);
  GetWorkerInfo(&m);
  GetWorkerInfoByRank(&m);
  GetCurrentWorkerInfo(&m);
  GetAllWorkerInfos(&m);
#endif
L
Luo Tao 已提交
2915
}
2916
}  // namespace pybind
2917
}  // namespace paddle