op_teller.cc 106.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
38
  SimpleOpTypeSetTeller() {
39
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
40
    // use TensorRT plugin
41
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
42 43
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
44 45
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
46
#endif
W
wenbin 已提交
47 48
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
49
    teller_set.insert("flatten_contiguous_range");
50
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
51 52 53 54
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
55
#endif
W
wenbin 已提交
56
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
57 58
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
59 60
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
61 62 63 64 65 66
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
67
#endif
68 69 70 71 72
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
73 74
    teller_set.insert("qk_multihead_matmul");
    int8_teller_set.insert("qk_multihead_matmul");
75
#endif
76 77 78
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
X
xjmxyt 已提交
79
    teller_set.insert("set_value");
X
xjmxyt 已提交
80 81
    teller_set.insert("index_select");
    int8_teller_set.insert("index_select");
82 83
    int8_teller_set.insert("einsum");
    teller_set.insert("einsum");
84 85
#endif
  }
86

W
weishengying 已提交
87 88 89 90
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    std::unordered_set<std::string> control_set = {"conditional_block",
                                                   "while"};
    std::unordered_set<std::string> feed_fetch_set = {"feed", "fetch"};
    if (control_set.find(op_type) != control_set.end()) {
      return false;
    }

    if (feed_fetch_set.find(op_type) != feed_fetch_set.end()) {
      return false;
    }

    // Dont.t allow fp64!
    {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            auto dtype = var_desc->GetDataType();
            if (dtype == framework::proto::VarType::FP64) {
              return false;
            }
          }
        }
      }

      auto outputs = desc.Outputs();
      for (auto iter : outputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            auto dtype = var_desc->GetDataType();
            if (dtype == framework::proto::VarType::FP64) {
              return false;
            }
          }
        }
      }
    }

W
weishengying 已提交
134 135 136 137 138 139
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
140
    std::unordered_set<std::string> act_op_list = {
141 142 143 144 145 146 147 148 149 150 151
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
152
        "reciprocal", "tanh_shrink", "logsigmoid",
153 154
        "rsqrt",      "swish",       "hard_sigmoid",
        "hard_swish", "leaky_relu"};
155
    std::unordered_set<std::string> unary_list = {
156 157 158 159 160 161
        "exp",   "log",         "sqrt",       "abs",         "sin",
        "cos",   "tan",         "tanh",       "sinh",        "cosh",
        "asin",  "acos",        "atan",       "asinh",       "acosh",
        "atanh", "ceil",        "celu",       "floor",       "round",
        "sign",  "logical_not", "reciprocal", "tanh_shrink", "logsigmoid",
        "erf",   "bitwise_not", "equal",      "not_equal",   "rsqrt"};
162 163 164 165 166 167 168 169 170 171 172 173

    // Static shape does not support 0 or 1 dim's input.
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
174
              if (shape.size() == 1 || shape.empty()) return false;
175 176 177 178 179 180
            }
          }
        }
      }
    }

181
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
182
      auto* block = desc.Block();
183 184 185 186 187 188
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
189 190 191 192 193
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
194 195
#endif
#if !IS_TRT_VERSION_GE(8600)
196 197 198
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
199
      if (x_shape.empty() && unary_list.find(op_type) != unary_list.end()) {
200 201 202 203
        VLOG(3) << op_type
                << " op does not support 0 dim input when TensorRT < 8.6.";
        return false;
      }
204
#endif
J
JingZhuangzhuang 已提交
205
    }
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

223
    if (op_type == "pool2d") {
224 225 226 227 228 229 230
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

231
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
232
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
233 234
      if (paddings.size() > 2) {
        return false;
235
      }
236 237 238 239 240 241 242 243 244 245
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
246 247
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
248
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
249 250 251 252
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
253 254 255 256
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
257
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
258 259 260 261 262
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
263 264
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
265
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
266
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
267
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
268
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
269
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
270 271 272 273 274 275 276 277 278 279 280 281 282
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
283 284 285 286
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
287 288
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

312 313
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
314 315 316 317
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
318
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
319 320 321 322 323 324 325 326 327 328 329 330 331 332
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
333

W
wenbin 已提交
334
// strides > 1 and 'SAME' is only supported by trt7.0 above
335
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
336 337 338 339
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
340
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
341 342
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
343
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
344 345 346 347 348 349
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
350 351 352 353
          }
        }
      }
#endif
354 355 356 357
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
358 359 360 361 362
#if IS_TRT_VERSION_GE(8600)
#else
          LOG(INFO)
              << "Trt below 8.6 not support conv2d's filter is a intermedoate "
                 "tensor in conv2d op, please upgarde your TenroRT.";
363
          return false;
364
#endif
365 366
        }
      }
367 368
    }

W
wangxinxin08 已提交
369
    if (op_type == "deformable_conv") {
370 371 372
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
388
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
389 390 391 392 393 394 395 396
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
397
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
398 399 400 401 402 403 404
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
405
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
406 407 408 409 410 411 412
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

413 414 415 416 417 418
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

419 420 421 422
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
423 424 425 426 427 428 429 430 431
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
      if (start_dtype == framework::proto::VarType::FP32) {
        return false;
      }
#endif
432 433
    }

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }
456

W
Wilber 已提交
457 458 459 460 461 462 463 464 465 466 467
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
468

469
      if (with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
470 471 472 473 474 475 476
        int axis = desc.HasAttr("axis")
                       ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                       : -1;
        if (axis > 0) {
          return false;
        }
      }
W
Wilber 已提交
477
    }
478

479
    if (op_type == "group_norm") {
480 481 482 483
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

484 485
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
486 487 488 489 490 491 492
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
493 494 495 496
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
497
      }
R
Ruibiao Chen 已提交
498
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
499 500
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
501 502 503
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
504
        if (!desc.Input("AxisTensor").empty()) {
W
Wilber 已提交
505
          return false;
506
        }
507 508
      }
    }
509 510 511
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
512 513
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
514
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
515 516 517 518
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
519 520 521 522 523 524
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
525 526 527
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
528
      if (axis.size() != x_shape.size()) return false;
529
      int dims = x_shape.size();
W
wenbin 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
549
        return false;
550 551
      }
    }
552
    if (op_type == "flatten2" || op_type == "flatten") {
553 554 555
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
556 557
#if IS_TRT_VERSION_GE(7130)
#else
558
        if (with_dynamic_shape) return false;
559
#endif
R
Ruibiao Chen 已提交
560
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
561 562 563
        if (axis != 1) return false;
      }
    }
564 565
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
566 567 568
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
569 570
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
571 572 573 574 575 576 577 578 579 580 581
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
582 583 584 585 586 587
        if (dims == 0) {
          VLOG(3) << op_type
                  << " op does not support input's dim is 0 in tensorrt "
                     "static shape mode.";
          return false;
        }
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
604

605
    if (op_type == "gather") {
606 607
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
608
        if (!desc.Input("Axis").empty()) {
609 610 611 612 613 614
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
615
        auto* block = desc.Block();
616 617 618 619 620 621
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
622
#if !IS_TRT_VERSION_GE(7000)
623 624 625 626 627 628
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
629
#endif
630
      }
631
    }
Z
zlsh80826 已提交
632

633
    if (op_type == "gather_nd") {
634 635
      if (!with_dynamic_shape) return false;

636
      auto* block = desc.Block();
637 638 639 640 641 642
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
643
#if IS_TRT_VERSION_LT(8200)
644 645
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
646 647
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
648 649
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
650 651 652 653 654 655
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

656 657 658 659 660
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
661
#endif
662
    }
X
xjmxyt 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    if (op_type == "index_select") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      auto gather_inputs = desc.Inputs();
      if (!with_dynamic_shape) {
        return false;
      } else {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);
681

X
xjmxyt 已提交
682 683 684 685 686 687 688 689 690 691 692
        // The index input must be int32 or int64 datatype.
        if (index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT32 &&
            index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT64) {
          VLOG(3)
              << "Index select op Index input data type must be int32 or int64";
          return false;
        }
      }
    }
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

716 717 718 719
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
720 721 722 723 724 725
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
726
      if (!has_attrs) return false;
Z
zlsh80826 已提交
727 728
    }

729 730 731 732 733 734
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

735
    if (op_type == "arg_max" || op_type == "arg_min") {
736 737 738 739 740 741
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

758
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
759
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
760
                     : -1;
X
xiaoxiaohehe001 已提交
761 762 763 764 765 766
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
767
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
768 769
    }

770 771
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
772
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
773
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
774
      if (data_layout != phi::DataLayout::kNCHW) return false;
775 776

      auto* block = desc.Block();
777 778 779 780 781 782
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
783 784 785 786 787 788
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
789 790
    }

791
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
792
      auto* block = desc.Block();
793 794 795 796 797 798
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
799 800 801
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
802
        if (!desc.Input("RoisNum").empty()) {
803 804 805 806
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
807 808 809 810
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
811
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
812 813 814 815 816 817 818 819 820 821 822 823
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

824 825 826
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
827
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
828 829
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
830
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
831 832
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
833
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
834 835 836 837 838 839
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

840
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
841 842
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
843
      for (auto const& attr : attrs) {
844 845
        if (!desc.HasAttr(attr)) return false;
      }
846
      if (desc.HasAttr("data_layout")) {
847
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
848
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
849 850
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
851 852
          return false;
      }
853
      auto interp_method =
R
Ruibiao Chen 已提交
854
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
855
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
856 857 858 859 860
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
861 862 863 864
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
865
        }
866 867
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
868 869
          return false;
        }
870
      }
871 872 873 874 875 876 877 878 879
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
880
    }
881

882
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
883 884 885 886 887 888
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
889
      for (auto const& attr : attrs) {
890 891
        if (!desc.HasAttr(attr)) return false;
      }
892
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
893
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
894 895
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
896 897
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
898
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
899
      if (interp_method != "nearest") return false;
900

901
#if IS_TRT_VERSION_GE(8200)
902 903 904 905 906 907
      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }
908
#endif
909

R
Ruibiao Chen 已提交
910 911 912
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
913
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
914
        if (scale.size() < 2) return false;
915 916 917 918 919 920 921 922
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

923
    if (op_type == "bilinear_interp_v2") {
924 925 926 927
      // trt 7011 result in test_solov2_trt_fp32.py TRT fp32 diff
#if IS_TRT_VERSION_LT(7100)
      return false;
#endif
C
ccrrong 已提交
928 929 930 931 932 933
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
934
      for (auto const& attr : attrs) {
935 936 937 938 939 940 941 942 943
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
944
        if (!desc.Input("SizeTensor").empty()) {
945 946 947 948 949 950 951 952
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
953 954
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
955 956 957 958 959
                  << op_type;
          return false;
        }
      }

960
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
961
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
962 963
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
964 965 966 967 968
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
969
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
970 971 972 973 974 975
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
976 977
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
978 979 980 981 982 983 984 985 986 987 988
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
989
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
990 991 992 993 994 995 996
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
997 998
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

1024
    if (op_type == "squeeze2") {
1025 1026 1027 1028 1029 1030 1031
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

1032 1033
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1034
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1035
      }
1036
      if (axes.empty()) {
W
wenbin 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        auto* block = desc.Block();
        if (block) {
          auto input_var_name = desc.Input("X")[0];
          auto* input_var_desc = block->FindVar(input_var_name);
          const auto input_shape = input_var_desc->GetShape();
          for (int s : input_shape) {
            if (s == -1) {
              VLOG(3) << "The necessary attributes of the squeeze2 operator "
                         "axes is "
                         "missing. ss ==== -1";
              return false;
            } else if (s == 1) {
              axes.push_back(s);
            }
          }
        }
1053
        if (axes.empty()) {
W
wenbin 已提交
1054 1055 1056 1057 1058
          VLOG(3)
              << "The necessary attributes of the squeeze2 operator axes is "
                 "missing.";
          return false;
        }
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1072
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1073
      }
1074
      if (axes.empty()) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1088
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1089 1090
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1091 1092 1093 1094 1095 1096 1097 1098 1099
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1100 1101
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
1102
        if (!desc.Input("MomentumTensor").empty()) {
1103 1104 1105
          return false;
        }
      }
1106 1107 1108 1109 1110 1111
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1122 1123 1124 1125 1126 1127 1128 1129 1130
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1131 1132
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
1133
        if (!desc.Input("AxisTensor").empty()) {
1134 1135 1136 1137
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
1138
        if (!desc.Input("SectionsTensorList").empty()) {
1139 1140 1141
          if (!with_dynamic_shape) {
            return false;
          }
1142 1143
        }
      }
1144 1145
      if (!desc.HasAttr("axis")) {
        return false;
1146
      }
R
Ruibiao Chen 已提交
1147
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1148

1149
      if (!with_dynamic_shape && axis == 0) {
1150
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
1151
                   "TensorRT with static shape";
1152 1153 1154
        return false;
      }
      auto* block = desc.Block();
1155 1156 1157 1158 1159 1160
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1161 1162 1163 1164 1165 1166 1167
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1168
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1169 1170 1171
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1172
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1173
      }
1174
      if (output_lengths.empty() && num == 0) {
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
1192
      if (output_lengths.empty()) {
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1205 1206
        }
      }
1207 1208 1209 1210
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1211
    }
1212

1213 1214 1215
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
1216
        if (!desc.Input("ScaleTensor").empty()) {
1217 1218 1219 1220
          return false;
        }
      }
      auto* block = desc.Block();
1221 1222 1223 1224 1225 1226
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1227 1228 1229
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1230
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1231 1232 1233 1234 1235 1236 1237
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
      } else {
1238 1239
        // At present, only support float32 or float16 or int32 or int64 into
        // trt.
W
wenbin 已提交
1240 1241
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
1242 1243
              dtype == framework::proto::VarType::INT32 ||
              dtype == framework::proto::VarType::INT64)) {
W
wenbin 已提交
1244 1245
          return false;
        }
1246
      }
1247
    }
1248

F
feng_shuai 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1260 1261 1262 1263 1264
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1265 1266 1267 1268 1269 1270 1271 1272
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
1289
        if (!desc.Input("SequenceLength").empty()) {
Z
zhoutianzi666 已提交
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1324 1325 1326 1327 1328
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1329 1330 1331
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1342
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1343 1344
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1345 1346 1347 1348 1349
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1350 1351
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1352 1353 1354 1355 1356
          return false;
        }
      }
    }

1357
    if (op_type == "slice") {
1358 1359
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1360
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1361 1362 1363
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1364 1365
            return false;
          }
1366 1367
        }
      }
1368 1369
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1370
        VLOG(3) << "The necessary attributes of the slice operator axes "
1371
                   " are missing.";
1372 1373
        return false;
      } else {
1374
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1385 1386
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1387
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
1388
          !desc.Input("StartsTensor").empty()) {
1389 1390 1391 1392 1393 1394
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1395
          return false;
1396 1397 1398 1399 1400 1401 1402 1403
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1404 1405
        }
      }
1406
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
1407
          !desc.Input("EndsTensor").empty()) {
1408 1409 1410 1411 1412 1413
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1414
          return false;
1415 1416 1417 1418 1419 1420 1421 1422
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1423 1424 1425
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
周周周 已提交
1426
        VLOG(3) << "The Slice has StartsTensorList input.";
1427 1428
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
周周周 已提交
1429
        VLOG(3) << "The Slice has EndsTensorList input.";
1430
      }
1431 1432
    }

1433 1434
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
1435 1436
        op_type == "logical_and" || op_type == "less_equal" ||
        op_type == "greater_equal") {
1437
#if IS_TRT_VERSION_GE(8400)
1438
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1439
      if (!with_dynamic_shape) {
1440
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1441 1442
        return false;
      }
1443 1444 1445 1446 1447
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1448 1449 1450 1451
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1452 1453 1454 1455 1456
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
1457
          op_type == "less_equal" || op_type == "greater_equal") {
1458 1459 1460 1461 1462
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1463 1464 1465 1466 1467 1468 1469 1470
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1471
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1472
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1473
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1474 1475
        op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
        op_type == "elementwise_mod") {
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1494
      auto* block = desc.Block();
1495 1496 1497 1498 1499 1500
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1501 1502 1503 1504
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1505

1506 1507 1508 1509
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1510 1511
          op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
          op_type == "elementwise_mod") {
1512 1513
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
1514 1515 1516 1517
          VLOG(3)
              << "These operations "
                 "(elementwise_add/mul/sub/div/pow/min/max/floordiv/mod) do "
                 "not support boolean datatype.";
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1531 1532 1533 1534 1535 1536
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1537 1538
        return false;
      }
1539

1540 1541 1542 1543
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1544
        return false;
1545
      }
1546 1547
    }

W
Wilber 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556
    if (op_type == "pow") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
1557

W
Wilber 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566
      // the same as `elementwise_pow`.
      if (x_var_desc->GetDataType() ==
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "These operations (pow) do not support int32 "
                   "datatype.";
        return false;
      }
    }

1567 1568 1569 1570 1571 1572 1573 1574 1575
    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      int rank = x_shape.size();
      int axis = desc.HasAttr("axis")
                     ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                     : -1;
      if (axis > rank || axis < -(rank + 1)) {
        return false;
      }
1594
    }
1595

1596 1597 1598
    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1625 1626
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1627 1628 1629
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1654

1655
#if IS_TRT_VERSION_LT(7000)
1656
      if (desc.HasAttr("approximate")) {
1657
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1658
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1659
      }
1660
#endif
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1686 1687 1688 1689
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
1690
        if (!desc.Input("ValueTensor").empty()) return false;
1691 1692 1693
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
1694
        if (!desc.Input("ShapeTensor").empty()) return false;
1695 1696 1697
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
1698
        if (!desc.Input("ShapeTensorList").empty()) return false;
1699
      }
1700 1701 1702
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1703 1704 1705 1706 1707 1708
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1746 1747
    }

1748
    if (op_type == "pad") {
1749
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1750 1751
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1752 1753 1754 1755
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1756 1757
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1758 1759 1760 1761 1762 1763
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1764 1765 1766 1767 1768 1769 1770 1771
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1772
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1785 1786
    }

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
    if (op_type == "pad3d") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "pad3d is not supported when TensorRT < 8.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "pad3d is not supported static shape";
        return false;
      }
      if (!desc.HasAttr("paddings") && !desc.HasInput("Paddings")) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "constant" && mode != "reflect" && mode != "replicate") {
          VLOG(3) << "The pad3d layer of TRT only support "
                     "constant/reflect/replicate mode.";
          return false;
        }
      }
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format != "NCDHW") {
          VLOG(3) << "The pad3d layer of TRT only support NCDHW data format.";
          return false;
        }
      }
    }
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1830 1831

      auto* block = desc.Block();
1832 1833 1834 1835 1836 1837
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1838 1839
      auto* alpha_var = block->FindVar(desc.Input("Alpha")[0]);
      if (!alpha_var) {
1840 1841 1842
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }
1843
      auto alpha_shape = alpha_var->GetShape();
1844
      if (!with_dynamic_shape && alpha_shape.empty()) {
1845 1846 1847
        VLOG(3) << op_type
                << " op does not support alpha's dim is 0 in tensorrt "
                   "static shape mode.";
1848 1849
        return false;
      }
1850 1851
    }

W
wangxinxin08 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
    }

1867 1868 1869 1870 1871 1872 1873
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1874 1875 1876 1877
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1878
                                     "aligned"};
1879
      for (auto const& attr : attrs) {
1880 1881 1882 1883
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1884
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1885 1886 1887
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1888
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1889 1890 1891
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1892
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1893 1894 1895 1896
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
1897
        if (!desc.Input("RoisNum").empty()) {
1898 1899 1900
          return false;
        }
      }
1901 1902 1903
    }

    if (op_type == "shuffle_channel") {
1904
#if !IS_TRT_VERSION_GE(8000)
1905 1906
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1907 1908
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1909 1910
        return false;
      }
1911
#endif
1912 1913
    }

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1925 1926 1927 1928 1929
    if (op_type == "bitwise_not") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
1930
      if (dtype == framework::proto::VarType::INT8 ||
1931
          dtype == framework::proto::VarType::UINT8) {
1932
        VLOG(3) << "INT8 / UINT8 type convert to trt is not supported";
1933 1934
        return false;
      }
1935 1936 1937 1938 1939 1940
      if (dtype == framework::proto::VarType::BOOL) {
#if !IS_TRT_VERSION_GE(8400)
        VLOG(3) << "BOOL type support requires TensorRT 8.4";
        return false;
#elif !IS_TRT_VERSION_GE(8600)
        const auto x_shape = x_var_desc->GetShape();
1941
        if (x_shape.empty()) {
1942 1943 1944 1945
          VLOG(3)
              << "BOOL type does not support 0 dim input when TensorRT < 8.6.";
          return false;
        }
1946
#endif
1947
      }
1948 1949
    }

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
1975
        if (!desc.Input("depth_tensor").empty()) {
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1989 1990 1991 1992 1993 1994 1995
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

2007 2008 2009 2010 2011
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
2028
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
2029 2030 2031 2032 2033 2034 2035 2036 2037
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
2038
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
2039 2040
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
2041 2042 2043 2044
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
2045 2046
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
2047 2048 2049 2050 2051 2052 2053
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
2054 2055 2056
          return false;
        }
      } else {
2057 2058 2059
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
2060
        return false;
F
feng_shuai 已提交
2061
#endif
2062
      }
2063 2064
    }

2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

W
Wangzheee 已提交
2117 2118 2119
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2120
      }
2121 2122 2123 2124
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2125
      auto reshape_inputs = desc.Inputs();
2126
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
2127
        if (!desc.Input("Shape").empty()) {
2128 2129 2130 2131
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
2132
        if (!desc.Input("ShapeTensor").empty()) {
2133 2134
          return false;
        }
W
Wangzheee 已提交
2135
      }
W
Wilber 已提交
2136
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2137
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2138
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2150 2151 2152 2153
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2154 2155 2156 2157
          if (input_num == shape_num) {
            return true;
          }
        }
2158
        return false;
X
xiaoxiaohehe001 已提交
2159
      }
W
Wangzheee 已提交
2160
    }
2161

2162 2163 2164 2165
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
2166
        if (!desc.Input("Min").empty()) {
2167 2168 2169 2170
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
2171
        if (!desc.Input("Max").empty()) {
2172 2173 2174 2175 2176
          return false;
        }
      }

      auto* block = desc.Block();
2177 2178 2179 2180 2181 2182
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2183 2184 2185
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2186
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
2187 2188 2189 2190 2191
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
2192 2193
    }

2194
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2195
        op_type == "reduce_max" || op_type == "reduce_min" ||
2196 2197
        op_type == "reduce_prod" || op_type == "reduce_any" ||
        op_type == "reduce_all") {
2198 2199 2200 2201 2202 2203 2204
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2205 2206
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2207 2208
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2209
                   "reduce_all)";
2210 2211 2212 2213 2214 2215 2216 2217
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2218 2219
        return false;
      }
W
wenbin 已提交
2220 2221

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2222
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2223
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2224
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2225
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2226
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2227
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2228
        for (auto x : dim) {
2229
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2230
        }
2231

2232
      } else {
R
Ruibiao Chen 已提交
2233 2234
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2235 2236
          return false;
      }
2237 2238

      auto dtype = x_var_desc->GetDataType();
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
      if (op_type == "reduce_all" || op_type == "reduce_any") {
        if (dtype != framework::proto::VarType::BOOL) {
          VLOG(3)
              << "reduce_all and reduce_any op input data type must be bool";
          return false;
        }
      } else {
#if IS_TRT_VERSION_GE(7000)
        if (dtype != framework::proto::VarType::INT32 &&
            dtype != framework::proto::VarType::FP32) {
          VLOG(3) << "reduce op input data type must be int32 or float32";
          return false;
        }
#else
        if (dtype != framework::proto::VarType::FP32) {
          VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                     "< 7.0";
          return false;
        }
2258
#endif
2259
      }
2260
    }
W
wenbin 已提交
2261 2262 2263
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2264
      auto tile_inputs = desc.Inputs();
2265 2266
      if (!with_dynamic_shape) {
        if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
2267
          if (!desc.Input("repeat_times_tensor").empty()) {
2268 2269
            return false;
          }
2270
        }
2271
        if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
2272
          if (!desc.Input("RepeatTimes").empty()) {
2273 2274
            return false;
          }
2275
        }
2276
        if (!desc.HasAttr("repeat_times")) return false;
W
wenbin 已提交
2277 2278 2279
      }
    }
#endif
2280

2281 2282 2283 2284 2285
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2286 2287
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2288
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2289 2290 2291 2292 2293 2294
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2295
#endif
2296 2297
    }

W
wenbin 已提交
2298 2299 2300
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2301
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2316

W
wenbin 已提交
2317
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2318
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2340
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

C
ccrrong 已提交
2358
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2359 2360 2361 2362
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2363 2364 2365 2366 2367 2368
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2369 2370
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2371

2372
      if (in_dtype == 0 || out_dtype == 0) {
2373
#if IS_TRT_VERSION_GE(8400)
2374 2375 2376 2377 2378 2379
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2380 2381
        return false;
      }
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2392
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
2393 2394 2395 2396 2397
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
C
ccrrong 已提交
2398 2399
    }

X
xjmxyt 已提交
2400 2401 2402 2403
    if (op_type == "set_value") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
2404 2405
      auto inputs = desc.Inputs();
      if (inputs.find("StartsTensorList") != inputs.end()) {
2406
        if (!desc.Input("StartsTensorList").empty()) {
2407 2408 2409 2410
          return false;
        }
      }
      if (inputs.find("EndsTensorList") != inputs.end()) {
2411
        if (!desc.Input("EndsTensorList").empty()) {
2412 2413 2414 2415
          return false;
        }
      }
      if (inputs.find("StepsTensorList") != inputs.end()) {
2416
        if (!desc.Input("StepsTensorList").empty()) {
2417 2418 2419
          return false;
        }
      }
X
xjmxyt 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428
      if (!(desc.HasAttr("axes") && desc.HasAttr("starts") &&
            desc.HasAttr("steps"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (axes or "
                   "starts or steps)";
        return false;
      }
    }

2429 2430
    if (op_type == "top_k_v2" || op_type == "top_k") {
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2431
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2432
        if (!with_dynamic_shape && axis == 0) {
2433
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
2434
                     "tensorrt static shape.";
2435 2436 2437 2438
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2439
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2440
        if (!sorted) {
2441 2442
          VLOG(3) << op_type
                  << " does not support results not sorted in "
2443 2444 2445 2446 2447 2448
                     "tensorrt";
          return false;
        }
      }
    }

2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2459
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2460
#if !IS_TRT_VERSION_GE(8000)
2461
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2462 2463
      return false;
#else
2464 2465 2466 2467 2468 2469
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2470 2471 2472
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2473
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2487 2488 2489 2490 2491 2492 2493
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2494 2495 2496 2497 2498 2499 2500 2501 2502

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2503 2504 2505 2506 2507 2508 2509
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2510

W
Wang Bojun 已提交
2511 2512 2513 2514 2515 2516 2517
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2518 2519 2520 2521 2522 2523 2524 2525
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }
2541 2542 2543 2544 2545 2546 2547
    if (op_type == "trans_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The trans_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
2548 2549 2550 2551 2552 2553 2554
    if (op_type == "fuse_eleadd_transpose") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The fuse_eleadd_transpose op does not support "
                   "static shape yet";
        return false;
      }
    }
2555
    if (op_type == "lookup_table" || op_type == "lookup_table_v2") {
2556 2557 2558 2559 2560 2561 2562
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2563
    if (op_type == "expand_as_v2" || op_type == "expand_v2") {
2564
      if (!with_dynamic_shape) {
2565 2566 2567
        VLOG(3) << "the " << op_type
                << "does not support "
                   "static shape yet";
2568 2569
        return false;
      }
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

      auto inputs = desc.Inputs();
      if (op_type == "expand_as_v2") {
        if (!desc.HasAttr("target_shape") && inputs.find("Y") == inputs.end()) {
          VLOG(3)
              << "expand_as_v2 op need have input(Y) or attr(target_shape). ";
          return false;
        }
      } else if (op_type == "expand_v2") {
        if (!desc.HasAttr("shape") && inputs.find("Shape") == inputs.end() &&
            inputs.find("expand_shapes_tensor") == inputs.end()) {
          VLOG(3) << "expand_v2 op need have input(Shape) or "
                     "input(expand_shapes_tensor) or attr(shape) . ";
          return false;
        }
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2592 2593
        return false;
      }
2594 2595 2596 2597 2598 2599 2600 2601 2602

#if IS_TRT_VERSION_LT(8000)
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 0) {
        return false;  // not supported 0 dim.
      }
#endif
2603 2604
    }

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
    if (op_type == "grid_sampler") {
#if !IS_TRT_VERSION_GE(8510)
      VLOG(3) << "grid_sampler is not supported when TensorRT < 8.5.1";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the grid_sampler does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("mode") || !desc.HasAttr("padding_mode") ||
          !desc.HasAttr("align_corners")) {
        VLOG(3) << "grid_sampler need attributes : mode, padding_mode, "
                   "align_corners";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      auto grid_name = desc.Input("Grid")[0];
      auto* grid_desc = block->FindVar(grid_name);
      const auto grid_shape = grid_desc->GetShape();

      if (input_shape.size() != 4 || grid_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT GridSample layer.";
        return false;
      }

#endif
    }

2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
    if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
      VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the cumsum does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

C
chen 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    if (op_type == "unbind") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the unbind does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
    if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
      return false;
#endif

      if (!with_dynamic_shape) {
        VLOG(3) << "the temporal shift does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
        VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT TemporalShift layer.";
        return false;
      }
    }

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    if (op_type == "einsum") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "einsum is not supported when TensorRT < 8.2";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the einsum does not support "
                   "static shape yet";
        return false;
      }
      auto operand_inputs = desc.Input("Operands");
      if (operand_inputs.size() > 2) {
        VLOG(3) << "TensorRT currently supports up to 2 input tensors"
                << "to einsum but operation had" << operand_inputs.size()
                << "input tensors !";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto equation = PADDLE_GET_CONST(std::string, desc.GetAttr("equation"));
      if (equation.find("...") != std::string::npos) {
        VLOG(3) << "TensorRT currently does not support ellipses !";
        return false;
      }
#endif
    }

W
weishengying 已提交
2750 2751 2752 2753 2754
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2755
  }
W
wenbin 已提交
2756

W
weishengying 已提交
2757 2758 2759
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
2760
      "matrix_multiply",
2761
      "bmm",
2762
      "range",
W
weishengying 已提交
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2786
      "acosh",
W
weishengying 已提交
2787 2788 2789
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2790
      "rsqrt",
2791
      "sign",
G
gem5 已提交
2792
      "reciprocal",
2793
      "logical_not",
W
weishengying 已提交
2794
      "erf",
2795
      "square",
W
weishengying 已提交
2796 2797 2798 2799 2800 2801 2802
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2803
      "pad3d",
W
weishengying 已提交
2804 2805 2806 2807 2808 2809
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2810 2811
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2812
      "elementwise_floordiv",
2813
      "elementwise_mod",
W
weishengying 已提交
2814
      "equal",
S
Sanbu 已提交
2815
      "not_equal",
2816 2817 2818 2819 2820 2821
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2822
      "greater_equal",
W
weishengying 已提交
2823
      "dropout",
2824
      "fill_any_like",
W
weishengying 已提交
2825 2826 2827 2828 2829
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2830
      "where",
2831
      "bitwise_not",
2832 2833
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2834 2835
      "swish",
      "silu",
2836
      "celu",
W
weishengying 已提交
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2851
      "group_norm",
W
weishengying 已提交
2852 2853 2854
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2855
      "arg_min",
W
weishengying 已提交
2856 2857 2858 2859
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2860
      "reduce_max",
2861
      "reduce_min",
W
weishengying 已提交
2862
      "reduce_mean",
2863
      "reduce_sum",
2864 2865 2866
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2879
      "multihead_matmul_roformer",
W
weishengying 已提交
2880 2881 2882 2883
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2884
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2900
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2901
      "reverse_roll",
2902
      "take_along_axis",
2903 2904
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2905
      "preln_layernorm_shift_partition",
2906
      "lookup_table",
2907
      "lookup_table_v2",
2908
      "trans_layernorm",
W
wenbin 已提交
2909 2910
      "merge_layernorm",
      "skip_merge_layernorm",
W
wenbin 已提交
2911
      "expand_v2",
2912
      "expand_as_v2",
2913
      "fuse_eleadd_transpose",
W
wenbin 已提交
2914
      "skip_groupnorm_act",
2915
      "preln_groupnorm_act",
2916
      "temporal_shift",
2917
      "grid_sampler",
M
ming1753 已提交
2918
      "cumsum",
C
chen 已提交
2919
      "unbind",
M
ming1753 已提交
2920
      "assign"};
W
wenbin 已提交
2921

W
weishengying 已提交
2922
  std::unordered_set<std::string> teller_set{
2923
      "matrix_multiply",
2924
      "bmm",
2925
      "range",
W
weishengying 已提交
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2949
      "acosh",
W
weishengying 已提交
2950 2951 2952
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2953
      "rsqrt",
2954
      "sign",
G
gem5 已提交
2955
      "reciprocal",
2956
      "logical_not",
W
weishengying 已提交
2957
      "erf",
2958
      "square",
W
weishengying 已提交
2959 2960 2961 2962 2963 2964 2965
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2966
      "pad3d",
W
weishengying 已提交
2967 2968 2969 2970 2971 2972
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
W
Wilber 已提交
2973
      "pow",
2974 2975
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2976
      "elementwise_floordiv",
2977
      "elementwise_mod",
W
weishengying 已提交
2978
      "equal",
S
Sanbu 已提交
2979
      "not_equal",
2980 2981 2982 2983 2984 2985
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2986
      "greater_equal",
W
weishengying 已提交
2987
      "dropout",
2988
      "fill_any_like",
W
weishengying 已提交
2989 2990 2991 2992 2993
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2994
      "where",
2995
      "bitwise_not",
2996 2997
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2998 2999
      "swish",
      "silu",
3000
      "celu",
W
weishengying 已提交
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
3018
      "arg_min",
W
weishengying 已提交
3019 3020 3021 3022
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
3023
      "reduce_max",
3024
      "reduce_min",
W
weishengying 已提交
3025
      "reduce_mean",
3026
      "reduce_sum",
3027 3028 3029
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
3042
      "multihead_matmul_roformer",
W
weishengying 已提交
3043 3044 3045 3046 3047
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
3048
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
3064
      "layernorm_shift_partition",
W
Wang Bojun 已提交
3065
      "reverse_roll",
3066
      "tanh_shrink",
3067
      "take_along_axis",
3068
      "logsigmoid",
W
wenbin 已提交
3069
      "preln_layernorm_shift_partition",
3070
      "trans_layernorm",
W
Wang Bojun 已提交
3071
      "merge_layernorm",
W
wenbin 已提交
3072
      "skip_merge_layernorm",
3073
      "lookup_table",
3074
      "lookup_table_v2",
W
wenbin 已提交
3075
      "expand_v2",
3076
      "expand_as_v2",
3077
      "fuse_eleadd_transpose",
W
wenbin 已提交
3078
      "skip_groupnorm_act",
3079
      "preln_groupnorm_act",
3080
      "temporal_shift",
3081
      "grid_sampler",
M
ming1753 已提交
3082
      "cumsum",
C
chen 已提交
3083
      "unbind",
M
ming1753 已提交
3084
      "assign"};
W
weishengying 已提交
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
3098 3099 3100 3101
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
W
weishengying 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
3160 3161 3162 3163 3164 3165
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
3166 3167
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3168
    SetOpConverterType(node->Op(), OpConverterType::Default);
W
weishengying 已提交
3169 3170 3171 3172
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3173
    SetOpConverterType(node->Op(), OpConverterType::GenericPluginCreater);
W
weishengying 已提交
3174 3175 3176 3177
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3178
    SetOpConverterType(node->Op(), OpConverterType::CustomPluginCreater);
W
weishengying 已提交
3179 3180
    return true;
  }
3181 3182
  return false;
}
3183

W
weishengying 已提交
3184 3185 3186 3187 3188
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
3189

3190 3191 3192
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle