creation.py 88.6 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
# TODO: define functions to get create a tensor

17
import math
18
import re
19 20 21 22 23
import warnings

import numpy as np

import paddle
C
Chen Weihang 已提交
24
from paddle import _C_ops
25

26 27
from ..fluid.data_feeder import (
    check_dtype,
28 29
    check_type,
    check_variable_and_dtype,
30
    convert_dtype,
31
    convert_float_to_uint16,
32
)
33
from ..fluid.framework import Variable, device_guard
34
from ..fluid.param_attr import ParamAttr
35 36 37 38 39 40
from ..framework import (
    LayerHelper,
    _current_expected_place,
    _get_paddle_place,
    convert_np_dtype_to_dtype_,
    core,
41
    in_dynamic_mode,
42
)
43

44 45
__all__ = []

W
wangchaochaohu 已提交
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
def _complex_to_real_dtype(dtype):
    if dtype == core.VarDesc.VarType.COMPLEX64:
        return core.VarDesc.VarType.FP32
    elif dtype == core.VarDesc.VarType.COMPLEX128:
        return core.VarDesc.VarType.FP64
    else:
        return dtype


def _real_to_complex_dtype(dtype):
    if dtype == core.VarDesc.VarType.FP32:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == core.VarDesc.VarType.FP64:
        return core.VarDesc.VarType.COMPLEX128
    else:
        return dtype


65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
def create_global_var(
    shape, value, dtype, persistable=False, force_cpu=False, name=None
):
    """
    This function creates a new tensor variable with value in the global block(block 0).

    Args:
        shape (list[int]|tuple[int]): Shape of the variable
        value (float): The value of the variable. The new created
                      variable will be filled with it.
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
                           Default: False
        force_cpu (bool, optional): Force this variable to be on CPU.
                         Default: False
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.

    Returns:
        Variable: The created Variable

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
            var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
                                           persistable=True, force_cpu=True, name='new_var')
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_global_var')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_global_var',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
            'uint16',
        ],
        'create_global_var',
    )

    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True,
    )
    helper.set_variable_initializer(
137 138 139 140
        var,
        initializer=paddle.nn.initializer.ConstantInitializer(
            value=float(value), force_cpu=force_cpu
        ),
141 142 143 144 145
    )

    return var


146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
def create_parameter(
    shape, dtype, name=None, attr=None, is_bias=False, default_initializer=None
):
    """
    This function creates a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    Note:
        This is a very low-level API. This API is useful when you create operator by your self, instead of using layers.

    Args:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer (Initializer, optional): Initializer for the parameter

    Returns:
        The created parameter.

    Examples:
        .. code-block:: python

            import paddle
            paddle.enable_static()
176
            W = paddle.create_parameter(shape=[784, 200], dtype='float32')
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    """
    check_type(shape, 'shape', (list, tuple, np.ndarray), 'create_parameter')
    for item in shape:
        check_type(
            item,
            'item of shape',
            (
                int,
                np.uint8,
                np.int8,
                np.int16,
                np.int32,
                np.int64,
            ),
            'create_parameter',
        )

    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
200
            'uint16',
201 202 203 204 205 206 207 208 209 210 211 212 213 214
            'float32',
            'float64',
            'int8',
            'int16',
            'int32',
            'int64',
            'uint8',
        ],
        'create_parameter',
    )
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(
        default_initializer,
        'default_initializer',
215
        (type(None), paddle.nn.initializer.Initializer),
216 217 218 219 220 221 222 223 224 225 226
        'create_parameter',
    )

    helper = LayerHelper("create_parameter", **locals())
    if attr is None:
        attr = ParamAttr(name=name)
    return helper.create_parameter(
        attr, shape, convert_dtype(dtype), is_bias, default_initializer
    )


227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
def create_tensor(dtype, name=None, persistable=False):
    """
    Create a variable, which will hold a Tensor with data type dtype.

    Args:
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
        persistable(bool): Set the persistable flag of the create tensor.
            default value is False.

    Returns:
        Variable: The tensor to be created according to dtype.

    Examples:
        .. code-block:: python

          import paddle
          tensor = paddle.tensor.create_tensor(dtype='float32')
    """
    check_dtype(
        dtype,
        'dtype',
        [
            'bool',
            'float16',
            'float32',
            'float64',
            'int8',
            'int32',
            'int32',
            'int64',
        ],
        'create_tensor',
    )
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable
    )


269 270
def linspace(start, stop, num, dtype=None, name=None):
    r"""
L
LoneRanger 已提交
271
    Return fixed number of evenly spaced values within a given interval. Note: no gradient calculation is performed.
272 273

    Args:
274 275
        start(int|float|Tensor): The input :attr:`start` is start of range. It is a int, float, \
            or a 0-D Tensor with data type int32, int64, float32 or float64.
L
LoneRanger 已提交
276
        stop(int|float|Tensor): The input :attr:`stop` is end of range. It is a int, float, \
277 278 279
            or a 0-D Tensor with data type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int, \
            or a 0-D Tensor with data type int32.
280 281
        dtype(np.dtype|str, optional): The data type of output tensor, it could be
            int32, int64, float32 and float64. Default: if None, the data type is float32.
282
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
283 284 285 286

    Returns:
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
287
        the value with input :attr:`start`.
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

    Examples:
        .. code-block:: python

             import paddle
             data = paddle.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = paddle.linspace(0, 10, 1, 'float32') # [0.0]

    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'linspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
308
            tensor_start = fill_constant([1], dtype, start, force_cpu=True)
309 310
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
311
            tensor_stop = fill_constant([1], dtype, stop, force_cpu=True)
312 313
    if not isinstance(num, Variable):
        with device_guard("cpu"):
314
            tensor_num = fill_constant([1], 'int32', num, force_cpu=True)
315
    if in_dynamic_mode():
316 317 318 319 320 321 322
        return _C_ops.linspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            dtype,
            _current_expected_place(),
        )
323
    else:
324 325 326 327 328 329 330 331 332
        helper = LayerHelper("linspace", **locals())

        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
333
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
334 335 336 337
                'linspace',
            )
        else:
            check_type(start, 'start', (int, float), 'linspace')
338

339 340 341 342
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
343
                ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
344 345 346 347 348 349
                'linspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'linspace')
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'linspace')
350
        check_dtype(
351 352
            dtype,
            'dtype',
353
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
354
            'linspace',
355
        )
356 357 358 359 360 361 362 363 364 365 366 367
        if (
            (stop_dtype == "float64" or start_dtype == "float64")
            and out_dtype in ["float32", "int32"]
        ) or (
            (stop_dtype == "int64" or start_dtype == "int64")
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop is {}/{} but the attr(dtype) of linspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of linspace.".format(
                    start_dtype, stop_dtype, dtype
                )
368
            )
369

370
        out = helper.create_variable_for_type_inference(dtype=dtype)
371

372 373 374 375 376 377 378 379 380 381 382 383 384
        helper.append_op(
            type='linspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
385 386


387 388 389 390
def logspace(start, stop, num, base=10.0, dtype=None, name=None):
    r"""
    Return fixed number of logarithmical-evenly spaced values within the interval \
    :math:`[base^{start}, base^{stop}]`.
391

392 393
    Notes:
        This API does not compute the gradient.
394

395 396 397 398 399 400 401 402 403 404 405 406 407 408
    Args:
        start(int|float|Tensor): The input :attr:`start` is exponent of first entry in \
            the sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        stop(int|float|Tensor): The input :attr:`stop` is exponent of last entry in the \
            sequence. It is a scalar, or a Tensor of shape [1] with input data \
            type int32, int64, float32 or float64.
        num(int|Tensor): The input :attr:`num` is given number of items in the sequence. \
            It is an int scalar, or a Tensor of shape [1] with data type int32.
        base(int|float|Tensor): The input :attr:`base` is base of the logarithm function. \
            It is a scalar, or a Tensor of shape [1] with input data type int32, int64, \
            float32 or float64.
        dtype(np.dtype|str, optional): The data type of output tensor, it could be \
            int32, int64, float32 or float64. Default: if None, the data type is float32. \
409
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
410 411 412 413 414

    Returns:
        Tensor: The output data type will be float32, float64. The 1-D tensor with \
        fixed number of logarithmical-evenly spaced values, the data shape of this \
        tensor is :math:`[num]`. If the :attr:`num` is set 1, the output tensor \
415
        just has the value with exponential of :attr:`start` with base :attr:`base`.
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

    Examples:
        .. code-block:: python

            import paddle
            data = paddle.logspace(0, 10, 5, 2, 'float32')
            # [1.          , 5.65685415  , 32.         , 181.01933289, 1024.       ]
            data = paddle.logspace(0, 10, 1, 2, 'float32')
            # [1.]
    """
    if dtype is None:
        dtype = 'float32'
    tensor_num = num
    tensor_start = start
    tensor_stop = stop
    tensor_base = base
    if not isinstance(num, Variable):
        check_type(num, 'num', (int), 'logspace')
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
    if not isinstance(start, Variable):
        with device_guard("cpu"):
            tensor_start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        with device_guard("cpu"):
            tensor_stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        with device_guard("cpu"):
            tensor_num = fill_constant([1], 'int32', num)
    if not isinstance(base, Variable):
        with device_guard("cpu"):
            tensor_base = fill_constant([1], dtype, base)
448
    if in_dynamic_mode():
C
Chen Weihang 已提交
449 450 451 452 453 454 455
        return _C_ops.logspace(
            tensor_start,
            tensor_stop,
            tensor_num,
            tensor_base,
            dtype,
            _current_expected_place(),
456
        )
457 458
    else:
        helper = LayerHelper("logspace", **locals())
459

460 461 462 463 464 465 466 467 468 469 470 471 472
        start_dtype = convert_dtype(tensor_start.dtype)
        stop_dtype = convert_dtype(tensor_stop.dtype)
        base_dtype = convert_dtype(tensor_base.dtype)
        out_dtype = convert_dtype(dtype)
        if isinstance(start, Variable):
            check_dtype(
                start.dtype,
                'start',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(start, 'start', (int, float), 'logspace')
473

474 475 476 477 478 479 480 481 482
        if isinstance(stop, Variable):
            check_dtype(
                stop.dtype,
                'stop',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(stop, 'stop', (int, float), 'logspace')
483

484 485
        if isinstance(num, Variable):
            check_dtype(num.dtype, 'num', ['int32'], 'logspace')
486

487 488 489 490 491 492 493 494 495
        if isinstance(base, Variable):
            check_dtype(
                base.dtype,
                'base',
                ['float32', 'float64', 'int32', 'int64'],
                'logspace',
            )
        else:
            check_type(base, 'base', (int, float), 'logspace')
496

497
        check_dtype(
498
            dtype, 'dtype', ['int32', 'int64', 'float32', 'float64'], 'logspace'
499
        )
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        if (
            (
                stop_dtype == "float64"
                or start_dtype == "float64"
                or base_dtype == "float64"
            )
            and out_dtype in ["float32", "int32"]
        ) or (
            (
                stop_dtype == "int64"
                or start_dtype == "int64"
                or base_dtype == "int64"
            )
            and out_dtype == "int32"
        ):
            raise ValueError(
                "The dtype of start/stop/base is {}/{}/{} but the attr(dtype) of logspace is {}, "
                "which may cause data type overflows. Please reset attr(dtype) of logspace.".format(
                    start_dtype, stop_dtype, base_dtype, dtype
                )
520
            )
521

522
        out = helper.create_variable_for_type_inference(dtype=dtype)
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537
        helper.append_op(
            type='logspace',
            inputs={
                'Start': tensor_start,
                'Stop': tensor_stop,
                'Num': tensor_num,
                'Base': tensor_base,
            },
            attrs={'dtype': dtype},
            outputs={'Out': [out]},
        )
        if isinstance(num, int):
            out.desc.set_shape((num,))
        return out
538 539


540
def _to_tensor_non_static(data, dtype=None, place=None, stop_gradient=True):
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    def _handle_tensor_dtype(tensor, dtype):
        if dtype:
            if convert_dtype(dtype) != convert_dtype(tensor.dtype):
                return tensor.astype(convert_dtype(dtype))
        return tensor

    def _handle_np_dtype(ndarray, dtype):
        if dtype:
            if convert_dtype(dtype) != convert_dtype(ndarray.dtype):
                # should not ndarray.astype('uint16') directly, data bits is wrong
                if convert_dtype(dtype) in ['uint16']:
                    return convert_float_to_uint16(ndarray.astype('float32'))
                else:
                    return ndarray.astype(convert_dtype(dtype))

        return ndarray
557

558 559 560
    if isinstance(data, np.number):  # Special case for numpy scalars
        data = np.array(data)

561
    if not isinstance(data, np.ndarray):
562

563
        if np.isscalar(data) and not isinstance(data, str):
564
            data = np.array(data)
565 566
        elif isinstance(data, (list, tuple)):
            data = np.array(data)
567
            if data.dtype == np.object_:
568 569 570 571
                raise ValueError(
                    "\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
                    "this means the input data contains nested lists with different lengths. "
                )
572
        elif isinstance(data, paddle.Tensor) and not in_dynamic_mode():
W
wanghuancoder 已提交
573
            data = data._copy_to(place, False)
574
            data = _handle_tensor_dtype(data, dtype)
W
wanghuancoder 已提交
575 576
            data.stop_gradient = stop_gradient
            return data
577
        elif isinstance(data, core.eager.Tensor) and in_dynamic_mode():
578
            data = data._copy_to(place, False)
579
            data = _handle_tensor_dtype(data, dtype)
580
            data.stop_gradient = stop_gradient
581
            return data
582
        elif isinstance(data, (core.LoDTensor, core.Tensor)):
583
            # should't expose it to users, just for internal use.
W
wanghuancoder 已提交
584
            # convert core.Tensor/core.LoDTensor to Tensor first
585
            # Currenly, there is no copy when places are same
586
            if in_dynamic_mode():
W
wanghuancoder 已提交
587 588 589
                data = core.eager.Tensor(data)
            else:
                data = paddle.Tensor(data)
590 591
            if not data.place._equals(place):
                data = data._copy_to(place, False)
592
            data = _handle_tensor_dtype(data, dtype)
593
            data.stop_gradient = stop_gradient
594
            return data
595 596
        else:
            raise TypeError(
597 598 599 600
                "Can't constructs a 'paddle.Tensor' with data type {}, data type must be scalar|list|tuple|np.ndarray|paddle.Tensor".format(
                    type(data)
                )
            )
601 602
        if not dtype:
            if data.dtype in [
603 604 605 606 607
                'float16',
                'float32',
                'float64',
                'complex64',
                'complex128',
608 609 610
            ]:
                default_type = paddle.get_default_dtype()
                if np.iscomplexobj(data):
611 612 613 614 615
                    default_type = (
                        'complex64'
                        if default_type in ['float16', 'float32']
                        else 'complex128'
                    )
616
                data = _handle_np_dtype(data, default_type)
617 618
            # Windows default type is 'int32', while Linux/Mac is 'int64'. Unify they.
            if data.dtype in ['int32']:
619
                data = data.astype("int64")
620

621 622
    if dtype:
        data = _handle_np_dtype(data, dtype)
623

624
    if isinstance(data, np.ndarray):
625 626 627 628 629 630 631 632
        return core.eager.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            name=None,
            stop_gradient=stop_gradient,
        )
633
    else:
634 635 636 637 638 639 640
        return paddle.Tensor(
            value=data,
            place=place,
            persistable=False,
            zero_copy=False,
            stop_gradient=stop_gradient,
        )
641 642


643 644
def _to_tensor_static(data, dtype=None, stop_gradient=None):

645
    if isinstance(data, Variable):
646
        output = data
647 648
        if dtype is not None and dtype != data.dtype:
            output = paddle.cast(output, dtype)
649
    else:
650 651
        if isinstance(data, np.number):  # Special case for numpy scalars
            data = np.array(data)
652 653 654

        if not isinstance(data, np.ndarray):
            if np.isscalar(data) and not isinstance(data, str):
655
                data = np.array(data)
656
            elif isinstance(data, (list, tuple)):
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
                try:
                    '''
                    In numpy version >= 1.24.0, case like:
                        np.array([Variable, 1, 2])
                    is not supported, it will raise error (numpy returns an numpy array with dtype='object' in version <= 1.23.5)

                    Thus, process nested structure in except block
                    '''
                    data = np.array(data)

                    # for numpy version <= 1.23.5
                    if data.dtype == 'object':
                        raise RuntimeError("Numpy get dtype `object`.")

                except:
                    to_stack_list = [None] * len(data)
                    for idx, d in enumerate(data):
                        to_stack_list[idx] = _to_tensor_static(
                            d, dtype, stop_gradient
                        )
                    data = paddle.stack(to_stack_list)
                    data = paddle.squeeze(data, -1)
679

680 681 682 683 684 685 686 687
            else:
                raise RuntimeError(
                    f"Do not support transform type `{type(data)}` to tensor"
                )

            # fix numpy default dtype
            if data.dtype in ['float16', 'float32', 'float64']:
                data = data.astype(paddle.get_default_dtype())
688

689 690
        if dtype:
            target_dtype = dtype
691
        elif hasattr(data, 'dtype') and data.dtype != 'object':
692 693 694 695 696
            target_dtype = data.dtype
        else:
            target_dtype = paddle.get_default_dtype()
        target_dtype = convert_dtype(target_dtype)

697 698
        output = assign(data)

699 700 701 702 703 704 705 706
        if convert_dtype(output.dtype) != target_dtype:
            output = paddle.cast(output, target_dtype)

    output.stop_gradient = stop_gradient

    return output


707 708
def to_tensor(data, dtype=None, place=None, stop_gradient=True):
    r"""
709
    Constructs a ``paddle.Tensor`` from ``data`` ,
710 711 712 713 714
    which can be scalar, tuple, list, numpy\.ndarray, paddle\.Tensor.

    If the ``data`` is already a Tensor, copy will be performed and return a new tensor.
    If you only want to change stop_gradient property, please call ``Tensor.stop_gradient = stop_gradient`` directly.

715 716 717 718 719
    .. code-block:: text

        We use the dtype conversion rules following this:
                Keep dtype
        np.number ───────────► paddle.Tensor
720
                                (0-D Tensor)
721 722
                    default_dtype
        Python Number ───────────────► paddle.Tensor
723
                                        (0-D Tensor)
724 725 726
                    Keep dtype
        np.ndarray ───────────► paddle.Tensor

727 728 729
    Args:
        data(scalar|tuple|list|ndarray|Tensor): Initial data for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
730
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
731
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
732
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
733
            except for python float number which gets dtype from ``get_default_type`` .
734 735 736
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
737 738 739 740 741 742 743 744 745 746
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``data`` .

    Examples:

    .. code-block:: python

        import paddle
747

748 749 750 751
        type(paddle.to_tensor(1))
        # <class 'paddle.Tensor'>

        paddle.to_tensor(1)
752 753
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        1)
754 755

        x = paddle.to_tensor(1, stop_gradient=False)
756 757
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=False,
        #        1)
758 759

        paddle.to_tensor(x)  # A new tensor will be created with default stop_gradient=True
760 761
        # Tensor(shape=[], dtype=int64, place=CPUPlace, stop_gradient=True,
        #        1)
762 763 764 765 766 767 768 769 770 771 772 773 774 775

        paddle.to_tensor([[0.1, 0.2], [0.3, 0.4]], place=paddle.CPUPlace(), stop_gradient=False)
        # Tensor(shape=[2, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
        #        [[0.10000000, 0.20000000],
        #         [0.30000001, 0.40000001]])

        type(paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64'))
        # <class 'paddle.Tensor'>

        paddle.to_tensor([[1+1j, 2], [3+2j, 4]], dtype='complex64')
        # Tensor(shape=[2, 2], dtype=complex64, place=CPUPlace, stop_gradient=True,
        #        [[(1+1j), (2+0j)],
        #         [(3+2j), (4+0j)]])
    """
776 777 778 779
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()

780
    if in_dynamic_mode():
781 782 783 784
        return _to_tensor_non_static(data, dtype, place, stop_gradient)

    # call assign for static graph
    else:
785
        re_exp = re.compile(r'[(](.+?)[)]', re.S)
786 787 788
        place_str = re.findall(re_exp, str(place))[0]

        with paddle.static.device_guard(place_str):
789
            return _to_tensor_static(data, dtype, stop_gradient)
790 791


792
def full_like(x, fill_value, dtype=None, name=None):
P
Pei Yang 已提交
793
    """
S
swtkiwi 已提交
794

795 796
    This function creates a tensor filled with ``fill_value`` which has identical shape of ``x`` and ``dtype``.
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
797

P
Pei Yang 已提交
798
    Args:
799 800
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        fill_value(bool|float|int): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type.
W
wangchaochaohu 已提交
801
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
802
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
803
            data type is the same as input.
804
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
805

P
Pei Yang 已提交
806
    Returns:
807
        Tensor: Tensor which is created according to ``x``, ``fill_value`` and ``dtype``.
808

P
Pei Yang 已提交
809 810
    Examples:
        .. code-block:: python
811

P
Pei Yang 已提交
812
          import paddle
813

814
          input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input')
P
Pei Yang 已提交
815
          output = paddle.full_like(input, 2.0)
816 817
          # [[2. 2. 2.]
          #  [2. 2. 2.]]
P
Pei Yang 已提交
818 819
    """
    if dtype is None:
820
        dtype = x.dtype
821
    else:
822 823
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
824
    if in_dynamic_mode():
825
        return _C_ops.full_like(x, fill_value, dtype, x.place)
826 827 828 829 830 831 832 833 834 835 836 837 838
    else:
        helper = LayerHelper("full_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
839
                'uint16',
840 841
            ],
            'full_like',
842
        )
843 844 845 846 847 848 849 850 851 852 853
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int16',
                'int32',
                'int64',
854
                'uint16',
855 856 857 858
            ],
            'full_like/zeros_like/ones_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
P
Pei Yang 已提交
859

860 861 862 863 864 865 866 867
        helper.append_op(
            type='fill_any_like',
            inputs={'X': [x]},
            attrs={'value': fill_value, "dtype": dtype},
            outputs={'Out': [out]},
        )
        out.stop_gradient = True
        return out
P
Pei Yang 已提交
868 869


870
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
871
    if in_dynamic_mode():
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
        place = _current_expected_place()
        if force_cpu:
            place = core.CPUPlace()
        if isinstance(shape, (list, tuple)):
            shape = paddle.utils.convert_shape_to_list(shape)

        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

        if out is None:
            out = _C_ops.full(shape, float(value), dtype, place)
            out.stop_gradient = True
            return out

        if out is not None:
            # final state mode is support out is not None.
            _C_ops.full_(out, shape, float(value), dtype, place)
            out.stop_gradient = True
            return out
    else:
        attrs = {'force_cpu': force_cpu}
        dtype = convert_dtype(dtype)
        if not isinstance(value, Variable):
895
            if dtype in ['int8', 'uint8', 'int16', 'int32', 'int64']:
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
                attrs['str_value'] = str(int(value))
                attrs['value'] = int(value)
            else:
                attrs['str_value'] = str(float(value))
                attrs['value'] = float(value)

        helper = LayerHelper("fill_constant", **locals())
        inputs = {}
        if isinstance(value, Variable):
            if convert_dtype(value.dtype) != dtype:
                value = paddle.cast(value, dtype)
            inputs['ValueTensor'] = value

        paddle.utils.check_shape(shape)
        check_dtype(
            dtype,
            'dtype',
            [
                'bool',
                'float16',
                'float32',
                'float64',
918
                'int8',
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
                'uint8',
                'int16',
                'int32',
                'int64',
                'complex64',
                'complex128',
                'uint16',
            ],
            'fill_constant',
        )
        check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')

        if out is not None:
            check_variable_and_dtype(
                out, 'out', [convert_dtype(dtype)], 'fill_constant'
            )

        helper = LayerHelper("fill_constant", **locals())
        paddle.utils.get_shape_tensor_inputs(
            inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant'
        )

        if out is None:
            out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = out.dtype
        helper.append_op(
            type='fill_constant',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out


955
def ones(shape, dtype=None, name=None):
956
    """
B
BrilliantYuKaimin 已提交
957
    Create a Tensor of specified :attr:`shape` and :attr:`dtype` and fill it with 1.
958 959

    Args:
960 961 962
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, the elements of it should be integers or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
B
BrilliantYuKaimin 已提交
963 964 965
        dtype (np.dtype|str, optional): Data type of output Tensor, it should be one of
            bool, float16, float32, float64, int32 and int64. If it is set to None, the data type will be float32.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
966

967
    Returns:
B
BrilliantYuKaimin 已提交
968
        Tensor: A Tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements are 1.
969 970 971 972

    Examples:
        .. code-block:: python

973
            import paddle
974

975
            # shape is a list/tuple
976
            data1 = paddle.ones(shape=[3, 2])
977 978 979 980 981
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
982 983 984 985 986 987 988 989 990 991 992 993
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.ones(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
994
    """
995
    if dtype is None:
W
Weilong Wu 已提交
996
        dtype = core.VarDesc.VarType.FP32
997
    return fill_constant(value=1.0, shape=shape, dtype=dtype, name=name)
998 999


1000
def ones_like(x, dtype=None, name=None):
1001
    """
C
Chen Long 已提交
1002
    Returns a Tensor filled with the value 1, with the same shape and
1003
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1004 1005

    Args:
1006 1007
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1008
        dtype(str|np.dtype, optional): The data type of the
1009 1010 1011
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1012
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1013

1014
    Returns:
1015 1016 1017
        Tensor: A Tensor filled with the value 1, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.

1018 1019 1020
    Examples:
        .. code-block:: python

1021
            import paddle
1022

1023
            x = paddle.to_tensor([1,2,3])
Z
zhupengyang 已提交
1024 1025
            out1 = paddle.ones_like(x) # [1., 1., 1.]
            out2 = paddle.ones_like(x, dtype='int32') # [1, 1, 1]
1026

1027 1028
    """
    return full_like(x=x, fill_value=1, dtype=dtype, name=name)
1029 1030


1031
def zeros(shape, dtype=None, name=None):
1032
    """
C
Chen Long 已提交
1033
    Creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
1034 1035

    Args:
1036 1037 1038
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
W
wangchaochaohu 已提交
1039
        dtype(np.dtype|str, optional): Data type of output Tensor, it supports
1040 1041 1042
            bool, float16, float32, float64, int32 and int64. Default: if None, the date type is float32.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1043 1044

    Returns:
1045
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1046 1047 1048 1049

    Examples:
        .. code-block:: python

1050
            import paddle
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
            # shape is a list/tuple
            data1 = paddle.zeros(shape=[3, 2])
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.zeros(shape=shape)
            # [[0. 0.]
            #  [0. 0.]
            #  [0. 0.]]
1071
    """
1072 1073 1074
    if dtype is None:
        dtype = 'float32'
    return fill_constant(value=0.0, shape=shape, dtype=dtype, name=name)
1075 1076


1077
def zeros_like(x, dtype=None, name=None):
1078
    """
1079
    Returns a Tensor filled with the value 0, with the same shape and
1080
    data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1081 1082

    Args:
1083 1084
        x(Tensor): The input tensor which specifies shape and dtype. The
            dtype of ``x`` can be bool, float16, float32, float64, int32, int64.
1085
        dtype(str|np.dtype, optional): The data type of the
1086 1087 1088
            output tensor. Supported data types: bool, float16, float32, float64,
            int32, int64. If ``dtype`` is None, the data type is the same as ``x``.
            Default is None.
1089
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1090 1091

    Returns:
1092 1093
        Tensor: A Tensor filled with the value 0, with the same shape and
        data type (use ``dtype`` if ``dtype`` is not None) as ``x``.
1094

1095

1096 1097 1098
    Examples:
        .. code-block:: python

1099
            import paddle
1100

Z
zhupengyang 已提交
1101
            x = paddle.to_tensor([1, 2, 3])
1102 1103
            out1 = paddle.zeros_like(x) # [0., 0., 0.]
            out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
1104

1105 1106
    """
    return full_like(x=x, fill_value=0, dtype=dtype, name=name)
1107 1108


1109
def eye(num_rows, num_columns=None, dtype=None, name=None):
1110
    """
1111

1112
    This function constructs 2-D Tensor with ones on the diagonal and zeros elsewhere.
1113

1114
    Args:
1115 1116
        num_rows(int): the number of rows in each batch Tensor.
        num_columns(int, optional): the number of columns in each batch Tensor.
1117
            If None, default: num_rows.
W
wangchaochaohu 已提交
1118
        dtype(np.dtype|str, optional): The data type of the returned Tensor.
1119 1120
            It should be int32, int64, float16, float32, float64. Default: if None, the data type
            is float32.
1121
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1122

1123
    Returns:
1124
        Tensor: An identity Tensor or LoDTensor of shape [num_rows, num_columns].
1125

1126 1127
    Examples:
        .. code-block:: python
1128

1129
          import paddle
1130

1131
          data = paddle.eye(3, dtype='int32')
1132 1133 1134
          # [[1 0 0]
          #  [0 1 0]
          #  [0 0 1]]
1135
          data = paddle.eye(2, 3, dtype='int32')
1136 1137
          # [[1 0 0]
          #  [0 1 0]]
1138 1139
    """

1140
    def _check_attr(attr, message):
1141
        if isinstance(attr, ((Variable, core.eager.Tensor))):
1142 1143
            assert len(attr.shape) == 1 and attr.shape[0] in [1, -1]
        elif not isinstance(attr, int) or attr < 0:
1144
            raise TypeError(f"{message} should be a non-negative int.")
1145 1146 1147

    _check_attr(num_rows, "num_rows")

1148
    if dtype is None:
1149 1150
        dtype = core.VarDesc.VarType.FP32
    elif not isinstance(dtype, core.VarDesc.VarType):
1151 1152
        dtype = convert_np_dtype_to_dtype_(dtype)
    if num_columns is not None:
1153
        _check_attr(num_columns, "num_columns")
1154 1155 1156
    else:
        num_columns = num_rows

1157
    if in_dynamic_mode():
1158 1159 1160
        out = _C_ops.eye(
            num_rows, num_columns, dtype, _current_expected_place()
        )
1161 1162
    else:
        helper = LayerHelper("eye", **locals())
1163 1164 1165 1166 1167 1168
        check_dtype(
            dtype,
            'dtype',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'eye',
        )
1169
        out = helper.create_variable_for_type_inference(dtype=dtype)
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype,
            },
            stop_gradient=True,
        )
1181 1182 1183

    out.stop_gradient = True
    return out
1184 1185


1186
def full(shape, fill_value, dtype=None, name=None):
W
wangchaochaohu 已提交
1187
    """
S
swtkiwi 已提交
1188

1189
    Return a Tensor with the ``fill_value`` which size is same as ``shape``.
1190

W
wangchaochaohu 已提交
1191
    Args:
1192 1193 1194 1195 1196
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
        fill_value(bool|float|int|Tensor): The constant value used to initialize the Tensor to be created.
            If ``fill_value`` is an Tensor, it shoule be an 0-D Tensor which represents a scalar.
W
wangchaochaohu 已提交
1197
        dtype(np.dtype|str, optional): Data type of the output Tensor
W
wangchaochaohu 已提交
1198
            which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data
1199 1200
            type of created Tensor is `float32`.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1201

1202
    Returns:
1203
        Tensor: Tensor which is created according to ``shape``, ``fill_value`` and ``dtype``.
1204

W
wangchaochaohu 已提交
1205 1206 1207
    Examples:
        .. code-block:: python

1208
            import paddle
W
wangchaochaohu 已提交
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
            # shape is a list/tuple
            data1 = paddle.full(shape=[3, 2], fill_value=1.)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.full(shape=shape, fill_value=2.)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.full(shape=shape, fill_value=3.)
            # [[3. 3.]
            #  [3. 3.]
            #  [3. 3.]]

            # fill_value is a Tensor.
            val = paddle.full([], 2.0, "float32")
            data5 = paddle.full(shape=[3, 2], fill_value=val)
            # [[2. 2.]
            #  [2. 2.]
            #  [2. 2.]]
W
wangchaochaohu 已提交
1236 1237 1238 1239 1240
    """

    if dtype is None:
        dtype = 'float32'

1241
    return fill_constant(shape=shape, dtype=dtype, value=fill_value, name=name)
1242 1243


1244
def arange(start=0, end=None, step=1, dtype=None, name=None):
1245
    """
1246
    Returns a 1-D Tensor with spaced values within a given interval.
1247

1248 1249
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1250

1251 1252
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
1253 1254

    Parameters:
1255 1256
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``end`` is None, the half-open interval is [0, ``start``).
1257 1258
            If ``start`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. Default is 0.
1259
        end(float|int|Tensor, optional): End of interval. The interval does not
1260 1261 1262 1263
            include this value. If ``end`` is a Tensor, it is a 0-D Tensor which
            represents a scalar and data type is int32, int64, float32, float64.
            If ``end`` is None, the half-open interval is [0, ``start``).
            Default is None.
1264 1265
        step(float|int|Tensor, optional): Spacing between values. For any out,
            it is the istance between two adjacent values, out[i+1] - out[i].
1266 1267
            If ``step`` is a Tensor, it is a 0-D Tensor which represents a scalar
            and data type is int32, int64, float32, float64. . Default is 1.
1268
        dtype(str|np.dtype, optional): The data type of the
1269 1270
            output tensor. Supported data types: int32, int64, float32, float64.
            If ``dytpe`` is None, the data type is float32. Default is None.
1271
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1272

1273
    Returns:
1274
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
Z
zhupengyang 已提交
1275 1276
        taken with common difference ``step`` beginning from ``start``. Its
        data type is set by ``dtype``.
1277

Z
zhupengyang 已提交
1278
    Examples:
1279 1280
        .. code-block:: python

Z
zhupengyang 已提交
1281
            import paddle
1282

Z
zhupengyang 已提交
1283 1284
            out1 = paddle.arange(5)
            # [0, 1, 2, 3, 4]
1285

Z
zhupengyang 已提交
1286 1287
            out2 = paddle.arange(3, 9, 2.0)
            # [3, 5, 7]
1288

Z
zhupengyang 已提交
1289 1290 1291
            # use 4.999 instead of 5.0 to avoid floating point rounding errors
            out3 = paddle.arange(4.999, dtype='float32')
            # [0., 1., 2., 3., 4.]
1292

1293
            start_var = paddle.to_tensor(3)
Z
zhupengyang 已提交
1294 1295
            out4 = paddle.arange(start_var, 7)
            # [3, 4, 5, 6]
1296

1297 1298 1299 1300 1301 1302
    """
    if dtype is None:
        dtype = 'int64'
    if end is None:
        end = start
        start = 0
1303

1304
    out_shape = None
1305
    if not in_dynamic_mode() and (
1306 1307 1308 1309 1310 1311
        not isinstance(start, Variable)
        and not isinstance(end, Variable)
        and not isinstance(step, Variable)
    ):
        out_shape = [int(math.ceil((end - start) / step))]

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

    if not isinstance(start, Variable):
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start, force_cpu=True)
    elif start.dtype != dtype:
        start = paddle.cast(start, dtype)

    if not isinstance(end, Variable):
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end, force_cpu=True)
    elif end.dtype != dtype:
        end = paddle.cast(end, dtype)

    if not isinstance(step, Variable):
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step, force_cpu=True)
    elif step.dtype != dtype:
        step = paddle.cast(step, dtype)

1333
    if in_dynamic_mode():
1334
        return _C_ops.arange(start, end, step, dtype, _current_expected_place())
1335 1336 1337 1338
    else:
        check_dtype(
            dtype,
            'dtype',
1339
            ['float32', 'float64', 'int32', 'int64', 'float16', 'uint16'],
1340 1341 1342 1343 1344 1345 1346 1347 1348
            'range/arange',
        )
        helper = LayerHelper('range', **locals())
        out = helper.create_variable_for_type_inference(dtype, shape=out_shape)
        helper.append_op(
            type='range',
            inputs={'Start': start, 'End': end, 'Step': step},
            outputs={'Out': out},
        )
1349
        out.stop_gradient = True
1350 1351
        if out_shape is not None:
            out.desc.set_shape(out_shape)
1352 1353
        return out

W
WuHaobo 已提交
1354 1355

def _tril_triu_op(helper):
1356
    """Base op of tril_op and triu_op"""
W
WuHaobo 已提交
1357
    op_type = helper.layer_type
Y
yaoxuefeng 已提交
1358
    x = helper.kwargs.get('x', None)
W
WuHaobo 已提交
1359

1360
    assert x is not None, f'x cannot be None in {op_type}'
1361
    check_variable_and_dtype(
1362 1363
        x,
        'x',
1364
        ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64', 'bool'],
1365 1366
        op_type,
    )
W
WuHaobo 已提交
1367
    if len(x.shape) < 2:
1368
        raise ValueError(f"x shape in {op_type} must be at least 2-D")
W
WuHaobo 已提交
1369
    diagonal = helper.kwargs.get('diagonal', 0)
1370
    if not isinstance(diagonal, (int,)):
1371
        raise TypeError(f"diagonal in {op_type} must be a python Int")
W
WuHaobo 已提交
1372 1373 1374 1375 1376
    name = helper.kwargs.get('name', None)

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
1377 1378 1379
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False
        )
W
WuHaobo 已提交
1380 1381 1382 1383 1384 1385 1386 1387

    helper.append_op(
        type="tril_triu",
        inputs={"X": x},
        attrs={
            "diagonal": diagonal,
            "lower": True if op_type == 'tril' else False,
        },
1388 1389
        outputs={"Out": out},
    )
W
WuHaobo 已提交
1390 1391 1392 1393

    return out


Y
yaoxuefeng 已提交
1394
def tril(x, diagonal=0, name=None):
1395
    r"""
1396
    Returns the lower triangular part of a matrix (2-D tensor) or batch
1397 1398
    of matrices :attr:`x`, the other elements of the result tensor are set
    to 0. The lower triangular part of the matrix is defined as the elements
W
WuHaobo 已提交
1399 1400 1401
    on and below the diagonal.

    Args:
Y
yaoxuefeng 已提交
1402
        x (Tensor): The input x which is a Tensor.
L
liuyuhui 已提交
1403
            Support data types: ``bool``, ``float64``, ``float32``, ``int32``, ``int64``.
W
WuHaobo 已提交
1404 1405 1406 1407 1408 1409 1410
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and below the main diagonal are
            retained. A positive value includes just as many diagonals above the main
            diagonal, and similarly a negative value excludes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1411
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1412 1413

    Returns:
Y
yaoxuefeng 已提交
1414
        Tensor: Results of lower triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1415
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1416 1417 1418 1419

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1420
            import paddle
W
WuHaobo 已提交
1421

1422 1423 1424 1425 1426
            data = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
Y
yaoxuefeng 已提交
1427

1428 1429 1430 1431 1432
            tril1 = paddle.tril(data)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 0 , 0 , 0 ],
            #         [5 , 6 , 0 , 0 ],
            #         [9 , 10, 11, 0 ]])
W
WuHaobo 已提交
1433 1434

            # example 2, positive diagonal value
1435 1436 1437 1438 1439
            tril2 = paddle.tril(data, diagonal=2)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 0 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1440 1441

            # example 3, negative diagonal value
1442 1443 1444 1445 1446
            tril3 = paddle.tril(data, diagonal=-1)
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0 , 0 , 0 , 0 ],
            #         [5 , 0 , 0 , 0 ],
            #         [9 , 10, 0 , 0 ]])
1447
    """
1448
    if in_dynamic_mode():
Z
zyfncg 已提交
1449
        return _C_ops.tril(x, diagonal)
1450 1451
    else:
        return _tril_triu_op(LayerHelper('tril', **locals()))
W
WuHaobo 已提交
1452 1453


Y
yaoxuefeng 已提交
1454
def triu(x, diagonal=0, name=None):
1455
    r"""
1456
    Return the upper triangular part of a matrix (2-D tensor) or batch of matrices
Y
yaoxuefeng 已提交
1457
    :attr:`x`, the other elements of the result tensor are set to 0.
W
WuHaobo 已提交
1458 1459 1460 1461
    The upper triangular part of the matrix is defined as the elements on and
    above the diagonal.

    Args:
Y
yaoxuefeng 已提交
1462
        x (Tensor): The input x which is a Tensor.
W
WuHaobo 已提交
1463 1464 1465 1466 1467 1468 1469 1470
            Support data types: ``float64``, ``float32``, ``int32``, ``int64``.
        diagonal (int, optional): The diagonal to consider, default value is 0.
            If :attr:`diagonal` = 0, all elements on and above the main diagonal are
            retained. A positive value excludes just as many diagonals above the main
            diagonal, and similarly a negative value includes just as many diagonals below
            the main diagonal. The main diagonal are the set of indices
            :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
            :math:`d_{1}, d_{2}` are the dimensions of the matrix.
1471
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
W
WuHaobo 已提交
1472 1473

    Returns:
Y
yaoxuefeng 已提交
1474
        Tensor: Results of upper triangular operation by the specified diagonal of input tensor x,
Y
yaoxuefeng 已提交
1475
        it's data type is the same as x's Tensor.
W
WuHaobo 已提交
1476 1477 1478 1479

    Examples:
        .. code-block:: python

Y
yaoxuefeng 已提交
1480
            import paddle
W
WuHaobo 已提交
1481

1482 1483 1484 1485 1486
            x = paddle.arange(1, 13, dtype="int64").reshape([3,-1])
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [9 , 10, 11, 12]])
W
WuHaobo 已提交
1487 1488

            # example 1, default diagonal
Y
yaoxuefeng 已提交
1489
            triu1 = paddle.tensor.triu(x)
1490 1491 1492 1493
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [0 , 6 , 7 , 8 ],
            #         [0 , 0 , 11, 12]])
W
WuHaobo 已提交
1494 1495

            # example 2, positive diagonal value
Y
yaoxuefeng 已提交
1496
            triu2 = paddle.tensor.triu(x, diagonal=2)
1497 1498 1499 1500
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 3, 4],
            #         [0, 0, 0, 8],
            #         [0, 0, 0, 0]])
W
WuHaobo 已提交
1501 1502

            # example 3, negative diagonal value
Y
yaoxuefeng 已提交
1503
            triu3 = paddle.tensor.triu(x, diagonal=-1)
1504 1505 1506 1507
            # Tensor(shape=[3, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1 , 2 , 3 , 4 ],
            #         [5 , 6 , 7 , 8 ],
            #         [0 , 10, 11, 12]])
W
WuHaobo 已提交
1508 1509

    """
1510
    if in_dynamic_mode():
Z
zyfncg 已提交
1511
        return _C_ops.triu(x, diagonal)
1512 1513
    else:
        return _tril_triu_op(LayerHelper('triu', **locals()))
S
suytingwan 已提交
1514 1515


1516
def meshgrid(*args, **kwargs):
S
suytingwan 已提交
1517
    """
1518

1519
    Takes a list of N tensors as input :attr:`*args`, each of which is 1-dimensional vector, and creates N-dimensional grids.
1520

S
suytingwan 已提交
1521
    Args:
1522
        *args(Tensor|list of Tensor) : tensors (tuple(list) of tensor): the shapes of input k tensors are (N1,),
1523
            (N2,),..., (Nk,). Support data types: ``float64``, ``float16``, ``float32``, ``int32``, ``int64``.
1524
        **kwargs (optional): Currently, only accept name in **kwargs
1525
            The default value is None. Normally there is no need for
S
suytingwan 已提交
1526
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
1527

S
suytingwan 已提交
1528
    Returns:
Y
yaoxuefeng 已提交
1529
         Tensor: k tensors. The shape of each tensor is (N1, N2, ..., Nk)
S
suytingwan 已提交
1530 1531 1532 1533 1534 1535

    Examples:
      .. code-block:: python

          import paddle

Y
yaoxuefeng 已提交
1536 1537 1538 1539
          x = paddle.randint(low=0, high=100, shape=[100])
          y = paddle.randint(low=0, high=100, shape=[200])

          grid_x, grid_y = paddle.meshgrid(x, y)
S
suytingwan 已提交
1540

Y
yaoxuefeng 已提交
1541 1542
          print(grid_x.shape)
          print(grid_y.shape)
S
suytingwan 已提交
1543 1544 1545 1546 1547 1548

          #the shape of res_1 is (100, 200)
          #the shape of res_2 is (100, 200)

    """

1549 1550
    if len(args) == 1 and isinstance(args[0], (list, tuple)):
        args = args[0]
1551
    if in_dynamic_mode():
1552
        return _C_ops.meshgrid(list(args))
1553 1554 1555
    else:
        name = kwargs.get("name", None)
        helper = LayerHelper('meshgrid', **locals())
S
suytingwan 已提交
1556

1557 1558 1559 1560
        if not isinstance(args, (list, tuple)):
            raise TypeError(
                "The type of input args in meshgrid should be list."
            )
S
suytingwan 已提交
1561

1562 1563 1564 1565
        for id, input_ in enumerate(args):
            check_dtype(
                input_.dtype,
                'create data type',
1566
                ['uint16', 'float16', 'float32', 'float64', 'int32', 'int64'],
1567 1568
                'meshgrid',
            )
S
suytingwan 已提交
1569

1570 1571 1572 1573 1574 1575 1576
        num = len(args)
        out = [
            helper.create_variable_for_type_inference(dtype=args[i].dtype)
            for i in range(num)
        ]
        helper.append_op(
            type='meshgrid', inputs={'X': list(args)}, outputs={'Out': out}
1577
        )
S
suytingwan 已提交
1578

1579
        return out
1580 1581


L
Li Min 已提交
1582 1583
def diagflat(x, offset=0, name=None):
    """
1584
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
L
Li Min 已提交
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

    If ``x`` is a tensor (more than 1-D), a 2-D square tensor with the elements of flattened ``x`` as the diagonal is returned.

    The argument ``offset`` controls the diagonal offset.


    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1598
        x (Tensor): The input tensor. It can be any shape. Its data type should be float16, float32, float64, int32, int64.
L
Li Min 已提交
1599
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal. Default: 0 (main diagonal).
1600
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Li Min 已提交
1601 1602 1603 1604 1605 1606

    Returns:
        Tensor, a square matrix. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1607
            :name: code-example-1
L
Li Min 已提交
1608

1609 1610 1611 1612
            import paddle

            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diagflat(x)
1613 1614 1615 1616 1617
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1618 1619

            y = paddle.diagflat(x, offset=1)
1620 1621 1622 1623 1624 1625
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1626 1627

            y = paddle.diagflat(x, offset=-1)
1628 1629 1630 1631 1632 1633
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0],
            #         [1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0]])
L
Li Min 已提交
1634 1635

        .. code-block:: python
1636
            :name: code-example-2
L
Li Min 已提交
1637

1638
            import paddle
L
Li Min 已提交
1639

1640 1641
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.diagflat(x)
1642 1643 1644 1645 1646 1647
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0, 0],
            #         [0, 2, 0, 0],
            #         [0, 0, 3, 0],
            #         [0, 0, 0, 4]])
1648 1649

            y = paddle.diagflat(x, offset=1)
1650 1651 1652 1653 1654 1655 1656
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0, 0],
            #         [0, 0, 2, 0, 0],
            #         [0, 0, 0, 3, 0],
            #         [0, 0, 0, 0, 4],
            #         [0, 0, 0, 0, 0]])
1657 1658

            y = paddle.diagflat(x, offset=-1)
1659 1660 1661 1662 1663 1664 1665
            print(y)
            # Tensor(shape=[5, 5], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 0, 0, 0, 0],
            #         [1, 0, 0, 0, 0],
            #         [0, 2, 0, 0, 0],
            #         [0, 0, 3, 0, 0],
            #         [0, 0, 0, 4, 0]])
L
Li Min 已提交
1666
    """
1667
    if in_dynamic_mode():
1668
        if len(x.shape) <= 1:
1669
            return _C_ops.diag(x, offset, 0)
1670
        else:
1671
            y = _C_ops.flatten(x, 0, -1)
1672 1673 1674 1675 1676
            return _C_ops.diag(y, offset, 0)
    else:
        padding_value = 0
        check_type(x, 'x', (Variable), 'diagflat')
        check_dtype(
1677 1678 1679 1680
            x.dtype,
            'x',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'diagflat',
1681 1682
        )
        check_type(offset, 'offset', (int), 'diagflat')
1683

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
        helper = LayerHelper("diagflat", **locals())
        out1 = helper.create_variable_for_type_inference(dtype=x.dtype)
        out1_shape = helper.create_variable_for_type_inference(x.dtype)
        out2 = helper.create_variable_for_type_inference(dtype=x.dtype)

        if len(x.shape) <= 1:
            helper.append_op(
                type='diag_v2',
                inputs={'X': x},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
1695
            )
L
Li Min 已提交
1696
        else:
1697 1698 1699 1700 1701
            helper.append_op(
                type='flatten_contiguous_range',
                inputs={'X': x},
                outputs={'Out': out1, 'XShape': out1_shape},
                attrs={'start_axis': 0, 'stop_axis': -1},
1702
            )
1703
            out1.stop_gradient = True
L
Li Min 已提交
1704

1705 1706 1707 1708 1709 1710 1711 1712
            helper.append_op(
                type='diag_v2',
                inputs={'X': out1},
                outputs={'Out': out2},
                attrs={'offset': offset, 'padding_value': padding_value},
            )
        out2.stop_gradient = True
        return out2
L
Li Min 已提交
1713 1714


1715 1716
def diag(x, offset=0, padding_value=0, name=None):
    """
1717
    If ``x`` is a vector (1-D tensor), a 2-D square tensor with the elements of ``x`` as the diagonal is returned.
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

    If ``x`` is a matrix (2-D tensor), a 1-D tensor with the diagonal elements of ``x`` is returned.

    The argument ``offset`` controls the diagonal offset:

    If ``offset`` = 0, it is the main diagonal.

    If ``offset`` > 0, it is superdiagonal.

    If ``offset`` < 0, it is subdiagonal.

    Args:
1730
        x (Tensor): The input tensor. Its shape is either 1-D or 2-D. Its data type should be float16, float32, float64, int32, int64.
1731 1732
        offset (int, optional): The diagonal offset. A positive value represents superdiagonal, 0 represents the main diagonal, and a negative value represents subdiagonal.
        padding_value (int|float, optional): Use this value to fill the area outside the specified diagonal band. Only takes effect when the input is a 1-D Tensor. The default value is 0.
1733
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1734

1735 1736 1737 1738 1739
    Returns:
        Tensor, a square matrix or a vector. The output data type is the same as input data type.

    Examples:
        .. code-block:: python
1740
            :name: code-example-1
1741

1742
            import paddle
1743

1744 1745 1746
            paddle.disable_static()
            x = paddle.to_tensor([1, 2, 3])
            y = paddle.diag(x)
1747 1748 1749 1750 1751
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 0, 0],
            #         [0, 2, 0],
            #         [0, 0, 3]])
1752 1753

            y = paddle.diag(x, offset=1)
1754 1755 1756 1757 1758 1759
            print(y)
            # Tensor(shape=[4, 4], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[0, 1, 0, 0],
            #         [0, 0, 2, 0],
            #         [0, 0, 0, 3],
            #         [0, 0, 0, 0]])
1760 1761

            y = paddle.diag(x, padding_value=6)
1762 1763 1764 1765 1766
            print(y)
            # Tensor(shape=[3, 3], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [[1, 6, 6],
            #         [6, 2, 6],
            #         [6, 6, 3]])
1767 1768

        .. code-block:: python
1769
            :name: code-example-2
1770

1771
            import paddle
1772

1773 1774 1775
            paddle.disable_static()
            x = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            y = paddle.diag(x)
1776 1777 1778
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [1, 5])
1779

1780
            y = paddle.diag(x, offset=1)
1781 1782 1783
            print(y)
            # Tensor(shape=[2], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [2, 6])
1784

1785
            y = paddle.diag(x, offset=-1)
1786 1787 1788
            print(y)
            # Tensor(shape=[1], dtype=int64, place=Place(cpu), stop_gradient=True,
            #        [4])
1789
    """
1790
    if in_dynamic_mode():
1791
        return _C_ops.diag(x, offset, padding_value)
J
Jiabin Yang 已提交
1792
    else:
1793 1794 1795 1796
        check_type(x, 'x', (Variable), 'diag_v2')
        check_dtype(
            x.dtype,
            'x',
1797
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
1798 1799 1800 1801 1802 1803 1804 1805
            'diag_v2',
        )
        check_type(offset, 'offset', (int), 'diag_v2')
        check_type(padding_value, 'padding_value', (int, float), 'diag_v2')
        if len(x.shape) != 1 and len(x.shape) != 2:
            raise ValueError(
                "The dimension of input x must be either 1 or 2, but received {}".format(
                    len(x.shape)
1806
                )
1807
            )
1808

1809
        helper = LayerHelper("diag_v2", **locals())
1810

1811
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1812

1813 1814 1815 1816 1817 1818
        helper.append_op(
            type='diag_v2',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'offset': offset, 'padding_value': padding_value},
        )
1819

1820 1821
        out.stop_gradient = True
        return out
1822 1823 1824 1825


def empty(shape, dtype=None, name=None):
    """
1826
    Returns a Tensor with uninitialized data which size is same as ``shape``.
1827

1828
    Args:
1829 1830 1831
        shape (tuple|list|Tensor): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` .
            If ``shape`` is a list or tuple, each element of it should be integer or 0-D Tensor with shape [].
            If ``shape`` is an Tensor, it should be an 1-D Tensor which represents a list.
1832
        dtype(np.dtype|str, optional): Data type of the output Tensor
1833
            which can be bool, float16, float32, float64, int32, int64, complex64, complex128 if dytpe is `None`, the data
1834 1835
            type of created Tensor use global default dtype (see ``get_default_dtype``
            for details).
1836
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1837

1838 1839 1840 1841 1842 1843
    Returns:
        Tensor: Tensor which is created according to ``shape`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

1844
            import paddle
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
            # shape is a list/tuple
            data1 = paddle.empty(shape=[3, 2])
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor
            shape = paddle.to_tensor([3, 2])
            data2 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]

            # shape is a Tensor List
            shape = [paddle.to_tensor(3), paddle.to_tensor(2)]
            data3 = paddle.empty(shape=shape)
            # [[1. 1.]
            #  [1. 1.]
            #  [1. 1.]]
1865 1866 1867 1868 1869 1870 1871
    """

    if dtype is None:
        dtype = paddle.get_default_dtype()

    dtype = convert_dtype(dtype)

1872
    if in_dynamic_mode():
1873
        shape = paddle.utils.convert_shape_to_list(shape)
1874 1875 1876
        out = _C_ops.empty(
            shape, convert_np_dtype_to_dtype_(dtype), _current_expected_place()
        )
1877 1878
        out.stop_gradient = True
        return out
1879 1880 1881
    else:
        helper = LayerHelper("empty", **locals())
        inputs = {}
1882

1883 1884 1885
        check_dtype(
            dtype,
            'dtype',
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
1896
            'empty',
1897
        )
1898
        check_type(shape, 'shape', (Variable, list, tuple), 'empty')
1899

1900 1901
        if isinstance(shape, Variable):
            check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'empty')
1902

1903
        attrs = {}
1904
        paddle.utils.get_shape_tensor_inputs(
1905 1906
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty'
        )
1907

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        out = helper.create_variable_for_type_inference(dtype=dtype)
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
        )
        out.stop_gradient = True
        return out
1919 1920 1921 1922


def empty_like(x, dtype=None, name=None):
    """
C
Chen Long 已提交
1923
    Returns a Tensor with uninitialized data which has identical shape of ``x`` and ``dtype``.
1924
    If the ``dtype`` is None, the data type of Tensor is same with ``x``.
1925

1926 1927 1928
    Args:
        x(Tensor): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64.
        dtype(np.dtype|str, optional): The data type of output. The data type can be one
1929
            of bool, float16, float32, float64, int32, int64. The default value is None, which means the output
1930
            data type is the same as input.
1931
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
    Returns:
        Tensor: Tensor which is created according to ``x`` and ``dtype``, and is uninitialized.

    Examples:
        .. code-block:: python

          import paddle

          paddle.set_device("cpu")  # and use cpu device

          x = paddle.randn([2, 3], 'float32')
          output = paddle.empty_like(x)
          #[[1.8491974e+20 1.8037303e+28 1.7443726e+28]     # uninitialized
          # [4.9640171e+28 3.0186127e+32 5.6715899e-11]]    # uninitialized
    """

    if dtype is None:
        dtype = x.dtype
    dtype = convert_dtype(dtype)

1953
    if in_dynamic_mode():
1954 1955 1956 1957 1958
        out = _C_ops.empty(
            x.shape,
            convert_np_dtype_to_dtype_(dtype),
            _current_expected_place(),
        )
1959 1960
        out.stop_gradient = True
        return out
1961 1962 1963 1964 1965
    else:
        helper = LayerHelper("empty_like", **locals())
        check_variable_and_dtype(
            x,
            'x',
1966 1967 1968 1969 1970 1971 1972 1973 1974
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1975 1976 1977 1978 1979
            'empty_like',
        )
        check_dtype(
            dtype,
            'dtype',
1980 1981 1982 1983 1984 1985 1986 1987 1988
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint16',
            ],
1989 1990 1991
            'empty_like',
        )
        out = helper.create_variable_for_type_inference(dtype=dtype)
1992

1993 1994 1995 1996
        inputs = {}
        attrs = {}
        attrs['dtype'] = convert_np_dtype_to_dtype_(dtype)
        shape = paddle.shape(x)
1997
        paddle.utils.get_shape_tensor_inputs(
1998 1999 2000 2001 2002 2003 2004 2005 2006
            inputs=inputs, attrs=attrs, shape=shape, op_type='empty_like'
        )

        helper.append_op(
            type='empty',
            inputs=inputs,
            outputs={'Out': [out]},
            attrs=attrs,
            stop_gradient=True,
2007
        )
2008 2009 2010
        out.stop_gradient = True
        return out

2011 2012 2013

def assign(x, output=None):
    """
2014

2015
    Copy value of the :attr:`x` to the :attr:`output`.
2016

2017
    Parameters:
2018 2019
        x (Tensor|np.ndarray|list|tuple|scalar): A Tensor, numpy ndarray, tuple/list of scalar,
            or scalar. Its data type can be float16, float32, float64, int32, int64 or bool. Note: the float64 data will be converted to float32 because of current platform protobuf
2020
            data limitation.
2021
        output (Tensor, optional): A Tensor. If :attr:`output` is None, a new Tensor will be created as :attr:`output`. Default: None.
2022

2023
    Returns:
2024
        Tensor: A Tensor with the same shape, data type and value as :attr:`x`.
2025

2026 2027
    Examples:
        .. code-block:: python
2028

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
            import paddle
            import numpy as np
            data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            array = np.array([[1, 1],
                                [3, 4],
                                [1, 3]]).astype(np.int64)
            result1 = paddle.zeros(shape=[3, 3], dtype='float32')
            paddle.assign(array, result1) # result1 = [[1, 1], [3 4], [1, 3]]
            result2 = paddle.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
            result3 = paddle.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
2039
    """
2040 2041 2042 2043
    # speed up
    if x is output and isinstance(x, Variable):
        return x

2044 2045
    input = x
    helper = LayerHelper('assign', **locals())
2046 2047 2048 2049 2050 2051
    check_type(
        input,
        'input',
        (Variable, np.ndarray, list, tuple, float, int, bool),
        'assign',
    )
2052 2053 2054 2055 2056

    if np.isscalar(input) and not isinstance(input, str):
        input = np.array([input])
    elif isinstance(input, (list, tuple)):
        input = np.array(input)
W
wanghuancoder 已提交
2057 2058
    # NOTE(Aurelius84): Why we judge core.Tensor?
    # In case of @to_static, a Tensor can be as input of `assign`,
2059
    # but in_dynamic_mode()==False under @to_static, which means
W
wanghuancoder 已提交
2060
    # isinstance(Tensor, Variable) == False. It will cause return None
2061
    # after this api.
W
wanghuancoder 已提交
2062
    if isinstance(input, (Variable, core.eager.Tensor)):
2063
        if in_dynamic_mode():
2064
            if output is None:
2065
                output = _C_ops.assign(input)
Z
zyfncg 已提交
2066
            else:
2067
                _C_ops.assign_out_(input, output)
2068
        else:
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
            check_dtype(
                input.dtype,
                'input',
                [
                    'float16',
                    'uint16',
                    'float32',
                    'float64',
                    'int32',
                    'int64',
                    'uint8',
2080
                    'int8',
2081 2082 2083 2084 2085
                    'bool',
                ],
                'assign',
                '(When the type of input in assign is Variable.)',
            )
2086 2087
            if output is None:
                output = helper.create_variable_for_type_inference(
2088 2089 2090 2091 2092
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign', inputs={'X': [input]}, outputs={'Out': [output]}
            )
2093
    elif isinstance(input, np.ndarray):
2094
        # We now support the form of [var, VAR...] if the Var.shape=[1,]
2095
        if len(input.shape) > 0 and any(isinstance(x, Variable) for x in input):
2096
            # We only deal with the case where the list is nested one level, convert all scalars into variables, and then use stack to process. It is necessary to ensure the consistency of types.
2097 2098 2099 2100
            if not all(
                [
                    x.shape == (1,)
                    for x in input
2101
                    if isinstance(x, (Variable, core.eager.Tensor))
2102 2103
                ]
            ):
2104 2105 2106 2107 2108
                raise TypeError(
                    "Unsupport paddle.assign([Variable, Variable...]) with non-scalar variable."
                )

            def convert_scalar(x):
2109
                if not isinstance(x, (Variable, core.eager.Tensor)):
2110 2111 2112 2113 2114 2115 2116 2117 2118
                    return assign(x)
                return x

            to_stack_list = list(map(convert_scalar, input))
            ret = paddle.stack(to_stack_list)
            ret = paddle.squeeze(ret, -1)
            return ret

        if input.dtype == 'object':
2119
            """may be this form [[Var], [Var], [3], [4]], we reject them."""
2120
            raise TypeError(
2121
                "The type of received input == `object`, it is not supported to convert to tensor, such as [[Var], [Var], [3], [4]]"
2122
            )
2123

2124 2125 2126 2127 2128 2129 2130
        dtype = convert_np_dtype_to_dtype_(input.dtype)
        if dtype == core.VarDesc.VarType.FP64:
            # Setting FP64 numpy data is not supported in Paddle, so we
            # use FP32 here
            warnings.warn(
                "paddle.assign doesn't support float64 input now due "
                "to current platform protobuf data limitation, we convert "
2131 2132
                "it to float32"
            )
2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
            dtype = core.VarDesc.VarType.FP32
        if dtype == core.VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.FP32:
            value_name = "fp32_values"
            values = [float(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT32:
            value_name = "int32_values"
            values = [int(v) for v in input.flat]
        elif dtype == core.VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
        else:
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
                "the data type of 'input' must be bool, float32, int32 or int64, but "
2150 2151
                "received %s." % convert_dtype(dtype)
            )
2152
        if input.size > 1024 * 1024:
2153 2154 2155 2156
            raise ValueError(
                "The size of input is too big. Please consider "
                "saving it to file and 'load_op' to load it"
            )
2157
        if in_dynamic_mode():
2158 2159
            if output is None:
                output = zeros(list(input.shape), dtype)
2160 2161 2162 2163 2164 2165 2166
            _C_ops.assign_value_(
                output,
                list(input.shape),
                dtype,
                values,
                _current_expected_place(),
            )
2167
        else:
2168 2169
            if output is None:
                output = helper.create_variable_for_type_inference(
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
                    dtype=input.dtype
                )
            helper.append_op(
                type='assign_value',
                outputs={'Out': [output]},
                attrs={
                    'dtype': dtype,
                    'shape': list(input.shape),
                    value_name: values,
                },
            )
2181 2182

    return output
2183 2184


2185 2186
def clone(x, name=None):
    """
2187 2188
    Returns a copy of input Tensor. It will always have a Tensor copy.

2189 2190 2191 2192
    In addition, This function is derivable, so gradients will flow back from the output to input.

    Parameters:
        x (Tensor): The input Tensor.
2193
        name(str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
2194

2195
    Returns:
2196
        Tensor, A Tensor copied from ``input``.
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.ones([2])
            x.stop_gradient = False
            clone_x = paddle.clone(x)

            y = clone_x**3
            y.backward()
            print(clone_x.grad)          # [3]
            print(x.grad)                # [3]
    """
    return x.clone()


2215
# NOTE(zhiqiu): not public
2216 2217 2218 2219
def _memcpy(input, place=None, output=None):
    """

    The OP copies the :attr:`input` to the :attr:`output`.
张春乔 已提交
2220
    NOTE: currently, only support CUDAPlace <-> CUDAPinnedPlace.
2221 2222 2223 2224 2225 2226 2227 2228

    Parameters:
        input (Tensor): A tensor. Its data type supports float16, float32, float64, int32, int64, and bool.
        device (Place): Target place for the output.
        output (Tensor, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.

    Returns:
2229
        Tensor, A tensor with the same shape, data type and value as :attr:`input`.
2230 2231 2232 2233 2234

    Examples:
        .. code-block:: python

          import paddle
2235

2236 2237 2238 2239 2240 2241
          data = paddle.full(shape=[3, 2], fill_value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result = paddle._memcpy(data, place=paddle.CPUPlace())  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
    """
    helper = LayerHelper('memcpy', **locals())
    check_type(input, 'input', (Variable), 'memcpy')

W
wanghuancoder 已提交
2242
    if isinstance(input, (Variable, core.eager.Tensor)):
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
        check_dtype(
            input.dtype,
            'input',
            [
                'float16',
                'uint16',
                'float32',
                'float64',
                'int32',
                'int64',
                'uint8',
2254
                'int8',
2255 2256 2257 2258 2259
                'bool',
            ],
            'memcpy',
            '(When the type of input in memcpy is Variable.)',
        )
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
    if output is None:
        output = helper.create_variable_for_type_inference(dtype=input.dtype)

    dst_place_type = -1
    if place is None:
        dst_place_type = -1
    else:
        p = core.Place()
        p.set_place(place)
        if p.is_cpu_place():
            dst_place_type = 0
        elif p.is_gpu_place():
            dst_place_type = 1
        elif p.is_cuda_pinned_place():
            dst_place_type = 2
        elif p.is_xpu_place():
            dst_place_type = 3

    attrs = {'dst_place_type': dst_place_type}
2279 2280 2281 2282 2283 2284
    helper.append_op(
        type='memcpy',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs=attrs,
    )
2285
    return output
F
Feiyu Chan 已提交
2286 2287 2288 2289 2290 2291 2292 2293


def complex(real, imag, name=None):
    """Return a compelx tensor given the real and image component.

    Args:
        real (Tensor): The real component. The data type should be 'float32' or 'float64'.
        imag (Tensor): The image component. The data type should be the same as ``real``.
2294
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
F
Feiyu Chan 已提交
2295 2296 2297 2298

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``real`` and ``imag``.

I
Infinity_lee 已提交
2299 2300 2301 2302
    Note:
        ``paddle.complex`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor
F
Feiyu Chan 已提交
2303 2304 2305 2306 2307 2308 2309 2310

    Examples:
        .. code-block:: python

            import paddle
            x = paddle.arange(2, dtype=paddle.float32).unsqueeze(-1)
            y = paddle.arange(3, dtype=paddle.float32)
            z = paddle.complex(x, y)
2311 2312 2313 2314
            print(z)
            # Tensor(shape=[2, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[0j    , 1j    , 2j    ],
            #         [(1+0j), (1+1j), (1+2j)]])
F
Feiyu Chan 已提交
2315
    """
2316
    if in_dynamic_mode():
2317
        return _C_ops.complex(real, imag)
2318 2319 2320 2321 2322 2323 2324
    else:
        check_variable_and_dtype(
            real, 'real', ['float32', 'float64'], 'complex'
        )
        check_variable_and_dtype(
            imag, 'imag', ['float32', 'float64'], 'complex'
        )
2325

2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
        op_type = "complex"
        helper = LayerHelper(op_type, **locals())
        inputs = {"X": real, "Y": imag}
        out = helper.create_variable_for_type_inference(
            dtype=_real_to_complex_dtype(real.dtype)
        )
        outputs = {"Out": out}
        attrs = {}
        helper.append_op(
            type=op_type, inputs=inputs, attrs=attrs, outputs=outputs
        )
        return out
2338 2339 2340 2341


def tril_indices(row, col, offset=0, dtype='int64'):
    """
2342 2343
    Return the indices of the lower triangular part of the 2-D matrix
    whose row and col is knowed.Indices are ordered based on row and then columns.
2344 2345
    The lower triangular part of the matrix is defined as the elements on
    and below the diagonal.
2346

2347 2348 2349 2350 2351
    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int): The input x which is a int number describe the number of col of the matrix.
        offset (int, optional): The offset to consider, default value is 0.

2352 2353 2354 2355
            - If offset = 0, all elements on and below the main diagonal are retained.
            - If offset > 0, include just as many diagonals above the main diagonal.
            - If offset < 0, excludes just as many diagonals below the main diagonal.

2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
        dtype (int, optional): the data type of the output tensor, can be int32, int64.

    Returns:
        Tensor: Results of the indices of lower triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
2366

2367 2368 2369
            # example 1, default offset value
            data1 = paddle.tril_indices(4,4,0)
            print(data1)
2370
            # [[0, 1, 1, 2, 2, 2, 3, 3, 3, 3],
2371 2372 2373 2374 2375
            #  [0, 0, 1, 0, 1, 2, 0, 1, 2, 3]]

            # example 2, positive offset value
            data2 = paddle.tril_indices(4,4,2)
            print(data2)
2376
            # [[0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
            #  [0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]]

            # example 3, negative offset value
            data3 = paddle.tril_indices(4,4,-1)
            print(data3)
            # [[ 1, 2, 2, 3, 3, 3],
            #  [ 0, 0, 1, 0, 1, 2]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

2388
    if in_dynamic_mode():
2389 2390
        if col is None:
            col = row
2391 2392 2393
        out = _C_ops.tril_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2394
        return out
2395 2396 2397
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2398

2399 2400 2401 2402 2403 2404 2405 2406
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a  int")
2407 2408 2409 2410 2411

        helper = LayerHelper("tril_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2412 2413 2414 2415 2416 2417
        helper.append_op(
            type='tril_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'rows': row, 'cols': col, 'offset': offset, 'dtype': dtype},
        )
2418
    return out
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466


def triu_indices(row, col=None, offset=0, dtype='int64'):
    """
    Return the indices of the upper triangular part of the 2-D matrix
    whose row and col is known. Indices are ordered based on row and then columns.
    The upper triangular part of the matrix is defined as the elements on
    and above the diagonal.

    Args:
        row (int): The input x which is a int number describe the number of row of the matrix.
        col (int, optional): The input x which is a int number describe the number of col of the matrix.
            default value for col is None, then it will be set equal to row, indicting a square matix.
        offset (int, optional): The offset to consider, default value is 0.

            - If offset = 0, all elements on and above the main diagonal are retained.
            - If offset > 0, include just as few diagonals above the main diagonal.
            - If offset < 0, excludes just as few diagonals below the main diagonal.

        dtype (str|np.dtype|paddle.dtype, optional): the data type of the output tensor,
            can be int32, int64, default value is int64.
    Returns:
        Tensor: Results of the indices of upper triangular part of a row * col matrix,
        where the first row contains row coordinates of and the second row contains column coordinates.

    Examples:
        .. code-block:: python

            import paddle
            # example 1, default offset value
            data1 = paddle.triu_indices(4,4,0)
            print(data1)
            # [[0, 0, 0, 0, 1, 1, 1, 2, 2, 3],
            #  [0, 1, 2, 3, 1, 2, 3, 2, 3, 3]]
            # example 2, positive offset value
            data2 = paddle.triu_indices(4,4,2)
            print(data2)
            # [[0, 0, 1],
            #  [2, 3, 3]]
            # example 3, negative offset value
            data3 = paddle.triu_indices(4,4,-1)
            print(data3)
            # [[0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3],
            #  [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 2, 3]]
    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)

2467
    if in_dynamic_mode():
2468 2469
        if col is None:
            col = row
2470 2471 2472
        out = _C_ops.triu_indices(
            row, col, offset, dtype, _current_expected_place()
        )
2473
        return out
2474 2475 2476
    else:
        if not isinstance(row, int) or row < 0:
            raise TypeError("row should be a non-negative int")
2477

2478 2479 2480 2481 2482 2483 2484 2485
        if col is not None:
            if not isinstance(col, int) or col < 0:
                raise TypeError("col should be a non-negative int")
        else:
            col = row

        if not isinstance(offset, int):
            raise TypeError("offset should be a int")
2486 2487 2488 2489 2490

        helper = LayerHelper("triu_indices", **locals())

        out = helper.create_variable_for_type_inference(dtype=dtype)

2491 2492 2493 2494 2495 2496
        helper.append_op(
            type='triu_indices',
            inputs={},
            outputs={'out': [out]},
            attrs={'row': row, 'col': col, 'offset': offset, 'dtype': dtype},
        )
2497
    return out
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535


def polar(abs, angle, name=None):
    """Return a Cartesian coordinates corresponding to the polar coordinates compelx tensor given the ``abs`` and ``angle`` component.

    Args:
        abs (Tensor): The abs component. The data type should be 'float32' or 'float64'.
        angle (Tensor): The anglee component. The data type should be the same as ``abs``.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.

    Returns:
        Tensor: The output tensor. The data type is 'complex64' or 'complex128', with the same precision as ``abs`` and ``angle``.

    Note:
        ``paddle.polar`` supports broadcasting. If you want know more about broadcasting, please refer to `Introduction to Tensor`_ .

        .. _Introduction to Tensor: ../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            abs = paddle.to_tensor([1, 2], dtype=paddle.float64)
            angle = paddle.to_tensor([np.pi / 2, 5 * np.pi / 4], dtype=paddle.float64)
            out = paddle.polar(abs, angle)
            print(out)
            # Tensor(shape=[2], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #       [ (6.123233995736766e-17+1j) ,
            #       (-1.4142135623730954-1.414213562373095j)])
    """
    check_variable_and_dtype(abs, 'abs', ['float32', 'float64'], 'paddle.polar')
    check_variable_and_dtype(
        angle, 'angle', ['float32', 'float64'], 'paddle.polar'
    )

    return paddle.complex(abs * paddle.cos(angle), abs * paddle.sin(angle))