eager_method.cc 102.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
12 13 14 15 16 17

#if defined(_MSC_VER)
#include <BaseTsd.h>
typedef SSIZE_T ssize_t;
#endif

18
#include <Python.h>
19 20 21 22
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
23 24

#include <string>
25
#include <unordered_map>
26 27
#include <vector>

28
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
29
#include "paddle/fluid/eager/api/all.h"
J
Jiabin Yang 已提交
30
#include "paddle/fluid/eager/api/generated/fluid_generated/dygraph_forward_api.h"
31
#include "paddle/fluid/eager/autograd_meta.h"
32 33
#include "paddle/fluid/eager/grad_node_info.h"
#include "paddle/fluid/eager/hooks.h"
34
#include "paddle/fluid/eager/utils.h"
35
#include "paddle/fluid/framework/convert_utils.h"
36
#include "paddle/fluid/framework/string_array.h"
37 38 39 40 41 42
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
J
Jiabin Yang 已提交
43
#include "paddle/fluid/pybind/slice_utils.h"
44
#include "paddle/fluid/pybind/uva_utils.h"
45 46 47 48
#include "paddle/phi/api/include/api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
49 50
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
W
wanghuancoder 已提交
51
#include "pybind11/detail/internals.h"
52 53
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
W
wanghuancoder 已提交
54
#pragma GCC diagnostic ignored "-Wmissing-field-initializers"
J
Jiabin Yang 已提交
55
#include "paddle/fluid/eager/amp_utils.h"
56
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
J
Jiabin Yang 已提交
57
#include "paddle/fluid/eager/eager_amp_auto_cast.h"
W
wanghuancoder 已提交
58
#include "paddle/fluid/framework/python_headers.h"
W
wanghuancoder 已提交
59
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
W
wanghuancoder 已提交
60
#include "paddle/fluid/pybind/tensor_py.h"
W
wanghuancoder 已提交
61
#include "paddle/phi/api/lib/data_transform.h"
W
wanghuancoder 已提交
62
#include "paddle/phi/core/ddim.h"
63
#include "paddle/phi/core/flags.h"
64
#include "paddle/phi/core/tensor_utils.h"
65
#include "paddle/phi/kernels/funcs/math_function.h"
66
#include "paddle/utils/pybind.h"
L
LiYuRio 已提交
67 68 69
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h"
#endif
J
Jiabin Yang 已提交
70

71
PHI_DECLARE_bool(set_to_1d);
W
wanghuancoder 已提交
72
DECLARE_bool(use_stride_kernel);
73

74 75 76
namespace paddle {
namespace pybind {

77 78
extern void InitTensorWithNumpyValue(TensorObject* self,
                                     const pybind11::object& array,
79
                                     const paddle::platform::Place& place,
80
                                     bool zero_copy);
81

82
extern PyTypeObject* p_tensor_type;
83

J
Jiabin Yang 已提交
84
Py_ssize_t GetSliceIndexFromPyObject(PyObject* obj) {
85
  if (PyObject_TypeCheck(obj, p_tensor_type)) {
J
Jiabin Yang 已提交
86
    VLOG(6) << "Call GetSliceIndexFromTensor in Eager";
87
    paddle::Tensor tensor = CastPyArg2Tensor(obj, 0);
J
Jiabin Yang 已提交
88
    PADDLE_ENFORCE_EQ(
89 90
        tensor.initialized(),
        true,
J
Jiabin Yang 已提交
91 92 93 94 95 96 97 98
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in slice, however we got "
            "uninitialized tensor %s, please check your code.",
            tensor.name()));
    return GetSliceIndexFromTensor((*static_cast<phi::DenseTensor*>(
        CastPyArg2Tensor(obj, 0).impl().get())));
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
99
        "We should only get paddle::Tensor or VarBase in this "
J
Jiabin Yang 已提交
100 101 102 103
        "method, when you reach this means we got another type index."));
  }
}

104 105
PyDoc_STRVAR(tensor_method_numpy__doc__,  // NOLINT
             R"DOC(numpy($self, /)
W
wanghuancoder 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
--

Returns a numpy array shows the value of current Tensor.

Returns:
    ndarray, The numpy value of current Tensor, dtype is
    same as current Tensor.

Examples:
    .. code-block:: python

        import paddle

        data = paddle.uniform([30, 10, 32], dtype="float32", min=-1, max=1)
        linear = paddle.nn.Linear(32, 64)
        data = paddle.to_tensor(data)
        x = linear(data)
        print(x.numpy())
)DOC");

126 127
static PyObject* tensor_method_numpy(TensorObject* self,
                                     PyObject* args,
128 129
                                     PyObject* kwargs) {
  EAGER_TRY
W
wanghuancoder 已提交
130 131
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl()) {
132 133
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
W
wanghuancoder 已提交
134 135 136 137 138
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
139 140 141 142 143
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_FLOAT_),
        1,
        py_dims,
        py_strides,
        nullptr,
W
wanghuancoder 已提交
144 145 146 147 148
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }
149 150
  auto tensor_dims = self->tensor.shape();
  auto numpy_dtype = TensorDtype2NumpyDtype(self->tensor.type());
151
  auto sizeof_dtype = phi::SizeOf(self->tensor.type());
152 153
  Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
  Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
154
  size_t py_rank = tensor_dims.size();
155
  size_t numel = 1;
156
  if (py_rank == 0) {
157
    Py_ssize_t args_num = PyTuple_Size(args);
158 159
    // true by default
    bool set_to_1d = FLAGS_set_to_1d;
160 161 162 163 164 165 166
    if (args_num == (Py_ssize_t)1) {
      PyObject* obj = PyTuple_GET_ITEM(args, 0);
      if (obj == Py_False) {
        set_to_1d = false;
      }
    }
    if (set_to_1d) {
167
      // 0D Tensor hack process to 1D numpy, will remove in release 2.6
168 169 170 171 172
      VLOG(0)
          << "Warning:: 0D Tensor cannot be used as 'Tensor.numpy()[0]' . In "
             "order to avoid this problem, "
             "0D Tensor will be changed to 1D numpy currently, but it's not "
             "correct and will be "
173 174
             "removed in release 2.6. For Tensor contain only one element, "
             "Please "
175
             "modify "
176
             " 'Tensor.numpy()[0]' to 'float(Tensor)' as soon as "
177
             "possible, "
178
             "otherwise 'Tensor.numpy()[0]' will raise error in release 2.6.";
179 180 181 182
      py_rank = 1;
      py_dims[0] = 1;
      py_strides[0] = sizeof_dtype * numel;
    }
W
wanghuancoder 已提交
183 184 185 186 187 188 189 190
  } else if (self->tensor.is_dense_tensor()) {
    auto tensor_stride = self->tensor.strides();

    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * tensor_stride[i];
      numel *= py_dims[i];
    }
191 192 193 194 195 196
  } else {
    for (int i = tensor_dims.size() - 1; i >= 0; --i) {
      py_dims[i] = static_cast<size_t>(tensor_dims[i]);
      py_strides[i] = sizeof_dtype * numel;
      numel *= py_dims[i];
    }
197
  }
W
wanghuancoder 已提交
198 199

  if (!self->tensor.impl()->initialized()) {
W
wanghuancoder 已提交
200 201 202 203 204 205 206 207 208 209 210
    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
        api.PyArray_DescrFromType_(numpy_dtype),
        py_rank,
        py_dims,
        py_strides,
        nullptr,
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);

211
    if (tensor_dims.empty()) {
212 213 214
      py_dims[0] = 0;
      py_strides[0] = 0;
      PyObject* array = api.PyArray_NewFromDescr_(
215 216 217 218 219 220
          api.PyArray_Type_,
          api.PyArray_DescrFromType_(numpy_dtype),
          1,
          py_dims,
          py_strides,
          nullptr,
221 222 223 224 225
          pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
              pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
          nullptr);
      return array;
    }
W
wanghuancoder 已提交
226 227 228
    return array;
  }

W
wanghuancoder 已提交
229 230 231
  phi::DenseTensor cpu_tensor;
  platform::CPUPlace cpu_place;

232
  if (self->tensor.is_cpu() || self->tensor.is_gpu_pinned()) {
W
wanghuancoder 已提交
233
    eager_gil_scoped_release guard;
234
    platform::CPUPlace place;
235 236 237 238
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
239 240
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
241 242 243 244 245
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
246
      // deep copy
W
wanghuancoder 已提交
247 248 249 250 251
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
252 253 254 255
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
256 257 258 259 260
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
261
      // deep copy
W
wanghuancoder 已提交
262 263 264 265 266
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           place,
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
267 268
    }

269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
270
  } else if (self->tensor.is_gpu()) {
W
wanghuancoder 已提交
271
    eager_gil_scoped_release guard;
272 273 274 275
#if defined(PADDLE_WITH_CUDA)
    gpuMemcpyKind kind = cudaMemcpyDeviceToHost;
#elif defined(PADDLE_WITH_HIP)
    gpuMemcpyKind kind = hipMemcpyDeviceToHost;
276
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
277
#endif
278 279 280 281
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
282 283
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
284 285 286 287 288 289 290 291 292
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
293 294 295 296
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
297 298 299 300 301 302 303 304 305
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::platform::GpuMemcpySync(cpu_tensor.Holder()->ptr(),
                                      dense_tensor->Holder()->ptr(),
                                      dense_tensor->Holder()->size(),
                                      kind);
306
    }
307
#endif
C
Chen Weihang 已提交
308 309 310 311 312 313 314
#if defined(PADDLE_WITH_XPU)
  } else if (self->tensor.is_xpu()) {
    platform::CPUPlace place;
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
315 316
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
317 318 319 320 321 322 323 324 325 326
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
327 328 329 330
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
W
wanghuancoder 已提交
331 332 333 334 335 336 337 338 339 340
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
      paddle::memory::Copy(place,
                           cpu_tensor.Holder()->ptr(),
                           dense_tensor->place(),
                           dense_tensor->Holder()->ptr(),
                           dense_tensor->Holder()->size());
C
Chen Weihang 已提交
341 342
    }
#endif
343 344
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  } else if (self->tensor.is_custom_device()) {
W
wanghuancoder 已提交
345
    eager_gil_scoped_release guard;
346
    phi::DeviceContextPool::Instance().Get(self->tensor.place())->Wait();
347 348 349 350
    if (self->tensor.is_selected_rows()) {
      VLOG(6) << "Getting SelectedRows's numpy value";
      auto* selected_rows =
          static_cast<phi::SelectedRows*>(self->tensor.impl().get());
351 352
      auto* dense_tensor =
          static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
W
wanghuancoder 已提交
353 354 355 356 357
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
358
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
359 360 361
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
362 363 364 365
    } else {
      VLOG(6) << "Getting DenseTensor's numpy value";
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
C
co63oc 已提交
366
      // TODO(qili93): temporary for ascend npu performance to be removed along
367
      // with npu_identity op
368
      paddle::Tensor temp_tensor(std::make_shared<phi::DenseTensor>());
369 370 371 372 373
      if (dense_tensor->storage_properties_initialized()) {
        temp_tensor = npu_identity_ad_func(self->tensor, -1);
        dense_tensor =
            std::dynamic_pointer_cast<phi::DenseTensor>(temp_tensor.impl());
      }
W
wanghuancoder 已提交
374 375 376 377 378
      cpu_tensor.set_meta(dense_tensor->meta());
      auto tmp_allocation_ptr =
          memory::Alloc(cpu_place, dense_tensor->Holder()->size());
      cpu_tensor.ResetHolder(std::shared_ptr<phi::Allocation>(
          tmp_allocation_ptr.release(), tmp_allocation_ptr.get_deleter()));
379
      phi::DeviceManager::GetDeviceWithPlace(self->tensor.place())
W
wanghuancoder 已提交
380 381 382
          ->MemoryCopyD2H(cpu_tensor.Holder()->ptr(),
                          dense_tensor->Holder()->ptr(),
                          dense_tensor->Holder()->size());
383 384
    }
#endif
385 386 387
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Tensor.numpy() only support cpu tensor."));
388
    RETURN_PY_NONE
389 390
  }

W
wanghuancoder 已提交
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  void* array_buffer = cpu_tensor.Holder()->ptr();
  size_t array_offset = cpu_tensor.offset();

  PyObject* base = ToPyObject(paddle::Tensor(
      std::make_shared<phi::DenseTensor>(std::move(cpu_tensor))));

  PyObject* array = api.PyArray_NewFromDescr_(
      api.PyArray_Type_,
      api.PyArray_DescrFromType_(numpy_dtype),
      py_rank,
      py_dims,
      py_strides,
      reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(array_buffer) +
                              array_offset),
      pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
          pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
      nullptr);

  api.PyArray_SetBaseObject_(array, base);

411 412 413 414
  return array;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jack Zhou 已提交
415 416 417 418 419 420 421 422
static PyObject* tensor_method_numpy_for_string_tensor(TensorObject* self,
                                                       PyObject* args,
                                                       PyObject* kwargs) {
  EAGER_TRY
  auto& api = pybind11::detail::npy_api::get();
  if (!self->tensor.impl() || !self->tensor.impl()->initialized()) {
    VLOG(6) << "The StringTensor is uninitialized. Return the empty string "
               "numpy array.";
423 424
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];     // NOLINT
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank];  // NOLINT
J
Jack Zhou 已提交
425 426 427 428 429
    py_dims[0] = 0;
    py_strides[0] = 0;

    PyObject* array = api.PyArray_NewFromDescr_(
        api.PyArray_Type_,
430 431 432 433 434
        api.PyArray_DescrFromType_(pybind11::detail::npy_api::NPY_UNICODE_),
        1,
        py_dims,
        py_strides,
        nullptr,
J
Jack Zhou 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,
        nullptr);
    return array;
  }

  if (self->tensor.is_cpu()) {
    VLOG(6) << "Getting StringTensor's numpy value";
    auto string_tensor =
        std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
    const auto* st_ptr = string_tensor->data();
    auto numel = self->tensor.numel();
    auto tensor_dims = self->tensor.shape();
W
wanghuancoder 已提交
448 449
    // Get the max unicode length of StringTensor to create numpy unicode
    // string array.
J
Jack Zhou 已提交
450 451 452 453 454 455 456 457 458 459 460 461
    auto* longest_pstring = std::max_element(
        st_ptr, st_ptr + numel, [](const auto& a, const auto& b) {
          auto a_unicode_len =
              phi::strings::GetUnicodeStrLen(a.data(), a.size());
          auto b_unicode_len =
              phi::strings::GetUnicodeStrLen(b.data(), b.size());
          return a_unicode_len < b_unicode_len;
        });
    size_t max_unicode_length = phi::strings::GetUnicodeStrLen(
        longest_pstring->data(), longest_pstring->size());
    max_unicode_length = (max_unicode_length == 0) ? 1 : max_unicode_length;
    VLOG(6) << "The max unicode length is " << max_unicode_length;
462 463
    auto sp =
        std::make_unique<uint32_t[]>(max_unicode_length * numel);  // NOLINT
J
Jack Zhou 已提交
464 465 466 467 468 469 470 471 472 473
    auto py_array_data = sp.get();
    memset(py_array_data, 0, max_unicode_length * numel * sizeof(uint32_t));
    for (int64_t i = 0; i < numel; ++i) {
      auto curr_unicode_len =
          phi::strings::GetUnicodeStrLen(st_ptr[i].data(), st_ptr[i].size());
      phi::strings::GetUnicodeStr(st_ptr[i].data(),
                                  py_array_data + i * max_unicode_length,
                                  curr_unicode_len);
    }
    py::array array(py::dtype("U" + std::to_string(max_unicode_length)),
474 475 476
                    tensor_dims,
                    {},
                    py_array_data);
J
Jack Zhou 已提交
477 478 479 480
    return array.release().ptr();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor.numpy() only support cpu tensor."));
481
    RETURN_PY_NONE
J
Jack Zhou 已提交
482 483 484 485
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

486 487 488 489
static PyObject* tensor_method__is_initialized(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
490
  return ToPyObject(self->tensor.initialized());
491 492 493
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
494 495 496 497 498 499 500 501 502 503 504 505 506 507
static PyObject* tensor_method__is_dense_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto dense_tensor =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  if (dense_tensor) {
    return ToPyObject(dense_tensor->IsInitialized());
  } else {
    return ToPyObject(false);
  }

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

508
static void IncreaseTensorReferenceCountUntilCopyComplete(
509
    const paddle::Tensor& tensor, const platform::Place& place) {
510 511 512 513 514 515 516 517
  auto place_ = platform::is_gpu_place(place) ? place : tensor.place();

  auto tracer = egr::Controller::Instance().GetCurrentTracer();
  auto gc = tracer->MutableGarbageCollectorIfNotExists(place_);

  // Note(dev): This is an empty callback, the only way is to "reference"
  // inner memory Holder, so it will not be destructed until the kernels
  // launched at current stream of given place is finished, such as
C
co63oc 已提交
518
  // CUDAPinned Mem -> CUDA by cudaMemcpyAsync.
519 520 521 522 523 524 525
  auto callback = [tensor, place_]() {
    VLOG(3) << "Run callback of Tensor:" << tensor.name() << " at place "
            << place_;
  };
  gc->DirectClearCallback(callback);
}

526 527
static PyObject* tensor_method__copy_to(TensorObject* self,
                                        PyObject* args,
528 529
                                        PyObject* kwargs) {
  EAGER_TRY
530 531
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 0), 0);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
532
  paddle::Tensor cp_tensor;
W
wanghuancoder 已提交
533 534 535 536 537 538 539 540 541 542
  {
    eager_gil_scoped_release guard;
    cp_tensor = self->tensor.copy_to(place, blocking);
    if (!blocking) {
      IncreaseTensorReferenceCountUntilCopyComplete(self->tensor, place);
    }
    egr::EagerUtils::autograd_meta(&cp_tensor)->SetStopGradient(true);
    egr::EagerUtils::autograd_meta(&cp_tensor)
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
543
  }
544 545 546 547
  return ToPyObject(cp_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
PyDoc_STRVAR(tensor_reconstruct_from___doc__,
             R"DOC(reconstruct_from_($self, other/)
--

Reconstruct the self with other Tensor. It is a deep copy of 'self = other'.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      t1 = paddle.to_tensor([1.0], stop_gradient=False)
      t2 = paddle.to_tensor([2.0], stop_gradient=True)

      t1.reconstruct_from_(t2)

      print(t1)
)DOC");

570 571 572 573
static PyObject* tensor_method_reconstruct_from_(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
574
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
575
  std::string orig_name = self->tensor.name();
576 577
  VLOG(6) << "Start Reconstructing Tensor from" << src_tensor.name() << " to "
          << orig_name;
578
  self->tensor = src_tensor;
579 580

  // Recover source name
581
  self->tensor.set_name(orig_name);
582 583

  VLOG(6) << "Finished Reconstructing Tensor from" << src_tensor.name()
584
          << " to " << self->tensor.name();
585 586
  RETURN_PY_NONE

587 588 589
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

590 591
static PyObject* tensor_method_copy_(TensorObject* self,
                                     PyObject* args,
592 593
                                     PyObject* kwargs) {
  EAGER_TRY
594
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
595
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 1), 1);
596
  VLOG(6) << "Start Copy Tensor " << src_tensor.name() << " to "
597
          << self->tensor.name();
598
  if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
599
    eager_gil_scoped_release guard;
600
    egr::EagerUtils::autograd_meta(&(self->tensor))
601 602
        ->SetStopGradient(
            egr::EagerUtils::autograd_meta(&(src_tensor))->StopGradient());
603
    egr::EagerUtils::autograd_meta(&(self->tensor))
604 605
        ->SetPersistable(
            egr::EagerUtils::autograd_meta(&(src_tensor))->Persistable());
606
    if (src_tensor.initialized()) {
C
Chen Weihang 已提交
607
      self->tensor.copy_(src_tensor, src_tensor.place(), blocking);
608 609 610
    }
  } else {
    if (src_tensor.initialized()) {
W
wanghuancoder 已提交
611
      eager_gil_scoped_release guard;
C
Chen Weihang 已提交
612
      self->tensor.copy_(src_tensor, self->tensor.place(), blocking);
613
    }
614 615
  }

616
  VLOG(6) << "Finish Copy Tensor " << src_tensor.name() << " to "
617
          << self->tensor.name();
618 619
  RETURN_PY_NONE

620 621 622
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

623 624
PyDoc_STRVAR(tensor_method_clone__doc__,  // NOLINT
             R"DOC(clone($self, /)
W
wanghuancoder 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
--

Returns a new Tensor, which is clone of origin Tensor, and it remains in the current graph.
It will always have a Tensor copy.
Tn addition, the cloned Tensor provides gradient propagation.

Returns:
    Tensor, The cloned Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1.0, stop_gradient=False)
        clone_x = x.clone()
        y = clone_x**2
        y.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [2.0], support gradient propagation
        print(x.stop_gradient)       # False
        print(x.grad)                # [2.0], clone_x support gradient propagation for x

        x = paddle.to_tensor(1.0)
        clone_x = x.clone()
        clone_x.stop_gradient = False
        z = clone_x**3
        z.backward()
        print(clone_x.stop_gradient) # False
        print(clone_x.grad)          # [3.0], support gradient propagation
        print(x.stop_gradient) # True
        print(x.grad)          # None
)DOC");

659 660 661 662
static PyObject* tensor_method_clone(TensorObject* self,
                                     PyObject* args,
                                     PyObject* kwargs) {
  EAGER_TRY
663
  paddle::Tensor out;
W
wanghuancoder 已提交
664 665 666 667 668 669 670 671 672
  {
    eager_gil_scoped_release guard;
    PADDLE_ENFORCE_EQ(
        self->tensor.initialized(),
        true,
        paddle::platform::errors::InvalidArgument(
            "We can only support initialized tensor in clone, however we got "
            "uninitialized tensor %s, please check your code.",
            self->tensor.name()));
673

W
wanghuancoder 已提交
674 675
    out = assign_ad_func(self->tensor);
  }
676 677 678 679
  return ToPyObject(out);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
PyDoc_STRVAR(tensor_method_retain_grads__doc__, R"DOC(retain_grads($self, /)
--

Enables this Tensor to have their grad populated during backward(). It is a no-op for leaf tensors.

Returns:
    None.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # [1., 1., 1.]

      x = paddle.to_tensor([1.0, 2.0, 3.0])
      x.stop_gradient = False
      y = x + x
      # y.retain_grads()
      loss = y.sum()
      loss.backward()

      print(y.grad) # None
)DOC");

712 713
static PyObject* tensor_retain_grads(TensorObject* self,
                                     PyObject* args,
714
                                     PyObject* kwargs) {
715
  EAGER_TRY
716
  if (egr::Controller::Instance().HasGrad()) {
W
wanghuancoder 已提交
717
    eager_gil_scoped_release guard;
718
    auto meta = egr::EagerUtils::autograd_meta(&(self->tensor));
719
    if (!meta->GetMutableGradNode()) {
720
      VLOG(6) << "Make grad node of tensor: " << self->tensor.name()
721
              << "become accumulation node";
722
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
723
    }
724
    egr::egr_utils_api::RetainGradForTensor(self->tensor);
725
  }
726 727
  RETURN_PY_NONE

728 729 730
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

731
PyDoc_STRVAR(tensor_clear_gradient__doc__,  // NOLINT
W
wanghuancoder 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
             R"DOC(clear_gradient($self, set_to_zero=True, /)
--

Only for Tensor that has gradient, normally we use this for Parameters since
other temporary Tensor doesen't has gradient.

The Gradient of current Tensor will be set to ``0`` elementwise or ``None``.

Args:
    set_to_zero (bool, optional): If set to ``True``, the gradient will be set
        to ``0`` elementwise, otherwise the gradient will be set to ``None``.
        Default: ``True``.

Returns:
    None.

Examples:
    .. code-block:: python

        import paddle
        input = paddle.uniform([10, 2])
        linear = paddle.nn.Linear(2, 3)
        out = linear(input)
        out.backward()
        print("Before clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
        linear.weight.clear_gradient()
        print("After clear_gradient, linear.weight.grad: {}".format(linear.weight.grad))
)DOC");

761 762
static PyObject* tensor_clear_gradient(TensorObject* self,
                                       PyObject* args,
763
                                       PyObject* kwargs) {
764
  EAGER_TRY
765
  VLOG(4) << "ClearGradient " << self->tensor.name();
766

767 768 769
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
J
Jiabin Yang 已提交
770
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
771 772
  }

773
  paddle::Tensor* grad;
774
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
J
Jiabin Yang 已提交
775
  if (is_leaf) {
776 777 778
    grad = egr::EagerUtils::mutable_grad(self->tensor);
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
779
                       "Detected nullptr grad"
780 781
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
782
  } else {
783
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
784
    grad = meta->MutableGrad();
785 786
  }

787
  if (grad->impl()) {
W
wanghuancoder 已提交
788
    eager_gil_scoped_release guard;
789 790 791 792 793 794 795 796 797 798
    if (grad->is_selected_rows()) {
      auto selected_rows =
          std::dynamic_pointer_cast<phi::SelectedRows>(grad->impl());
      if (selected_rows->mutable_value()->IsInitialized()) {
        selected_rows->mutable_rows()->clear();
        selected_rows->mutable_value()->clear();
      }
    } else if (grad->is_dense_tensor()) {
      if (grad->initialized()) {
        if (set_to_zero) {
799 800 801 802
          auto* grad_t = static_cast<phi::DenseTensor*>(grad->impl().get());
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
          phi::funcs::set_constant(*dev_ctx, grad_t, 0.0);
J
Jiabin Yang 已提交
803 804 805 806 807
          if (is_leaf) {
            std::static_pointer_cast<egr::GradNodeAccumulation>(
                egr::EagerUtils::grad_node(self->tensor))
                ->SetFakeEmpty(true);
          }
808 809 810 811 812 813 814
        } else {
          VLOG(4) << "Gradient of " << self->tensor.name()
                  << " is initialized, will be released.";
          auto dense_tensor =
              std::dynamic_pointer_cast<phi::DenseTensor>(grad->impl());
          dense_tensor->MoveMemoryHolder();
        }
815 816
      }
    }
817
  }
818

819 820
  RETURN_PY_NONE

821 822 823
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

824 825
static PyObject* tensor__zero_grads(TensorObject* self,
                                    PyObject* args,
826
                                    PyObject* kwargs) {
827
  EAGER_TRY
828
  VLOG(4) << "ZeroGrads " << self->tensor.name();
829

830
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
W
wanghuancoder 已提交
831
    eager_gil_scoped_release guard;
832
    // Add RetainGrad as PostHook to AccumulationNode
833
    paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
834 835
    PADDLE_ENFORCE(grad != nullptr,
                   paddle::platform::errors::Fatal(
836
                       "Detected nullptr grad"
837 838 839
                       "Please check if you have manually cleared"
                       "the grad inside autograd_meta"));
    if (grad->initialized()) {
840 841 842 843 844 845 846
      if (grad->is_dense_tensor()) {
        auto* t = static_cast<phi::DenseTensor*>(grad->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        grad->set_impl(paddle::experimental::zeros_like(*(grad)).impl());
      }
847
    }
848
  } else {
W
wanghuancoder 已提交
849
    eager_gil_scoped_release guard;
850
    auto meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);
851
    if (meta->MutableGrad()->initialized()) {
852 853 854 855 856 857 858 859 860
      if (meta->MutableGrad()->is_dense_tensor()) {
        auto* t =
            static_cast<phi::DenseTensor*>(meta->MutableGrad()->impl().get());
        auto* dev_ctx = platform::DeviceContextPool::Instance().Get(t->place());
        phi::funcs::set_constant(*dev_ctx, t, 0.0);
      } else {
        meta->MutableGrad()->set_impl(
            paddle::experimental::zeros_like(*(meta->MutableGrad())).impl());
      }
861
    }
862 863
  }

864 865
  RETURN_PY_NONE

866 867 868
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

869 870
static PyObject* tensor__share_buffer_to(TensorObject* self,
                                         PyObject* args,
871 872
                                         PyObject* kwargs) {
  EAGER_TRY
873
  paddle::Tensor* dst_ptr =
874
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
875 876
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
877 878 879
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
880
                        self->tensor.name()));
881
  auto* src_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
882 883 884
  if (!dst_ptr->defined()) {
    dst_ptr->set_impl(std::make_shared<phi::DenseTensor>());
  }
885
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
B
Baibaifan 已提交
886
  dst_tensor->ShareBufferWith(*src_tensor);
887
  dst_tensor->ShareDataTypeWith(*src_tensor);
888 889
  RETURN_PY_NONE

890 891 892
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

893 894 895 896
static PyObject* tensor__is_shared_buffer_with(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
897
  paddle::Tensor* dst_ptr =
898
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
899 900
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
901 902 903
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
904
                        self->tensor.name()));
905
  bool res = false;
906
  if (!self->tensor.defined() || !dst_ptr->defined()) {
907 908
    return ToPyObject(res);
  }
909 910
  auto* self_ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  auto dst_tensor = static_cast<phi::DenseTensor*>(dst_ptr->impl().get());
911 912 913 914 915
  res = dst_tensor->IsSharedBufferWith(*self_ptr);
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

916 917 918 919
static PyObject* tensor__share_underline_tensor_to(TensorObject* self,
                                                   PyObject* args,
                                                   PyObject* kwargs) {
  EAGER_TRY
920
  paddle::Tensor* src_ptr =
921
      &(reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor);
922 923
  PADDLE_ENFORCE_EQ(self->tensor.initialized(),
                    true,
924 925 926
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
927 928
                        self->tensor.name()));
  src_ptr->set_impl(self->tensor.impl());
929 930
  RETURN_PY_NONE

931 932 933
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

934 935 936 937
static PyObject* tensor__is_shared_underline_tensor_with(TensorObject* self,
                                                         PyObject* args,
                                                         PyObject* kwargs) {
  EAGER_TRY
938
  paddle::Tensor src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
939 940
  PADDLE_ENFORCE_EQ(src_tensor.initialized(),
                    true,
941 942 943 944 945
                    platform::errors::InvalidArgument(
                        "Tensor %s has not been initialized! please initialize "
                        "src tensor before share_buffer_with to other.",
                        src_tensor.name()));
  bool res = false;
946
  if (!self->tensor.defined() || !src_tensor.defined()) {
947 948
    return ToPyObject(res);
  }
949
  res = (self->tensor.impl().get() == src_tensor.impl().get());
950 951 952 953
  return ToPyObject(res);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

954 955
PyDoc_STRVAR(tensor_method_detach__doc__,  // NOLINT
             R"DOC(detach($self, /)
W
wanghuancoder 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
--

Returns a new Tensor, detached from the current graph.
It will share data with origin Tensor and always doesn't have a Tensor copy.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      detach_x = x.detach()
      detach_x[0] = 10.0
      print(x)  # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
                  #        [10.])
      y = x**2
      y.backward()
      print(x.grad)         # [20.0]
      print(detach_x.grad)  # None, 'stop_gradient=True' by default

      detach_x.stop_gradient = False # Set stop_gradient to be False, supported auto-grad
      z = detach_x**3
      z.backward()

      print(x.grad)         # [20.0], detach_x is detached from x's graph, not affect each other
      print(detach_x.grad)  # [300.0], detach_x has its own graph

      # Due to sharing of data with origin Tensor, There are some unsafe operations:
      # y = 2 * x
      # detach_x[:] = 5.0
      # y.backward()
      # It will raise Error:
      #   one of the variables needed for gradient computation has been modified by an inplace operation.
)DOC");

995 996
static PyObject* tensor_method_detach(TensorObject* self,
                                      PyObject* args,
997 998
                                      PyObject* kwargs) {
  EAGER_TRY
999
  PADDLE_ENFORCE_EQ(
1000
      self->tensor.defined(),
1001
      true,
1002
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
1003
                                        self->tensor.name()));
1004

1005
  PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0);
1006
  if (obj) {
1007
    auto v = reinterpret_cast<TensorObject*>(obj);
1008
    new (&(v->tensor)) paddle::Tensor();
1009 1010 1011 1012
    v->tensor.set_impl(self->tensor.impl());
    v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName());
    auto autograd_meta_src = egr::EagerUtils::autograd_meta(&(self->tensor));
    auto autograd_meta = egr::EagerUtils::autograd_meta(&(v->tensor));
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    autograd_meta->SetPersistable(autograd_meta_src->Persistable());
  } else {
    PADDLE_THROW(platform::errors::Fatal(
        "tp_alloc return null, can not new a PyObject."));
  }

  return obj;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
PyDoc_STRVAR(tensor_method_detach___doc__, R"DOC(detach_($self, /)
--

Detach self from the current graph, and returns self Tensor.
In addition, the detached Tensor doesn't provide gradient propagation.

Returns:
    Tensor, The detached Tensor.
)DOC");

W
wanghuancoder 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static PyObject* tensor_method_detach_(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
      self->tensor.defined(),
      true,
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  auto autograd_meta = std::make_shared<egr::AutogradMeta>();
  autograd_meta->SetPersistable(
      egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  self->tensor.set_autograd_meta(autograd_meta);

  return reinterpret_cast<PyObject*>(self);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
PyDoc_STRVAR(tensor_method_get_tensor__doc__, R"DOC(get_tensor($self, /)
--

Returns the underline tensor in the origin Tensor.

Returns:
    Underline tensor.

Examples:
    .. code-block:: python

      import paddle

      x = paddle.to_tensor([1.0], stop_gradient=False)
      underline_x = x.get_tensor()
      print(underline_x) # a Dense Tensor info
)DOC");

1070 1071 1072 1073
static PyObject* tensor_method_get_underline_tensor(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
1074
  if (!self->tensor.defined()) {
1075 1076 1077
    // The original `get_tensor` method of Variable will create a empty tensor
    phi::DenseTensor empty_tensor;
    return ToPyObject(&empty_tensor);
1078
  }
1079
  if (self->tensor.is_dense_tensor()) {
1080
    auto* tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1081 1082
    VLOG(6) << "tensor: " << tensor->IsInitialized();
    return ToPyObject(tensor);
L
LiYuRio 已提交
1083 1084
  } else if (self->tensor.is_dist_tensor()) {
#ifdef PADDLE_WITH_DISTRIBUTE
1085 1086
    auto* tensor =
        static_cast<phi::distributed::DistTensor*>(self->tensor.impl().get());
1087
    VLOG(6) << "dist tensor: " << tensor->defined();
L
LiYuRio 已提交
1088 1089 1090 1091
    return ToPyObject(tensor);
#else
    RETURN_PY_NONE
#endif
1092
  } else {
1093
    RETURN_PY_NONE
1094 1095 1096 1097
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1098 1099 1100 1101 1102
static PyObject* tensor_method_get_underline_selected_rows(TensorObject* self,
                                                           PyObject* args,
                                                           PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
1103
    RETURN_PY_NONE
1104 1105 1106 1107 1108 1109
  }
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    return ToPyObject(selected_rows);
  } else {
1110
    RETURN_PY_NONE
1111 1112 1113 1114
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
static PyObject* tensor_method__get_tensor_from_selected_rows(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows."));

  auto* selected_rows =
      static_cast<phi::SelectedRows*>(self->tensor.impl().get());

  PADDLE_ENFORCE(
      selected_rows->initialized(),
      paddle::platform::errors::Fatal("SelectedRows must be initialized."));

1129 1130
  auto* dense_tensor =
      static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
L
Leo Chen 已提交
1131
  VLOG(4) << "dense_tensor: " << dense_tensor->IsInitialized();
1132

1133
  auto t = paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
1134 1135 1136 1137 1138 1139 1140
  t.set_impl(std::make_shared<phi::DenseTensor>(*dense_tensor));

  return ToPyObject(t);

  EAGER_CATCH_AND_THROW_RETURN_NULL
}

J
Jiabin Yang 已提交
1141 1142 1143
static PyObject* tensor__getitem_index_not_tensor(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
1144
  EAGER_TRY
J
Jiabin Yang 已提交
1145 1146 1147
  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  VLOG(4) << "Call _getitem_index_not_tensor";
  std::vector<int> slice_axes, slice_starts, slice_ends, slice_strides,
W
wanghuancoder 已提交
1148 1149
      decrease_axis, none_axes, infer_flags;
  std::vector<int64_t> list_select_idxs;
J
Jiabin Yang 已提交
1150 1151
  // if index is a list, list_select_flag will be true
  bool list_select_flag = false;
1152 1153
  // Note(0x45f): Using defined() instead of initialized()
  // to support slice tensor which shape like [0, 0, 0].
J
Jiabin Yang 已提交
1154
  PADDLE_ENFORCE_EQ(
1155
      self->tensor.defined(),
1156
      true,
J
Jiabin Yang 已提交
1157 1158 1159 1160 1161
      platform::errors::InvalidArgument(
          "tensor %s has not been initialized, we can only slice initialized "
          "tensor please init it first with numpy or other tensor.",
          self->tensor.name()));
  auto tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
  ParseIndexingSlice(tensor,
                     _index,
                     &slice_axes,
                     &slice_starts,
                     &slice_ends,
                     &slice_strides,
                     &decrease_axis,
                     &none_axes,
                     &infer_flags,
                     &list_select_idxs,
                     &list_select_flag);
J
Jiabin Yang 已提交
1173

1174 1175 1176 1177
  auto out =
      slice_axes.empty() && !list_select_flag
          ? self->tensor
          : paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
J
Jiabin Yang 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

  if (!slice_axes.empty()) {
    framework::AttributeMap attrs = {{"axes", slice_axes},
                                     {"starts", slice_starts},
                                     {"ends", slice_ends},
                                     {"infer_flags", infer_flags},
                                     {"decrease_axis", decrease_axis}};
    std::string op_type = "slice";
    for (auto stride : slice_strides) {
      if (stride != 1) {
        op_type = "strided_slice";
        attrs.insert({"strides", slice_strides});
        attrs.erase("decrease_axis");
        break;
      }
    }
1194 1195 1196 1197 1198 1199
    std::vector<int64_t> slice_axes_tmp(slice_axes.begin(), slice_axes.end());
    std::vector<int64_t> infer_flags_tmp(infer_flags.begin(),
                                         infer_flags.end());
    std::vector<int64_t> decrease_axis_tmp(decrease_axis.begin(),
                                           decrease_axis.end());

J
Jiabin Yang 已提交
1200
    if (op_type == "slice") {
W
wanghuancoder 已提交
1201
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1202 1203 1204 1205 1206 1207
      out = slice_ad_func(self->tensor,
                          slice_axes_tmp,
                          slice_starts,
                          slice_ends,
                          infer_flags_tmp,
                          decrease_axis_tmp);
J
Jiabin Yang 已提交
1208
    } else if (op_type == "strided_slice") {
W
wanghuancoder 已提交
1209
      eager_gil_scoped_release guard;
J
Jiabin Yang 已提交
1210
      out = strided_slice_ad_func(
1211
          self->tensor, slice_axes, slice_starts, slice_ends, slice_strides);
1212 1213 1214
      if (!decrease_axis_tmp.empty()) {
        out = squeeze_ad_func(out, decrease_axis_tmp);
      }
J
Jiabin Yang 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Slice is only support slice and strided_slice, but we got %s which "
          "is impossible, please check your code first or contact us by "
          "issue. ",
          op_type));
    }
  }

1224
  bool set_to_1d = FLAGS_set_to_1d;
1225 1226 1227 1228 1229 1230

  if (set_to_1d) {
    // NOTE(zoooo0820): When all axes are decreased, the output will be 1-D
    // with FLAGS_set_to_1d=True. In this case, one `None` should be pop out,
    // otherwise the output shape will be not correct.
    if (static_cast<int>(decrease_axis.size()) == tensor->dims().size()) {
J
JYChen 已提交
1231
      VLOG(1)
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
          << "Warning: In Tensor '__getitem__', if the number of scalar "
             "elements "
             "in the index is equal to the rank of the Tensor, the output "
             "should "
             "be 0-D. In order to be consistent with the behavior of previous "
             "versions, it will be processed to 1-D. But it is not correct and "
             "will be "
             "removed in release 2.6. "
             "If 1-D is still wanted, please modify the index element from "
             "scalar to slice "
             "(e.g. 'x[i]' => 'x[i:i+1]'). ";
      if (!none_axes.empty()) {
1244 1245 1246
        none_axes.pop_back();
      }
    }
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
  }
  if (!none_axes.empty()) {
    paddle::Tensor new_out;
    {
      eager_gil_scoped_release guard;
      // Deal with cases that decrease_axes is not empty
      // For example:
      // # x.shape: (2,3,4)
      // out = x[0, 0:2, None] # out.shape : (2, 1, 4)
      for (auto& axis : none_axes) {
        int len = 0;
        for (int da : decrease_axis) {
          if (da < axis) {
            len++;
J
Jiabin Yang 已提交
1261 1262
          }
        }
1263
        axis -= len;
J
Jiabin Yang 已提交
1264
      }
1265
      new_out = unsqueeze_ad_func(out, none_axes);
J
Jiabin Yang 已提交
1266
    }
1267
    return ToPyObject(new_out);
J
Jiabin Yang 已提交
1268 1269 1270 1271
  }

  // the index is a list
  if (list_select_flag) {
W
wanghuancoder 已提交
1272
    eager_gil_scoped_release guard;
W
wanghuancoder 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
    if (FLAGS_use_stride_kernel && list_select_idxs.size() == 1) {
      out = index_select_strided_ad_func(self->tensor, list_select_idxs[0], 0);
    } else {
      auto select_index =
          paddle::Tensor(egr::Controller::Instance().GenerateUniqueName());
      auto idx_tensor = std::make_shared<phi::DenseTensor>();
      select_index.set_impl(idx_tensor);
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(
          egr::Controller::Instance().GetExpectedPlace());
      paddle::framework::TensorFromVector(
          list_select_idxs, *dev_ctx, idx_tensor.get());
      out = index_select_ad_func(self->tensor, select_index, 0);
    }
J
Jiabin Yang 已提交
1286 1287 1288
  }

  return ToPyObject(out);
1289 1290 1291
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1292 1293
static PyObject* tensor__getitem_from_offset(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
1294 1295
                                             PyObject* kwargs) {
  EAGER_TRY
1296 1297 1298 1299 1300 1301 1302 1303
  phi::DenseTensor* ptr = nullptr;
  if (self->tensor.is_selected_rows()) {
    auto* selected_rows =
        static_cast<phi::SelectedRows*>(self->tensor.impl().get());
    ptr = static_cast<phi::DenseTensor*>(selected_rows->mutable_value());
  } else {
    ptr = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  }
1304 1305 1306
  PADDLE_ENFORCE_NOT_NULL(ptr,
                          platform::errors::InvalidArgument(
                              "%s is not a DenseTensor.", self->tensor.name()));
W
wanghuancoder 已提交
1307 1308
  const auto& tensor = *ptr;
  PADDLE_ENFORCE_EQ(
1309 1310
      tensor.IsInitialized(),
      true,
W
wanghuancoder 已提交
1311 1312 1313 1314 1315 1316 1317
      platform::errors::InvalidArgument(
          "Tensor of %s is Empty, please check if it has no data.",
          self->tensor.name()));

  const auto& tensor_dims = tensor.dims();

  std::vector<size_t> dims(tensor_dims.size());
W
wanghuancoder 已提交
1318
  std::vector<size_t> stride = phi::vectorize<size_t>(tensor.strides());
W
wanghuancoder 已提交
1319 1320 1321 1322 1323 1324 1325 1326

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    dims[i] = static_cast<size_t>(tensor_dims[i]);
    numel *= dims[i];
  }
  size_t offset = 0;
  if (PyTuple_Size(args) == 0) {
1327 1328
    PADDLE_ENFORCE_EQ(numel,
                      1,
W
wanghuancoder 已提交
1329 1330 1331 1332 1333 1334
                      platform::errors::InvalidArgument(
                          "only one element tensors can be converted to Python "
                          "scalars when no input coordinates"));
  } else if (PyTuple_Size(args) == 1) {
    offset = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
    PADDLE_ENFORCE_LT(
1335 1336
        offset,
        numel,
W
wanghuancoder 已提交
1337 1338 1339
        platform::errors::InvalidArgument(
            "index %d is out of bounds for size %d", offset, numel));
  } else {
1340 1341
    PADDLE_ENFORCE_EQ(PyTuple_Size(args),
                      dims.size(),
W
wanghuancoder 已提交
1342 1343 1344 1345 1346 1347
                      platform::errors::InvalidArgument(
                          "incorrect number of indices for Tensor"));

    for (Py_ssize_t i = 0; i < PyTuple_Size(args); ++i) {
      size_t index = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, i), i);
      PADDLE_ENFORCE_LT(
1348 1349
          index,
          dims[i],
W
wanghuancoder 已提交
1350
          platform::errors::InvalidArgument(
1351 1352 1353
              "index %d is out fo bounds for axis %d with size %d",
              index,
              i,
W
wanghuancoder 已提交
1354
              dims[i]));
W
wanghuancoder 已提交
1355
      offset += index * stride[i];
W
wanghuancoder 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
    }
  }
#define PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(_) \
  _(bool, DataType::BOOL)                     \
  _(int8_t, DataType::INT8)                   \
  _(uint8_t, DataType::UINT8)                 \
  _(int16_t, DataType::INT16)                 \
  _(uint16_t, DataType::UINT16)               \
  _(int32_t, DataType::INT32)                 \
  _(uint32_t, DataType::UINT32)               \
  _(int64_t, DataType::INT64)                 \
  _(uint64_t, DataType::UINT64)               \
  _(bfloat16, DataType::BFLOAT16)             \
  _(float16, DataType::FLOAT16)               \
  _(float, DataType::FLOAT32)                 \
  _(double, DataType::FLOAT64)                \
  _(complex64, DataType::COMPLEX64)           \
  _(complex128, DataType::COMPLEX128)

#define TENSOR_TO_PY_SCALAR(T, proto_type)                                   \
  if (tensor.dtype() == proto_type) {                                        \
    auto numpy_dtype = TensorDtype2NumpyDtype(proto_type);                   \
    T b = paddle::pybind::TensorGetElement<T>(tensor, offset);               \
1379 1380
    Py_intptr_t py_dims[paddle::framework::DDim::kMaxRank];    /* NOLINT */  \
    Py_intptr_t py_strides[paddle::framework::DDim::kMaxRank]; /* NOLINT */  \
W
wanghuancoder 已提交
1381 1382
    auto& api = pybind11::detail::npy_api::get();                            \
    PyObject* array = api.PyArray_NewFromDescr_(                             \
1383 1384
        api.PyArray_Type_,                                                   \
        api.PyArray_DescrFromType_(numpy_dtype),                             \
1385
        0,                                                                   \
1386 1387 1388
        py_dims,                                                             \
        py_strides,                                                          \
        nullptr,                                                             \
W
wanghuancoder 已提交
1389 1390 1391 1392 1393
        pybind11::detail::npy_api::NPY_ARRAY_ALIGNED_ |                      \
            pybind11::detail::npy_api::NPY_ARRAY_WRITEABLE_,                 \
        nullptr);                                                            \
    std::memcpy(                                                             \
        reinterpret_cast<void*>(pybind11::detail::array_proxy(array)->data), \
1394 1395
        static_cast<void*>(&b),                                              \
        sizeof(b));                                                          \
W
wanghuancoder 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
    return array;                                                            \
  }

  PD_FOR_EACH_DENSE_TENSOR_DATA_TYPE(TENSOR_TO_PY_SCALAR);
#undef TENSOR_TO_PY_SCALAR
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", tensor.dtype()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
static PyObject* tensor_method__setitem_eager_tensor(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Call __setitem_eager_tensor";

  auto self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());

  PyObject* _index = PyTuple_GET_ITEM(args, 0);
  PyObject* value_obj = PyTuple_GET_ITEM(args, 1);
  // NOTE(zhiqiu): PyTuple_Pack increases refcount while PyTuple_New
  // https://github.com/python/cpython/blob/24b63c695ae0a95b06379eaadace66735abac1e2/Objects/tupleobject.c#L251
  PyObject* index_ptr =
      !PyTuple_Check(_index) ? PyTuple_Pack(1, _index) : _index;
  DEFINE_PADDLE_SCOPE_GUARD([index_ptr, &_index]() {
    if (!PyTuple_Check(_index)) {
      Py_DECREF(index_ptr);
      VLOG(4) << "Call Py_DECREF";
    }
  });

  // 1. Check argumnets
  bool parse_index = true;

  // Check whether _index can be parsed.
  const int size = PyTuple_GET_SIZE(index_ptr);
  for (int dim = 0; dim < size; ++dim) {
    PyObject* slice_item = PyTuple_GetItem(index_ptr, dim);
    if (!(PyCheckInteger(slice_item) || PySlice_Check(slice_item) ||
          slice_item == Py_Ellipsis || slice_item == Py_None)) {
      parse_index = false;
      break;
    }
  }

  // 2. Call op set_value to speed up if the condition is met,
  // otherwise call TensorToPyArray.
  // TODO(liym27): Try not to call TensorToPyArray because it always
  // copys data to cpu place, which reduces performance.
  if (parse_index) {
    std::vector<int> axes, starts, ends, steps, decrease_axes, none_axes,
W
wanghuancoder 已提交
1447 1448
        infer_flags;
    std::vector<int64_t> list_select_idxs;
W
wanghuancoder 已提交
1449 1450
    // if index is a list, list_select_flag will be true
    bool list_select_flag = false;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    ParseIndexingSlice(self_tensor,
                       index_ptr,
                       &axes,
                       &starts,
                       &ends,
                       &steps,
                       &decrease_axes,
                       &none_axes,
                       &infer_flags,
                       &list_select_idxs,
                       &list_select_flag);
W
wanghuancoder 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

    framework::AttributeMap attrs = {{"axes", axes},
                                     {"starts", starts},
                                     {"ends", ends},
                                     {"steps", steps},
                                     {"decrease_axes", decrease_axes},
                                     {"none_axes", none_axes}};

    if (egr::Controller::Instance().HasGrad()) {
      PADDLE_ENFORCE_EQ(
1472
          egr::EagerUtils::IsLeafTensor(self->tensor) &&
W
wanghuancoder 已提交
1473
              !egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient(),
1474 1475 1476 1477 1478
          false,
          platform::errors::InvalidArgument(
              "Leaf Tensor (%s) that doesn't stop gradient can't use "
              "inplace strategy.",
              self->tensor.name()));
W
wanghuancoder 已提交
1479 1480
    }

1481
    paddle::Tensor value_tensor;
W
wanghuancoder 已提交
1482 1483 1484 1485

    if (PyCheckTensor(value_obj)) {
      value_tensor = reinterpret_cast<TensorObject*>(value_obj)->tensor;
    } else if (py::isinstance<py::array>(value_obj)) {
1486
      paddle::Tensor value_tensor_tmp(
W
wanghuancoder 已提交
1487 1488 1489 1490
          std::make_shared<phi::DenseTensor>(),
          egr::Controller::Instance().GenerateUniqueName());
      py::object value_obj_tmp(py::handle(value_obj), true);
      py::object value = value_obj_tmp;
1491
      if (self->tensor.dtype() == phi::DataType::FLOAT32) {
W
wanghuancoder 已提交
1492 1493 1494
        if (!py::isinstance<py::array_t<float>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<float>(value_obj_tmp);
        }
1495
      } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
W
wanghuancoder 已提交
1496 1497 1498
        if (!py::isinstance<py::array_t<double>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<double>(value_obj_tmp);
        }
1499
      } else if (self->tensor.dtype() == phi::DataType::INT32) {
W
wanghuancoder 已提交
1500 1501 1502
        if (!py::isinstance<py::array_t<int32_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int32_t>(value_obj_tmp);
        }
1503
      } else if (self->tensor.dtype() == phi::DataType::INT64) {
W
wanghuancoder 已提交
1504 1505 1506
        if (!py::isinstance<py::array_t<int64_t>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<int64_t>(value_obj_tmp);
        }
1507
      } else if (self->tensor.dtype() == phi::DataType::BOOL) {
W
wanghuancoder 已提交
1508 1509 1510
        if (!py::isinstance<py::array_t<bool>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<bool>(value_obj_tmp);
        }
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
        if (!py::isinstance<py::array_t<std::complex<float>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<float>>(
              value_obj_tmp);
        }
      } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
        if (!py::isinstance<py::array_t<std::complex<double>>>(value_obj_tmp)) {
          value = pybind11::detail::CastNumpyArray<std::complex<double>>(
              value_obj_tmp);
        }
W
wanghuancoder 已提交
1521 1522 1523 1524
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "When assign a numpy.np value to a paddle.Tensor, "
            "the data type of the paddle.Tensor must be bool, "
1525
            "float32, float64, complex64, complex128, int32 or int64, "
W
wanghuancoder 已提交
1526 1527 1528
            "please check the type of tensor."));
      }

W
wanghuancoder 已提交
1529 1530 1531 1532 1533
      SetTensorFromPyArray(
          static_cast<phi::DenseTensor*>(value_tensor_tmp.impl().get()),
          value,
          self->tensor.place(),
          false);
W
wanghuancoder 已提交
1534 1535 1536 1537 1538 1539 1540

      value_tensor = value_tensor_tmp;
    } else {
      py::object value_obj_tmp(py::handle(value_obj), true);
      // convert the value to self data type
      if (py::isinstance<py::float_>(value_obj_tmp) ||
          py::isinstance<py::int_>(value_obj_tmp) ||
1541 1542
          py::isinstance<py::bool_>(value_obj_tmp) ||
          PyComplex_Check(value_obj)) {
1543
        if (self->tensor.dtype() == phi::DataType::FLOAT32) {
1544 1545
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
1546
        } else if (self->tensor.dtype() == phi::DataType::FLOAT64) {
1547 1548
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<double>()};
1549
        } else if (self->tensor.dtype() == phi::DataType::INT32) {
1550 1551
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int32_t>()};
1552
        } else if (self->tensor.dtype() == phi::DataType::INT64) {
1553 1554
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<int64_t>()};
1555
        } else if (self->tensor.dtype() == phi::DataType::BOOL) {
1556 1557
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<bool>()};
1558
        } else if (self->tensor.dtype() == phi::DataType::FLOAT16) {
1559 1560 1561 1562 1563 1564 1565 1566
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<float>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX64) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<float>>()};
        } else if (self->tensor.dtype() == phi::DataType::COMPLEX128) {
          attrs["values"] = std::vector<paddle::experimental::Scalar>{
              value_obj_tmp.cast<std::complex<double>>()};
W
wanghuancoder 已提交
1567 1568 1569 1570
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "When assign a value to a paddle.Tensor, "
              "the data type of the paddle.Tensor must be bool, "
1571 1572
              "float32, float64, complex64, complex128, int32, int64 or "
              "float16, "
W
wanghuancoder 已提交
1573 1574 1575 1576 1577 1578 1579
              "please check the type of tensor."));
        }
        attrs["shape"] = std::vector<int64_t>{1};

      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Value type error. The assign value allows "
1580
            "numpy.ndarray, integer, float, complex  or bool, "
W
wanghuancoder 已提交
1581 1582 1583 1584 1585 1586 1587
            "but received %s.",
            Py_TYPE(value_obj)));
      }
    }
    {
      // Release gil and do tracing
      py::gil_scoped_release release;
1588
      // use inplace set_value_ operator
J
Jiabin Yang 已提交
1589 1590
      if (value_tensor.initialized() &&
          (self->tensor.dtype() != value_tensor.dtype())) {
1591
        paddle::small_vector<std::vector<paddle::Tensor>,
J
Jiabin Yang 已提交
1592 1593 1594 1595 1596 1597 1598
                             egr::kSlotSmallVectorSize>
            tmps = {{self->tensor}, {value_tensor}};
        auto amp_dtype = egr::GetAmpDestDtype("set_value", tmps);
        self->tensor = egr::EagerAmpAutoCast(
            self->tensor.name(), self->tensor, amp_dtype, "set_value");
        value_tensor = egr::EagerAmpAutoCast(
            value_tensor.name(), value_tensor, amp_dtype, "set_value");
1599 1600 1601
        if (self->tensor.dtype() != value_tensor.dtype()) {
          value_tensor = cast_ad_func(value_tensor, self->tensor.dtype());
        }
J
Jiabin Yang 已提交
1602
      }
1603 1604
      self->tensor = set_value__dygraph_function(
          self->tensor, value_tensor, {}, {}, {}, attrs);
1605 1606 1607 1608 1609 1610 1611 1612 1613
    }
    if (PyCheckTensor(value_obj)) {
      // pass the stop_gradient from value to tensor.
      // pass stop gradient should be done after CheckInplace in
      // set_value__dygraph_function.
      if (!egr::EagerUtils::autograd_meta(&value_tensor)->StopGradient() &&
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient()) {
        egr::EagerUtils::autograd_meta(&self->tensor)->SetStopGradient(false);
      }
W
wanghuancoder 已提交
1614 1615
    }
  } else {
1616
    auto self_numpy = TensorToPyArray(*self_tensor, true);
W
wanghuancoder 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
    VLOG(4) << "parse_index is false";
    if (PyCheckTensor(_index)) {
      VLOG(4) << "index is tensor";
      auto index_tensor = static_cast<phi::DenseTensor*>(
          reinterpret_cast<TensorObject*>(_index)->tensor.impl().get());
      auto index_numpy = TensorToPyArray(*index_tensor);
      self_numpy[index_numpy] = py::object(py::handle(value_obj), true);
    } else {
      VLOG(4) << "index is not tensor";
      self_numpy[_index] = py::object(py::handle(value_obj), true);
    }
1628
    if (!self->tensor.initialized()) {
W
wanghuancoder 已提交
1629
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1630 1631 1632 1633
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CUDAPlace(0)),
                           false);
W
wanghuancoder 已提交
1634
#else
1635 1636 1637 1638
      SetTensorFromPyArray(self_tensor,
                           self_numpy,
                           platform::Place(platform::CPUPlace()),
                           false);
W
wanghuancoder 已提交
1639 1640
#endif
    } else {
1641 1642
      SetTensorFromPyArray(
          self_tensor, self_numpy, self->tensor.place(), false);
W
wanghuancoder 已提交
1643 1644
    }
  }
1645 1646
  RETURN_PY_NONE

W
wanghuancoder 已提交
1647 1648 1649
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1650 1651
static PyObject* tensor_register_grad_hook(TensorObject* self,
                                           PyObject* args,
1652 1653 1654
                                           PyObject* kwargs) {
  EAGER_TRY
  int64_t hook_id;
1655
  if (egr::EagerUtils::IsLeafTensor(self->tensor)) {
1656
    VLOG(6) << "Register hook for leaf tensor: " << self->tensor.name();
1657 1658 1659 1660 1661

    auto autograd_meta = egr::EagerUtils::unsafe_autograd_meta(self->tensor);

    if (autograd_meta && !autograd_meta->StopGradient()) {
      if (!autograd_meta->GetMutableGradNode()) {
1662
        VLOG(6) << "Detected nullptr grad_node, Leaf tensor should have had "
1663 1664 1665 1666 1667 1668
                   "grad_node with type: GradNodeAccumulation.";
        autograd_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
      }
    }

1669 1670 1671 1672 1673 1674 1675 1676 1677
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();
    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    auto accumulation_grad_node =
        std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
    hook_id = accumulation_grad_node->RegisterGradientHook(
1678 1679
        rank_info.first,
        rank_info.second,
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        std::make_shared<PyTensorHook>(hook_func));

  } else {
    VLOG(6) << "Register hook for non leaf tensor: " << self->tensor.name();
    std::shared_ptr<egr::GradNodeBase> grad_node =
        egr::EagerUtils::grad_node(self->tensor);
    auto rank_info =
        egr::EagerUtils::unsafe_autograd_meta(self->tensor)->OutRankInfo();

    PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

    hook_id = grad_node->RegisterGradientHook(
1692 1693
        rank_info.first,
        rank_info.second,
1694 1695 1696 1697 1698 1699
        std::make_shared<PyTensorHook>(hook_func));
  }
  return ToPyObject(hook_id);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1700 1701
static PyObject* tensor_remove_grad_hook(TensorObject* self,
                                         PyObject* args,
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Remove the registered hook for tensor: " << self->tensor.name();
  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);

  int64_t hook_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);

  return ToPyObject(grad_node->RemoveGradientHook(hook_id));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
static PyObject* tensor_inplace_assign(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "inplace assign for tensor:" << self->tensor.name();
  PyObject* other = PyTuple_GET_ITEM(args, 0);
  PyObject* self_obj = reinterpret_cast<PyObject*>(self);
  ShareTensor(self_obj, other);
  RETURN_PY_NONE;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1726
PyDoc_STRVAR(tensor_method__register_reduce_hook__doc__,  // NOLINT
W
wanghuancoder 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
             R"DOC(_register_backward_hook($self, hook, /)
--

Registers a backward hook for current Tensor.

This hook will be called every time the gradient of current Tensor has been fully calculated.

There are two differences with `_register_grad_hook`:
1. This backward hook will be executed after the gradient accumulation completed across batches,
  but the hook registered by `_register_grad_hook` will be executed the gradient accumulation
  completed in current batch.
2. This backward hook function should have the following signature:

    hook() -> None

  It requires no input and no return value.

Args:
    hook(function): A backward hook to be registered for Tensor.gradient

Returns:
    None
)DOC");
1750 1751
static PyObject* tensor_register_reduce_hook(TensorObject* self,
                                             PyObject* args,
1752 1753 1754 1755 1756 1757
                                             PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Register reduce hook for tensor: " << self->tensor.name();

  std::shared_ptr<egr::GradNodeBase> grad_node =
      egr::EagerUtils::grad_node(self->tensor);
1758
  PADDLE_ENFORCE_EQ(egr::EagerUtils::IsLeafTensor(self->tensor),
1759
                    true,
1760 1761 1762 1763
                    platform::errors::InvalidArgument(
                        "Only can register backward hook for leaf Tensor."));
  PADDLE_ENFORCE_EQ(
      !egr::EagerUtils::unsafe_autograd_meta(self->tensor)->StopGradient(),
1764 1765 1766 1767
      true,
      platform::errors::InvalidArgument(
          "Cannot register backward hook on a Tensor that stop "
          "gradient."));
1768 1769
  PADDLE_ENFORCE(
      grad_node.get() != nullptr,
1770
      paddle::platform::errors::Fatal("Detected nullptr grad_node,"
1771 1772 1773 1774 1775 1776 1777
                                      "Leaf tensor should have had grad_node "
                                      "with type: GradNodeAccumulation."));
  PyObject* hook_func = PyTuple_GET_ITEM(args, 0);

  auto accumulation_grad_node =
      std::dynamic_pointer_cast<egr::GradNodeAccumulation>(grad_node);
  accumulation_grad_node->RegisterReduceHook(
1778
      std::make_shared<PyVoidHook>(hook_func));
1779

1780 1781
  RETURN_PY_NONE

1782 1783 1784
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1785 1786
static PyObject* tensor__set_grad_type(TensorObject* self,
                                       PyObject* args,
J
Jiabin Yang 已提交
1787
                                       PyObject* kwargs) {
1788 1789 1790
  EAGER_TRY
  auto var_type = pybind::CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensor =
1791
      egr::EagerUtils::autograd_meta(&self->tensor)->MutableGrad();
1792
  if (var_type == framework::proto::VarType::LOD_TENSOR) {
1793
    grad_tensor->set_impl(std::make_shared<phi::DenseTensor>());
1794
  } else if (var_type == framework::proto::VarType::SELECTED_ROWS) {
1795
    grad_tensor->set_impl(std::make_shared<phi::SelectedRows>());
1796
  }
1797 1798
  RETURN_PY_NONE

1799 1800 1801
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1802 1803
static PyObject* tensor__clear(TensorObject* self,
                               PyObject* args,
J
Jiabin Yang 已提交
1804 1805 1806
                               PyObject* kwargs) {
  EAGER_TRY
  self->tensor.reset();
1807 1808
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1809 1810 1811
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1812 1813 1814 1815 1816 1817 1818 1819 1820
static PyObject* tensor__clear_dataptr(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  self->tensor.set_impl(nullptr);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1821 1822
static PyObject* tensor__copy_gradient_from(TensorObject* self,
                                            PyObject* args,
J
Jiabin Yang 已提交
1823 1824 1825
                                            PyObject* kwargs) {
  EAGER_TRY
  auto src = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
1826
  if (self->tensor.initialized()) {
1827 1828
    PADDLE_ENFORCE_EQ(self->tensor.dtype(),
                      src.dtype(),
J
Jiabin Yang 已提交
1829 1830
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
1831 1832
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1833 1834 1835 1836 1837
    PADDLE_ENFORCE_EQ(self->tensor.impl()->type_info().id(),
                      src.impl()->type_info().id(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
1838 1839
                          self->tensor.name(),
                          src.name()));
J
Jiabin Yang 已提交
1840 1841 1842 1843
  }
  VLOG(6) << "Tensor copy gradient from: " << src.name();
  auto* p_grad = egr::EagerUtils::mutable_grad(self->tensor);
  if (p_grad) {
1844 1845
    PADDLE_ENFORCE_EQ(src.initialized(),
                      true,
J
Jiabin Yang 已提交
1846 1847 1848 1849
                      platform::errors::InvalidArgument(
                          "Tensor %s has not been initialized", src.name()));
    p_grad->set_impl(src.impl());
  }
1850 1851
  RETURN_PY_NONE

J
Jiabin Yang 已提交
1852 1853
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
1854

1855 1856 1857
static PyObject* tensor__use_gpudnn(TensorObject* self,
                                    PyObject* args,
                                    PyObject* kwargs) {
1858 1859 1860
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.defined() && self->tensor.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
1861
                     "function _use_gpudnn is only effective for DenseTensor"));
1862

1863
  bool use_gpudnn = pybind::CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
1864

1865
  // Set the same use_gpudnn attribute, return directly
1866 1867 1868 1869
  phi::DenseTensor* dense_tensor =
      static_cast<phi::DenseTensor*>(self->tensor.impl().get());
  phi::DenseTensorMeta* dense_tensor_meta =
      phi::DenseTensorUtils::GetMutableMeta(dense_tensor);
1870
  if (use_gpudnn == dense_tensor_meta->use_gpudnn) {
1871 1872 1873
    return ToPyObject(self->tensor);
  }

1874
  // Share all other members of Tensor except use_gpudnn
1875
  phi::DenseTensorMeta target_dense_meta = *dense_tensor_meta;
1876
  target_dense_meta.use_gpudnn = use_gpudnn;
1877 1878 1879 1880
  phi::DenseTensor target_dense_tensor;
  target_dense_tensor.ShareDataWith(*dense_tensor);
  target_dense_tensor.set_meta(target_dense_meta);
  // Construct returned tensor
1881
  paddle::Tensor target_tensor(
1882 1883 1884 1885
      std::make_shared<phi::DenseTensor>(target_dense_tensor),
      self->tensor.name());
  target_tensor.set_autograd_meta(self->tensor.mutable_autograd_meta());
  VLOG(4) << "Tensor: " << target_tensor.name()
1886
          << " set use_gpudnn = " << use_gpudnn;
1887 1888 1889 1890 1891

  return ToPyObject(target_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1892 1893
static PyObject* tensor_method_set_vocab(TensorObject* self,
                                         PyObject* args,
1894 1895
                                         PyObject* kwargs) {
  EAGER_TRY
1896
  using Vocab = paddle::framework::Vocab;
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
  auto vocab = CastPyArg2Vocab(PyTuple_GET_ITEM(args, 0), 0);
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Vocab>() = vocab;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_set_string_list(TensorObject* self,
                                               PyObject* args,
                                               PyObject* kwargs) {
  EAGER_TRY
1909
  using Strings = paddle::framework::Strings;
1910
  auto strings = CastPyArg2VectorOfString(PyTuple_GET_ITEM(args, 0), 0);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
  auto var_tensor = std::make_shared<egr::VariableCompatTensor>();
  *var_tensor->GetMutable<Strings>() = strings;
  self->tensor.set_impl(var_tensor);
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_map_tensor(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE_EQ(
1923 1924
      egr::IsVariableCompatTensor(self->tensor),
      true,
1925 1926
      paddle::platform::errors::Fatal(
          "this method is only effective for VariableCompatTensor"));
1927
  using Vocab = paddle::framework::Vocab;
1928 1929 1930 1931 1932 1933
  auto* var_tensor =
      static_cast<const egr::VariableCompatTensor*>(self->tensor.impl().get());
  return ToPyObject(var_tensor->Get<Vocab>());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
static PyObject* tensor_method_get_non_zero_nums(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
    return ToPyObject(sparse_coo_tensor->nnz());
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
    return ToPyObject(sparse_csr_tensor->nnz());
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

1955 1956 1957 1958 1959 1960 1961 1962 1963
static PyObject* tensor_method_get_non_zero_indices(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_coo_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCooTensor"));
  auto sparse_coo_tensor =
      std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1964
  paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
      sparse_coo_tensor->non_zero_indices()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_elements(TensorObject* self,
                                                     PyObject* args,
                                                     PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(
      self->tensor.is_sparse_coo_tensor() ||
          self->tensor.is_sparse_csr_tensor(),
      paddle::platform::errors::Fatal("this method is only effective for "
                                      "SparseCooTensor or SparseCsrTensor"));
  if (self->tensor.is_sparse_coo_tensor()) {
    auto sparse_coo_tensor =
        std::dynamic_pointer_cast<phi::SparseCooTensor>(self->tensor.impl());
1982
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1983 1984 1985 1986 1987
        sparse_coo_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  } else {
    auto sparse_csr_tensor =
        std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
1988
    paddle::Tensor tensor(std::make_shared<phi::DenseTensor>(
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        sparse_csr_tensor->non_zero_elements()));
    return ToPyObject(tensor);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_crows(TensorObject* self,
                                                  PyObject* args,
                                                  PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2004
  paddle::Tensor tensor(
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_crows()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_get_non_zero_cols(TensorObject* self,
                                                 PyObject* args,
                                                 PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_sparse_csr_tensor(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SparseCsrTensor"));
  auto sparse_csr_tensor =
      std::dynamic_pointer_cast<phi::SparseCsrTensor>(self->tensor.impl());
2019
  paddle::Tensor tensor(
2020 2021 2022 2023 2024
      std::make_shared<phi::DenseTensor>(sparse_csr_tensor->non_zero_cols()));
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
PyDoc_STRVAR(tensor_method_is_dense__doc__, R"DOC(is_dense($self, /)
--

Whether the Tensor is a Dense Tensor.

Returns:
    Whether the Tensor is a Dense Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dense())
)DOC");

2042 2043
static PyObject* tensor_method_is_dense(TensorObject* self,
                                        PyObject* args,
2044 2045 2046 2047 2048 2049 2050 2051 2052
                                        PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dense_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
PyDoc_STRVAR(tensor_method_is_dist__doc__, R"DOC(is_dist($self, /)
--

Whether the Tensor is a Distributed Tensor.

Returns:
    Whether the Tensor is a Distributed Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1.0], stop_gradient=False)
        print(x.is_dist()) # False
)DOC");

L
LiYuRio 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static PyObject* tensor_method_is_dist(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
  return ToPyObject(self->tensor.is_dist_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2081 2082
static PyObject* tensor_method_is_sparse(TensorObject* self,
                                         PyObject* args,
2083 2084
                                         PyObject* kwargs) {
  EAGER_TRY
2085 2086 2087
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2088 2089 2090 2091 2092
  return ToPyObject(self->tensor.is_sparse_coo_tensor() ||
                    self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2093 2094
static PyObject* tensor_method_is_sparse_coo(TensorObject* self,
                                             PyObject* args,
2095 2096
                                             PyObject* kwargs) {
  EAGER_TRY
2097 2098 2099
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2100 2101 2102 2103
  return ToPyObject(self->tensor.is_sparse_coo_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2104 2105
static PyObject* tensor_method_is_sparse_csr(TensorObject* self,
                                             PyObject* args,
2106 2107
                                             PyObject* kwargs) {
  EAGER_TRY
2108 2109 2110
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2111 2112 2113 2114
  return ToPyObject(self->tensor.is_sparse_csr_tensor());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2115 2116
static PyObject* tensor_method_to_sparse_csr(TensorObject* self,
                                             PyObject* args,
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
                                             PyObject* kwargs) {
  EAGER_TRY
  auto csr_tensor = self->tensor.to_sparse_csr();
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetStopGradient(
          egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
  egr::EagerUtils::autograd_meta(&csr_tensor)
      ->SetPersistable(
          egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
  return ToPyObject(csr_tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2130 2131 2132 2133 2134 2135 2136 2137 2138
static PyObject* tensor_method_is_same_shape(TensorObject* self,
                                             PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto other = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  return ToPyObject(self->tensor.shape() == other.shape());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2139 2140
static PyObject* tensor__inplace_version(TensorObject* self,
                                         PyObject* args,
2141 2142 2143 2144 2145 2146 2147 2148
                                         PyObject* kwargs) {
  EAGER_TRY
  uint32_t inplace_version = self->tensor.current_inplace_version();

  return ToPyObject(inplace_version);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2149 2150
PyDoc_STRVAR(tensor_method_element_size__doc__,  // NOLINT
             R"DOC(element_size($self, /)
W
wanghuancoder 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
--

Returns the size in bytes of an element in the Tensor.

Returns:
    int, The size in bytes of an element in the Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor(1, dtype='bool')
        x.element_size() # 1

        x = paddle.to_tensor(1, dtype='float16')
        x.element_size() # 2

        x = paddle.to_tensor(1, dtype='float32')
        x.element_size() # 4

        x = paddle.to_tensor(1, dtype='float64')
        x.element_size() # 8

        x = paddle.to_tensor(1, dtype='complex128')
        x.element_size() # 16
)DOC");

2179 2180
static PyObject* tensor_method_element_size(TensorObject* self,
                                            PyObject* args,
2181 2182
                                            PyObject* kwargs) {
  EAGER_TRY
2183
  uint32_t element_size = phi::SizeOf(self->tensor.dtype());
2184 2185 2186 2187 2188

  return ToPyObject(element_size);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2189
PyDoc_STRVAR(tensor_method__bump_inplace_version__doc__,  // NOLINT
W
wanghuancoder 已提交
2190 2191 2192 2193 2194 2195 2196 2197
             R"DOC(_bump_inplace_version($self, /)
--

**Notes**:
    **This API is ONLY available in Dygraph mode.**
    **This is a very low level API. Users should not use it directly. **
  Bump the version whenever the Tensor is modified through an inplace operation.
)DOC");
2198 2199 2200 2201 2202
static PyObject* tensor__bump_inplace_version(TensorObject* self,
                                              PyObject* args,
                                              PyObject* kwargs) {
  EAGER_TRY
  self->tensor.bump_inplace_version();
2203
  RETURN_PY_NONE
2204 2205 2206
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2207 2208 2209 2210
static PyObject* tensor_method_is_selected_rows(TensorObject* self,
                                                PyObject* args,
                                                PyObject* kwargs) {
  EAGER_TRY
2211 2212 2213
  if (!self->tensor.defined()) {
    return ToPyObject(false);
  }
2214 2215 2216 2217
  return ToPyObject(self->tensor.is_selected_rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2218 2219
static PyObject* tensor_method_get_rows(TensorObject* self,
                                        PyObject* args,
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
                                        PyObject* kwargs) {
  EAGER_TRY
  PADDLE_ENFORCE(self->tensor.is_selected_rows(),
                 paddle::platform::errors::Fatal(
                     "this method is only effective for SelectedRows"));
  auto selected_rows =
      std::dynamic_pointer_cast<phi::SelectedRows>(self->tensor.impl());
  return ToPyObject(selected_rows->rows());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static PyObject* tensor__reset_grad_inplace_version(TensorObject* self,
                                                    PyObject* args,
                                                    PyObject* kwargs) {
  EAGER_TRY
  Py_ssize_t args_num = PyTuple_Size(args);
  bool set_to_zero = true;
  if (args_num == (Py_ssize_t)1) {
    set_to_zero = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 0), 0);
  }

2241
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2242 2243 2244 2245
  if (grad && grad->defined() && grad->is_dense_tensor() &&
      grad->initialized()) {
    grad->reset_inplace_version(set_to_zero);
  }
2246 2247
  RETURN_PY_NONE

2248 2249 2250
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2251 2252
static PyObject* tensor_method__share_memory(TensorObject* self,
                                             PyObject* args,
W
wanghuancoder 已提交
2253 2254 2255
                                             PyObject* kwargs) {
  EAGER_TRY
#ifndef _WIN32
2256 2257
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
W
wanghuancoder 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
                    platform::errors::InvalidArgument(
                        "Sharing memory only support CPU Tensor currently"));
  // 1. get LoDTensor
  auto* t =
      std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl()).get();
  // 2. allocate shared memory
  void* data_ptr = t->data();
  size_t data_size =
      t->numel() *
      framework::SizeOfType(framework::TransToProtoVarType(t->dtype()));
  auto shared_writer_holder =
      memory::allocation::AllocateMemoryMapWriterAllocation(data_size);
  // 3. maintain mmap fd set & backup ipc_name
  const std::string& ipc_name = shared_writer_holder->ipc_name();
  memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);
  // 4. copy data & reset holder
2274 2275 2276 2277 2278
  memory::Copy(platform::CPUPlace(),
               shared_writer_holder->ptr(),
               platform::CPUPlace(),
               data_ptr,
               data_size);
W
wanghuancoder 已提交
2279 2280 2281 2282 2283
  t->ResetHolder(shared_writer_holder);
  return ToPyObject(t);
#else
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Sharing memory in Windows OS is not supported currently"));
2284 2285
  RETURN_PY_NONE

W
wanghuancoder 已提交
2286 2287 2288 2289
#endif
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2290 2291
static PyObject* tensor__offset(TensorObject* self,
                                PyObject* args,
2292 2293 2294 2295
                                PyObject* kwargs) {
  EAGER_TRY
  auto t = std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
  PADDLE_ENFORCE_EQ(
2296 2297
      t->IsInitialized(),
      true,
2298 2299 2300 2301 2302 2303 2304
      platform::errors::InvalidArgument("Tensor %s has not been initialized!",
                                        self->tensor.name()));

  return ToPyObject(t->offset());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2305 2306
static PyObject* tensor__grad_name(TensorObject* self,
                                   PyObject* args,
2307 2308
                                   PyObject* kwargs) {
  EAGER_TRY
2309
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2310 2311 2312 2313 2314 2315
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2316 2317 2318 2319
  return ToPyObject(grad->name());
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2320 2321
static PyObject* tensor__grad_value(TensorObject* self,
                                    PyObject* args,
2322 2323
                                    PyObject* kwargs) {
  EAGER_TRY
2324
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2325 2326 2327 2328 2329 2330
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2331 2332

  if (!grad->defined()) {
2333
    RETURN_PY_NONE
2334 2335
  }
  if (grad->is_dense_tensor()) {
2336
    auto* grad_tensor = static_cast<phi::DenseTensor*>(grad->impl().get());
2337 2338 2339 2340
    return ToPyObject(grad_tensor);
  } else {
    PADDLE_THROW(paddle::platform::errors::Fatal(
        "this method is only supported for DenseTensor"));
2341
    RETURN_PY_NONE
2342 2343 2344 2345
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2346 2347
static PyObject* tensor__unset_fake_empty(TensorObject* self,
                                          PyObject* args,
2348 2349
                                          PyObject* kwargs) {
  EAGER_TRY
2350
  paddle::Tensor* grad = egr::EagerUtils::mutable_grad(self->tensor);
2351 2352 2353 2354 2355 2356
  PADDLE_ENFORCE_EQ(
      grad != nullptr,
      true,
      platform::errors::InvalidArgument(
          "Detected nullptr grad. Please check if you have manually "
          "cleared the grad inside autograd_meta"));
2357

2358
  bool is_leaf = egr::EagerUtils::IsLeafTensor(self->tensor);
2359 2360 2361 2362 2363 2364 2365 2366 2367
  if (is_leaf) {
    std::static_pointer_cast<egr::GradNodeAccumulation>(
        egr::EagerUtils::grad_node(self->tensor))
        ->SetFakeEmpty(false);
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
PyDoc_STRVAR(tensor_data_ptr__doc__,
             R"DOC(data_ptr($self, /)
--

Returns the address of the first element of current Tensor.

Returns:
    int, The address of the first element of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        print(x.data_ptr())
)DOC");

2386 2387 2388 2389 2390
static PyObject* tensor_data_ptr(TensorObject* self,
                                 PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.initialized() && self->tensor.is_dense_tensor()) {
S
sneaxiy 已提交
2391 2392 2393 2394
    return ToPyObject(
        (int64_t)std::dynamic_pointer_cast<phi::DenseTensor>(  // NOLINT
            self->tensor.impl())
            ->data());
2395 2396 2397 2398 2399
  }
  RETURN_PY_NONE
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
static PyObject* tensor__grad_ivar(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  VLOG(6) << "Get grad for tensor: " << self->tensor.name();
  auto meta = egr::EagerUtils::nullable_autograd_meta(self->tensor);
  VLOG(6) << meta << " initialized: " << meta->Grad().initialized();
  if (meta && meta->Grad().initialized()) {
    return ToPyObject(meta->Grad());
  } else {
    RETURN_PY_NONE
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
PyDoc_STRVAR(tensor_get_strides__doc__,
             R"DOC(get_strides($self, /)
--

Returns the strides of current Tensor.

Returns:
    List, the strides of current Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.get_strides())
)DOC");

W
wanghuancoder 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
static PyObject* tensor_method_strides(TensorObject* self,
                                       PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  std::vector<int64_t> value;
  if (!self->tensor.defined() || !self->tensor.is_dense_tensor()) {
    return ToPyObject(value);
  }
  auto stride = self->tensor.strides();
  size_t rank = static_cast<size_t>(stride.size());
  value.resize(rank);
  for (size_t i = 0; i < rank; i++) {
    value[i] = stride[i];
  }
  return ToPyObject(value);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
PyDoc_STRVAR(tensor_contiguous__doc__,
             R"DOC(contiguous($self, /)
--

Returns a contiguous in memory tensor containing the same data as current Tensor.
If self tensor is already contiguous, this function returns the current Tensor.

Returns:
    Tensor, The contiguous Tensor.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        y = y.contiguous()
        print(y)
)DOC");

W
wanghuancoder 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
static PyObject* tensor_contiguous(TensorObject* self,
                                   PyObject* args,
                                   PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    if (dense_tensor->meta().is_contiguous()) {
      Py_INCREF(self);
      return reinterpret_cast<PyObject*>(self);
    } else {
      eager_gil_scoped_release guard;
      return ToPyObject(
          paddle::Tensor(std::make_shared<phi::DenseTensor>(std::move(
              paddle::experimental::Trans2Contiguous(*(dense_tensor.get()))))));
    }

  } else {
    Py_INCREF(self);
    return reinterpret_cast<PyObject*>(self);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

W
wanghuancoder 已提交
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
PyDoc_STRVAR(tensor_is_contiguous__doc__,
             R"DOC(is_contiguous($self, /)
--

Whether the Tensor is contiguous.

Returns:
    Bool, Whether the Tensor is contiguous.

Examples:
    .. code-block:: python

        import paddle

        x = paddle.to_tensor([1, 2, 3])
        y = x[1]
        print(y.is_contiguous())
)DOC");
W
wanghuancoder 已提交
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
static PyObject* tensor_is_contiguous(TensorObject* self,
                                      PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  if (self->tensor.is_dense_tensor()) {
    auto dense_tensor =
        std::dynamic_pointer_cast<phi::DenseTensor>(self->tensor.impl());
    return ToPyObject(dense_tensor->meta().is_contiguous());
  } else {
    return ToPyObject(true);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

2529
#if defined(PADDLE_WITH_CUDA)
2530 2531
static PyObject* tensor_method__uva(TensorObject* self,
                                    PyObject* args,
2532 2533 2534
                                    PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in tensor_method__uva.";
2535 2536
  PADDLE_ENFORCE_EQ(self->tensor.is_dense_tensor(),
                    true,
W
Weilong Wu 已提交
2537 2538 2539
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "DenseTensor currently."));
2540 2541
  PADDLE_ENFORCE_EQ(platform::is_cpu_place(self->tensor.place()),
                    true,
2542 2543 2544 2545
                    platform::errors::InvalidArgument(
                        "Unified virtual addressing only support "
                        "CPU Tensor currently."));
  int device_id = pybind::CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
2546
  auto* self_tensor = static_cast<phi::DenseTensor*>(self->tensor.impl().get());
2547 2548
  tensor_uva(self_tensor, device_id);

2549 2550
  RETURN_PY_NONE

2551 2552 2553
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
#endif
J
Jack Zhou 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565
static PyObject* tensor_method__is_string_tensor_hold_allocation(
    TensorObject* self, PyObject* args, PyObject* kwargs) {
  EAGER_TRY
  auto string_tensor =
      std::dynamic_pointer_cast<phi::StringTensor>(self->tensor.impl());
  if (string_tensor) {
    return ToPyObject(string_tensor->initialized());
  } else {
    return ToPyObject(false);
  }
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
2566

2567
PyMethodDef variable_methods[] = {  // NOLINT
2568
    {"numpy",
2569
     (PyCFunction)(void (*)())tensor_method_numpy,
2570
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2571
     tensor_method_numpy__doc__},
2572
    {"_is_initialized",
2573
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2574
     METH_VARARGS | METH_KEYWORDS,
2575
     nullptr},
W
wanghuancoder 已提交
2576
    {"_is_dense_tensor_hold_allocation",
2577 2578
     (PyCFunction)(void (*)(
         void))tensor_method__is_dense_tensor_hold_allocation,
2579
     METH_VARARGS | METH_KEYWORDS,
2580
     nullptr},
2581
    {"_copy_to",
2582
     (PyCFunction)(void (*)())tensor_method__copy_to,
2583
     METH_VARARGS | METH_KEYWORDS,
2584
     nullptr},
2585
    {"copy_",
2586
     (PyCFunction)(void (*)())tensor_method_copy_,
2587
     METH_VARARGS | METH_KEYWORDS,
2588
     nullptr},
2589
    {"clone",
2590
     (PyCFunction)(void (*)())tensor_method_clone,
2591
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2592
     tensor_method_clone__doc__},
2593
    {"reconstruct_from_",
2594
     (PyCFunction)(void (*)())tensor_method_reconstruct_from_,
2595
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2596
     tensor_reconstruct_from___doc__},
2597
    {"retain_grads",
2598
     (PyCFunction)(void (*)())tensor_retain_grads,
2599
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2600
     tensor_method_retain_grads__doc__},
2601
    {"clear_gradient",
2602
     (PyCFunction)(void (*)())tensor_clear_gradient,
2603
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2604
     tensor_clear_gradient__doc__},
2605
    {"is_dense",
2606
     (PyCFunction)(void (*)())tensor_method_is_dense,
2607
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2608
     tensor_method_is_dense__doc__},
L
LiYuRio 已提交
2609
    {"is_dist",
2610
     (PyCFunction)(void (*)())tensor_method_is_dist,
L
LiYuRio 已提交
2611
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2612
     tensor_method_is_dist__doc__},
2613
    {"_zero_grads",
2614
     (PyCFunction)(void (*)())tensor__zero_grads,
2615
     METH_VARARGS | METH_KEYWORDS,
2616
     nullptr},
2617
    {"_share_buffer_to",
2618
     (PyCFunction)(void (*)())tensor__share_buffer_to,
2619
     METH_VARARGS | METH_KEYWORDS,
2620
     nullptr},
2621
    {"_is_shared_buffer_with",
2622
     (PyCFunction)(void (*)())tensor__is_shared_buffer_with,
2623
     METH_VARARGS | METH_KEYWORDS,
2624
     nullptr},
2625
    {"_share_underline_tensor_to",
2626
     (PyCFunction)(void (*)())tensor__share_underline_tensor_to,
2627
     METH_VARARGS | METH_KEYWORDS,
2628
     nullptr},
2629
    {"_is_shared_underline_tensor_with",
2630
     (PyCFunction)(void (*)())tensor__is_shared_underline_tensor_with,
2631
     METH_VARARGS | METH_KEYWORDS,
2632
     nullptr},
2633
    {"detach",
2634
     (PyCFunction)(void (*)())tensor_method_detach,
2635
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2636
     tensor_method_detach__doc__},
W
wanghuancoder 已提交
2637 2638 2639
    {"detach_",
     (PyCFunction)(void (*)(void))tensor_method_detach_,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2640
     tensor_method_detach___doc__},
2641
    {"get_tensor",
2642
     (PyCFunction)(void (*)())tensor_method_get_underline_tensor,
2643
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2644
     tensor_method_get_tensor__doc__},
2645
    {"get_selected_rows",
2646
     (PyCFunction)(void (*)())tensor_method_get_underline_selected_rows,
2647
     METH_VARARGS | METH_KEYWORDS,
2648
     nullptr},
2649
    {"_get_tensor_from_selected_rows",
2650
     (PyCFunction)(void (*)())tensor_method__get_tensor_from_selected_rows,
2651
     METH_VARARGS | METH_KEYWORDS,
2652
     nullptr},
J
Jiabin Yang 已提交
2653
    {"_getitem_index_not_tensor",
2654
     (PyCFunction)(void (*)())tensor__getitem_index_not_tensor,
2655
     METH_VARARGS | METH_KEYWORDS,
2656
     nullptr},
W
wanghuancoder 已提交
2657
    {"_getitem_from_offset",
2658
     (PyCFunction)(void (*)())tensor__getitem_from_offset,
2659
     METH_VARARGS | METH_KEYWORDS,
2660
     nullptr},
W
wanghuancoder 已提交
2661
    {"__setitem_eager_tensor__",
2662
     (PyCFunction)(void (*)())tensor_method__setitem_eager_tensor,
2663
     METH_VARARGS | METH_KEYWORDS,
2664
     nullptr},
2665
    {"_register_grad_hook",
2666
     (PyCFunction)(void (*)())tensor_register_grad_hook,
2667
     METH_VARARGS | METH_KEYWORDS,
2668
     nullptr},
2669 2670 2671 2672
    {"_inplace_assign",  // NOTE(xiongkun03): only used in sot.
     (PyCFunction)(void (*)())tensor_inplace_assign,
     METH_VARARGS | METH_KEYWORDS,
     nullptr},
2673
    {"_remove_grad_hook",
2674
     (PyCFunction)(void (*)())tensor_remove_grad_hook,
2675
     METH_VARARGS | METH_KEYWORDS,
2676
     nullptr},
2677
    {"_register_backward_hook",
2678
     (PyCFunction)(void (*)())tensor_register_reduce_hook,
2679
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2680
     tensor_method__register_reduce_hook__doc__},
2681
    {"_set_grad_type",
2682
     (PyCFunction)(void (*)())tensor__set_grad_type,
2683
     METH_VARARGS | METH_KEYWORDS,
2684
     nullptr},
2685
    {"_clear",
2686
     (PyCFunction)(void (*)())tensor__clear,
2687
     METH_VARARGS | METH_KEYWORDS,
2688
     nullptr},
2689
    {"_clear_dataptr",
2690
     (PyCFunction)(void (*)())tensor__clear_dataptr,
2691
     METH_VARARGS | METH_KEYWORDS,
2692
     nullptr},
J
Jiabin Yang 已提交
2693
    {"_copy_gradient_from",
2694
     (PyCFunction)(void (*)())tensor__copy_gradient_from,
2695
     METH_VARARGS | METH_KEYWORDS,
2696
     nullptr},
2697
    {"_tensor_use_gpudnn",
2698
     (PyCFunction)(void (*)())tensor__use_gpudnn,
2699
     METH_VARARGS | METH_KEYWORDS,
2700
     nullptr},
2701 2702
    /** the methods to adapt old dygraph, will be removed in the future **/
    {"set_string_list",
2703
     (PyCFunction)(void (*)())tensor_method_set_string_list,
2704
     METH_VARARGS | METH_KEYWORDS,
2705
     nullptr},
2706
    {"set_vocab",
2707
     (PyCFunction)(void (*)())tensor_method_set_vocab,
2708
     METH_VARARGS | METH_KEYWORDS,
2709
     nullptr},
2710
    {"get_map_tensor",
2711
     (PyCFunction)(void (*)())tensor_method_get_map_tensor,
2712
     METH_VARARGS | METH_KEYWORDS,
2713
     nullptr},
2714
    /***the method of sparse tensor****/
2715
    {"nnz",
2716
     (PyCFunction)(void (*)())tensor_method_get_non_zero_nums,
2717
     METH_VARARGS | METH_KEYWORDS,
2718
     nullptr},
2719
    {"indices",
2720
     (PyCFunction)(void (*)())tensor_method_get_non_zero_indices,
2721
     METH_VARARGS | METH_KEYWORDS,
2722
     nullptr},
2723
    {"values",
2724
     (PyCFunction)(void (*)())tensor_method_get_non_zero_elements,
2725
     METH_VARARGS | METH_KEYWORDS,
2726
     nullptr},
2727
    {"crows",
2728
     (PyCFunction)(void (*)())tensor_method_get_non_zero_crows,
2729
     METH_VARARGS | METH_KEYWORDS,
2730
     nullptr},
2731
    {"cols",
2732
     (PyCFunction)(void (*)())tensor_method_get_non_zero_cols,
2733
     METH_VARARGS | METH_KEYWORDS,
2734
     nullptr},
2735
    {"is_sparse",
2736
     (PyCFunction)(void (*)())tensor_method_is_sparse,
2737
     METH_VARARGS | METH_KEYWORDS,
2738
     nullptr},
2739
    {"is_sparse_coo",
2740
     (PyCFunction)(void (*)())tensor_method_is_sparse_coo,
2741
     METH_VARARGS | METH_KEYWORDS,
2742
     nullptr},
2743
    {"is_sparse_csr",
2744
     (PyCFunction)(void (*)())tensor_method_is_sparse_csr,
2745
     METH_VARARGS | METH_KEYWORDS,
2746
     nullptr},
2747
    {"is_same_shape",
2748
     (PyCFunction)(void (*)())tensor_method_is_same_shape,
2749
     METH_VARARGS | METH_KEYWORDS,
2750
     nullptr},
2751
    {"to_sparse_csr",
2752
     (PyCFunction)(void (*)())tensor_method_to_sparse_csr,
2753
     METH_VARARGS | METH_KEYWORDS,
2754
     nullptr},
2755
    {"element_size",
2756
     (PyCFunction)(void (*)())tensor_method_element_size,
2757
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2758
     tensor_method_element_size__doc__},
2759
    /***the method of sparse tensor****/
2760
    {"_inplace_version",
2761
     (PyCFunction)(void (*)())tensor__inplace_version,
2762
     METH_VARARGS | METH_KEYWORDS,
2763
     nullptr},
2764
    {"_bump_inplace_version",
2765
     (PyCFunction)(void (*)())tensor__bump_inplace_version,
2766
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2767
     tensor_method__bump_inplace_version__doc__},
2768
    {"is_selected_rows",
2769
     (PyCFunction)(void (*)())tensor_method_is_selected_rows,
2770
     METH_VARARGS | METH_KEYWORDS,
2771
     nullptr},
2772
    {"rows",
2773
     (PyCFunction)(void (*)())tensor_method_get_rows,
2774
     METH_VARARGS | METH_KEYWORDS,
2775
     nullptr},
2776
    {"_reset_grad_inplace_version",
2777
     (PyCFunction)(void (*)())tensor__reset_grad_inplace_version,
2778
     METH_VARARGS | METH_KEYWORDS,
2779
     nullptr},
2780
    {"_share_memory",
2781
     (PyCFunction)(void (*)())tensor_method__share_memory,
2782
     METH_VARARGS | METH_KEYWORDS,
2783
     nullptr},
2784
    {"_offset",
2785
     (PyCFunction)(void (*)())tensor__offset,
2786
     METH_VARARGS | METH_KEYWORDS,
2787
     nullptr},
2788
    {"_grad_name",
2789
     (PyCFunction)(void (*)())tensor__grad_name,
2790
     METH_VARARGS | METH_KEYWORDS,
2791
     nullptr},
2792
    {"_grad_value",
2793
     (PyCFunction)(void (*)())tensor__grad_value,
2794
     METH_VARARGS | METH_KEYWORDS,
2795
     nullptr},
2796
    {"_unset_fake_empty",
2797
     (PyCFunction)(void (*)())tensor__unset_fake_empty,
2798
     METH_VARARGS | METH_KEYWORDS,
2799
     nullptr},
2800
    {"data_ptr",
2801
     (PyCFunction)(void (*)())tensor_data_ptr,
2802
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2803
     tensor_data_ptr__doc__},
W
wanghuancoder 已提交
2804
    {"_grad_ivar",
2805
     (PyCFunction)(void (*)())tensor__grad_ivar,
W
wanghuancoder 已提交
2806
     METH_VARARGS | METH_KEYWORDS,
2807
     nullptr},
W
wanghuancoder 已提交
2808 2809 2810
    {"contiguous",
     (PyCFunction)(void (*)(void))tensor_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2811
     tensor_contiguous__doc__},
W
wanghuancoder 已提交
2812 2813 2814
    {"is_contiguous",
     (PyCFunction)(void (*)(void))tensor_is_contiguous,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2815
     tensor_is_contiguous__doc__},
W
wanghuancoder 已提交
2816 2817 2818
    {"get_strides",
     (PyCFunction)(void (*)(void))tensor_method_strides,
     METH_VARARGS | METH_KEYWORDS,
W
wanghuancoder 已提交
2819
     tensor_get_strides__doc__},
2820
#if defined(PADDLE_WITH_CUDA)
2821
    {"_tensor_uva",
2822
     (PyCFunction)(void (*)())tensor_method__uva,
2823
     METH_VARARGS | METH_KEYWORDS,
2824
     nullptr},
2825
#endif
2826
    {nullptr, nullptr, 0, nullptr}};
2827

J
Jack Zhou 已提交
2828
// variable_methods for core.eager.StringTensor
2829
PyMethodDef string_tensor_variable_methods[] = {  // NOLINT
J
Jack Zhou 已提交
2830
    {"numpy",
2831
     (PyCFunction)(void (*)())tensor_method_numpy_for_string_tensor,
2832
     METH_VARARGS | METH_KEYWORDS,
2833
     nullptr},
J
Jack Zhou 已提交
2834
    {"_is_initialized",
2835
     (PyCFunction)(void (*)())tensor_method__is_initialized,
2836
     METH_VARARGS | METH_KEYWORDS,
2837
     nullptr},
J
Jack Zhou 已提交
2838
    {"_is_string_tensor_hold_allocation",
2839 2840
     (PyCFunction)(void (*)(
         void))tensor_method__is_string_tensor_hold_allocation,
2841
     METH_VARARGS | METH_KEYWORDS,
2842
     nullptr},
J
Jack Zhou 已提交
2843
    // TODO(zhoushunjie): Need to add _copy_to, copy_ for StringTensor.
2844
    {nullptr, nullptr, 0, nullptr}};
J
Jack Zhou 已提交
2845

2846 2847
}  // namespace pybind
}  // namespace paddle