op_param.h 105.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
26
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
27
#include "framework/variable.h"
Z
zhangyang 已提交
28 29 30 31 32 33 34

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
35
#endif
朔-望's avatar
朔-望 已提交
36

C
Chon 已提交
37 38 39 40
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
41 42
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
43
#endif
朔-望's avatar
朔-望 已提交
44 45

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
46 47
namespace operators {

W
wangliu 已提交
48 49 50 51 52
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
53
using framework::Variable;
W
wangliu 已提交
54 55
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
56

57
using framework::DtypeTensorTrait;
L
liuruilong 已提交
58

L
liuruilong 已提交
59
class OpParam {
60 61
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
62 63
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
64

65 66
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
67

C
Chon 已提交
68 69 70 71 72 73
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
74
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
79 80 81 82 83 84 85

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

86 87 88 89 90
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

91 92 93 94 95 96 97 98 99
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
100 101 102 103 104
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

132 133 134 135
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
136 137 138 139 140 141

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

142 143 144 145 146
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
147 148 149 150 151
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

152 153 154 155 156
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
157 158 159 160
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
161 162 163 164 165 166 167 168 169 170 171 172
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
173 174 175 176
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
193

E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
204 205 206 207
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
208

209
  template <typename T>
W
wangliu 已提交
210 211
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
212 213 214
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
215 216 217 218 219
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
220 221 222 223 224 225
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
226 227 228 229 230
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234 235 236 237 238 239 240 241
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258 259
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

260 261 262 263 264
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

270 271 272 273 274
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
275 276 277 278 279 280
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

281 282 283 284 285
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
286 287 288 289 290 291
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
292 293 294 295 296 297
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
298 299 300 301 302
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
303 304 305 306 307
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

314 315 316 317 318 319 320 321 322 323 324
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
325
  static const T GetAttr(const string &key, const AttributeMap &map) {
326 327
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
328 329
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
330 331
    return ((Attribute)map.at(key)).GetString();
  }
332

333 334 335 336
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

337
  template <typename T>
W
wangliu 已提交
338
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
339
                        const Scope &scope) {
W
wangliu 已提交
340 341
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
342 343 344 345 346 347
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
348
    }
349
  }
朔-望's avatar
朔-望 已提交
350

E
eclipsess 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

364
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
365
                            int index) {
366 367
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

386
  template <typename T>
W
wangliu 已提交
387 388 389
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
390 391
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
392
    vector<T *> var_res;
393 394 395
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
396
    }
397 398
    return var_res;
  }
E
eclipsess 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
412 413
};

414 415 416 417 418 419
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
420
template <typename Dtype>
421
class ConvParam : public OpParam {
N
nhzlx 已提交
422 423 424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
425
 public:
426
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
427 428 429 430
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
431
    if (outputs.count("Output")) {
432
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
433 434 435 436 437
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
438
  }
朔-望's avatar
朔-望 已提交
439

440
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
441

442
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
443

444
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
445

W
wangliu 已提交
446
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
447

W
wangliu 已提交
448
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
449

W
wangliu 已提交
450
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
451

H
hjchen2 已提交
452 453 454
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
455 456
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
457 458
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
459
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
460
    EXEC_GEMM_INT8,
H
hjchen2 已提交
461
    EXEC_DEPTHWISE3x3_INT8,
462
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
463 464
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
465 466 467 468 469
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
470
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
471 472 473 474
  };

  ExecMode &ExecMode() const { return exec_mode_; }

475
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
476

477 478 479 480 481 482 483
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
484
 public:
485 486 487 488
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
489 490 491
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
492
  mutable enum ExecMode exec_mode_;
493
  int groups;
494 495 496 497

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
498 499 500

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
501
 public:
Z
zhangyang 已提交
502 503 504 505 506
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
507 508 509 510 511 512 513

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
514
#endif
朔-望's avatar
朔-望 已提交
515
};
N
nhzlx 已提交
516 517
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
518

N
nhzlx 已提交
519
template <typename Dtype>
520
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
521 522 523
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
524
 public:
525
  ElementwiseAddParam(const VariableNameMap &inputs,
526
                      const VariableNameMap &outputs, const AttributeMap &attrs,
527 528 529 530 531
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
532 533 534
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
535
  const GType *InputX() const { return input_x_; }
536

xiebaiyuan's avatar
xiebaiyuan 已提交
537
  const GType *InputY() const { return input_y_; }
538

xiebaiyuan's avatar
xiebaiyuan 已提交
539
  GType *Out() const { return out_; }
540 541 542

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
543
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
544 545 546
  GType *input_x_;
  GType *input_y_;
  GType *out_;
547
  int axis_;
Z
zhangyang 已提交
548 549 550
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
551
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
552 553

 public:
H
hanbuhe 已提交
554 555
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
556 557 558 559

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
560
#endif
朔-望's avatar
朔-望 已提交
561 562
};

E
eclipsess 已提交
563
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
564
template <typename Dtype>
565
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
566 567 568 569 570 571
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
572 573 574 575 576
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
593 594 595 596 597 598
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
599
};
S
suiyang 已提交
600
#endif
E
eclipsess 已提交
601

602
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
603 604
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
605 606
#endif

607
#ifdef ELEMENTWISESUB_OP
608
template <typename Dtype>
609
class ElementwiseSubParam : public OpParam {
610 611 612 613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
616 617 618 619 620
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
638
#endif
639

L
liuruilong 已提交
640
#ifdef MUL_OP
N
nhzlx 已提交
641
template <typename Dtype>
642
class MulParam : public OpParam {
N
nhzlx 已提交
643 644 645
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
646
 public:
647
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
648 649 650 651 652
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
653 654 655
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
656

xiebaiyuan's avatar
xiebaiyuan 已提交
657
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
658

xiebaiyuan's avatar
xiebaiyuan 已提交
659
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
664

665
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
666

朔-望's avatar
朔-望 已提交
667
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
668 669 670
  GType *input_x_;
  GType *input_y_;
  GType *out_;
671 672
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
673
};
L
liuruilong 已提交
674
#endif
朔-望's avatar
朔-望 已提交
675

L
liuruilong 已提交
676
#ifdef CONCAT_OP
N
nhzlx 已提交
677
template <typename Dtype>
朔-望's avatar
朔-望 已提交
678
class ConcatParam : public OpParam {
N
nhzlx 已提交
679 680 681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
682
 public:
683
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
684 685 686 687
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
688
    axis_ = GetAttr<int>("axis", attrs);
689
    original_output_dims_size_ = inputs_[0]->dims().size();
690
  }
朔-望's avatar
朔-望 已提交
691

N
nhzlx 已提交
692
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
693

xiebaiyuan's avatar
xiebaiyuan 已提交
694
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
695

696
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
697

698
 public:
N
nhzlx 已提交
699
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
700
  GType *out_;
701
  int axis_;
702
  int original_output_dims_size_;
Z
zhangyang 已提交
703 704 705 706 707 708 709 710 711
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
712
};
L
liuruilong 已提交
713
#endif
朔-望's avatar
朔-望 已提交
714

E
eclipsess 已提交
715 716 717 718 719 720 721 722
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
723 724 725 726 727 728
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
747
#ifdef LRN_OP
N
nhzlx 已提交
748
template <typename Dtype>
E
eclipsess 已提交
749
class LrnParam : public OpParam {
N
nhzlx 已提交
750 751 752
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
753
 public:
754
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
755 756 757 758 759
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
760 761 762 763
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
764
    data_format_ = GetStringAttr("data_format", attrs);
765
  }
E
eclipsess 已提交
766

767
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
768

769
  GType *Out() const { return out_; }
E
eclipsess 已提交
770

771
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
772

773
  const int &N() const { return n_; }
E
eclipsess 已提交
774

775
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
776

777
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
778

779
  const float &K() const { return k_; }
E
eclipsess 已提交
780

W
wangliu 已提交
781
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
782

朔-望's avatar
朔-望 已提交
783
 private:
784 785 786
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
787 788 789 790
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
791
  string data_format_;
E
eclipsess 已提交
792
};
L
liuruilong 已提交
793 794
#endif

Z
zhaojiaying01 已提交
795 796
#ifdef NORM_OP
template <typename Dtype>
797
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
798 799 800 801 802
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
803 804 805 806 807
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
808 809 810 811
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

812
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
813

814
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
815

816
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
817 818 819 820 821 822

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
823 824 825
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
826 827 828 829 830
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
831
#ifdef BATCHNORM_OP
N
nhzlx 已提交
832
template <typename Dtype>
833
class BatchNormParam : public OpParam {
N
nhzlx 已提交
834 835 836
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
837
 public:
838
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
839 840 841 842 843 844 845 846
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
847 848
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
849
    //    is_test_ = GetAttr<bool>("is_test", attrs);
850
  }
E
eclipsess 已提交
851

852
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
853

854
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
855

856
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
857

858
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
859

860
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
861

862
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
863

864
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
865

866
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
867

868
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
869

W
wangliu 已提交
870
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
871

872
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
873

874
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
875

876
  const GType *NewScale() const { return new_scale_; }
877

878
  const GType *NewBias() const { return new_bias_; }
879

朔-望's avatar
朔-望 已提交
880
 private:
881 882 883 884 885 886
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
887 888 889
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
890
  string data_format_;
891 892
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
893
};
L
liuruilong 已提交
894 895 896
#endif

#ifdef POOL_OP
N
nhzlx 已提交
897
template <typename Dtype>
898
class PoolParam : public OpParam {
N
nhzlx 已提交
899 900 901
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
902
 public:
903
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
904 905 906
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
907

908
    output_ = OutFrom<GType>(outputs, *scope);
909
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
910 911 912
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
913
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
914
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
915 916 917 918 919 920

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
921
  }
922

923
  const GType *Input() const { return input_; }
924

925
  GType *Output() const { return output_; }
926

W
wangliu 已提交
927
  const string &PoolingType() const { return pooling_type_; }
928

W
wangliu 已提交
929
  const vector<int> &Ksize() const { return ksize_; }
930

W
wangliu 已提交
931
  const vector<int> &Strides() const { return strides_; }
932

W
wangliu 已提交
933
  const vector<int> &Paddings() const { return paddings_; }
934

935
  bool isCeilMode() const { return ceil_mode_; }
936

Z
zhangyang 已提交
937
  bool isGlobalPooling() const { return global_pooling_; }
938

939 940
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
941
 private:
942 943
  GType *input_;
  GType *output_;
W
wangliu 已提交
944 945 946 947
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
948
  bool ceil_mode_;
949
  bool global_pooling_ = false;
950
  bool exclusive_ = true;
Z
zhangyang 已提交
951
#ifdef PADDLE_MOBILE_FPGA
952 953

 private:
H
hanbuhe 已提交
954
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
955 956

 public:
H
hanbuhe 已提交
957 958
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
959
#endif
960
};
L
liuruilong 已提交
961 962 963
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
964
template <typename Dtype>
E
eclipsess 已提交
965
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
966 967 968
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
969 970
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
971 972 973 974 975 976
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
977 978 979 980
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
981 982 983 984

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
985 986
    } else {
      min_max_aspect_ratios_order_ = false;
987
    }
E
eclipsess 已提交
988 989 990 991 992 993
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
994
  const GType *Input() const { return input_; }
E
eclipsess 已提交
995

996
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
997

998
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
999

1000
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1001

W
wangliu 已提交
1002
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1003

W
wangliu 已提交
1004
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1005

W
wangliu 已提交
1006
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1007

W
wangliu 已提交
1008
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1020 1021 1022 1023
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1024
 private:
1025 1026 1027 1028
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1029 1030 1031 1032
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1033 1034 1035 1036 1037
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1038
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1039
};
L
liuruilong 已提交
1040
#endif
E
eclipsess 已提交
1041

L
liuruilong 已提交
1042
#ifdef BOXCODER_OP
N
nhzlx 已提交
1043
template <typename Dtype>
E
eclipsess 已提交
1044
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1045 1046 1047
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1048 1049
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1050 1051 1052 1053 1054 1055
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1056
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1057
  }
1058
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1059

1060
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1061

1062
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1063

1064
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1065 1066 1067 1068

  const std::string &CodeType() const { return code_type_; }

 private:
1069 1070 1071 1072
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1073 1074
  std::string code_type_;
};
L
liuruilong 已提交
1075
#endif
W
wangliu 已提交
1076

L
liuruilong 已提交
1077
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1078
template <typename Dtype>
W
wangliu 已提交
1079
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1080 1081 1082
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1083 1084
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1085 1086 1087 1088
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1089
  }
H
hjchen2 已提交
1090 1091
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1092 1093

 private:
H
hjchen2 已提交
1094 1095
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1096 1097 1098

#ifdef PADDLE_MOBILE_FPGA

1099 1100
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1101
 private:
1102
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1103 1104 1105
  fpga::BypassArgs fpga_bypass_args;

 public:
1106
  GType *FloatInput() const {
H
hanbuhe 已提交
1107 1108
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1109
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1110 1111
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1124
#endif
W
wangliu 已提交
1125
};
L
liuruilong 已提交
1126
#endif
W
wangliu 已提交
1127

L
liuruilong 已提交
1128
#ifdef SIGMOID_OP
N
nhzlx 已提交
1129
template <typename Dtype>
W
wangliu 已提交
1130
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1131 1132 1133
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1134 1135
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1136 1137 1138 1139
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1140
  }
1141 1142
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1143 1144

 private:
1145 1146
  GType *input_x_;
  GType *out_;
1147 1148 1149 1150 1151 1152 1153 1154 1155
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1156
};
L
liuruilong 已提交
1157 1158 1159
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1160
template <typename Dtype>
E
eclipsess 已提交
1161
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1162 1163 1164
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1165 1166 1167
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1168 1169 1170 1171 1172
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1173 1174 1175 1176 1177 1178 1179 1180
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1181
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1182

1183
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1184

1185
  GType *Out() const { return out_; }
E
eclipsess 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1200 1201 1202
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1203 1204 1205 1206 1207 1208 1209
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1210
#endif
W
wangliu 已提交
1211

L
lijiancheng0614 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1221 1222 1223 1224
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1225
  }
1226 1227
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1228 1229

 private:
1230 1231
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1232 1233 1234
};
#endif

N
nhzlx 已提交
1235
template <typename Dtype>
L
liuruilong 已提交
1236
class FeedParam : public OpParam {
N
nhzlx 已提交
1237 1238 1239
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1240 1241
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1242
            const AttributeMap &attrs, Scope *scope)
1243
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1244
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1245
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1246
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1247
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1248
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1249
  }
H
hjchen2 已提交
1250
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1251
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1252
  const int Col() const { return col_; }
W
wangliu 已提交
1253
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1254

L
liuruilong 已提交
1255
 private:
H
hjchen2 已提交
1256
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1257
  GType *out_;
H
update  
hjchen2 已提交
1258
  int col_;
W
wangliu 已提交
1259
  int batch_size;
L
liuruilong 已提交
1260 1261
};

N
nhzlx 已提交
1262
template <typename Dtype>
L
liuruilong 已提交
1263
class FetchParam : public OpParam {
N
nhzlx 已提交
1264 1265 1266
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1267 1268
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1269
             const AttributeMap &attrs, Scope *scope)
1270
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1271 1272
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1273
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1274
  }
L
liuruilong 已提交
1275

H
hjchen2 已提交
1276 1277
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1278
  const int Col() const { return col_; }
L
liuruilong 已提交
1279

L
liuruilong 已提交
1280
 private:
H
hjchen2 已提交
1281 1282
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1283
  int col_;
qnqinan's avatar
qnqinan 已提交
1284
#ifdef PADDLE_MOBILE_FPGA
1285

qnqinan's avatar
qnqinan 已提交
1286
 public:
1287
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1288
  fpga::BypassArgs fpga_bypass_args;
1289
  Tensor aligned_out;
1290 1291 1292
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1293
#endif
L
liuruilong 已提交
1294 1295
};

L
lijiancheng0614 已提交
1296 1297 1298 1299 1300 1301 1302 1303 1304
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1305 1306 1307 1308
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1309 1310 1311 1312 1313 1314 1315
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1316
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1326
  GType *out_;
L
lijiancheng0614 已提交
1327 1328 1329 1330 1331 1332
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
#ifdef FILL_CONSTANT_BATCH_SIZE_LIKE_OP
template <typename Dtype>
class FillConstantBatchSizeLikeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantBatchSizeLikeParam(const VariableNameMap &inputs,
                                 const VariableNameMap &outputs,
                                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
    input_dim_idx_ = GetAttr<int>("input_dim_idx", attrs);
    output_dim_idx_ = GetAttr<int>("output_dim_idx", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  const GType *Input() const { return input_; }

  GType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

  int InputDimIdx() const { return input_dim_idx_; }

  int OutputDimIdx() const { return output_dim_idx_; }

 private:
  GType *input_;
  Variable *out_var_;
  GType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
  int input_dim_idx_;
  int output_dim_idx_;
};
#endif

L
liuruilong 已提交
1382
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1383
template <typename Dtype>
E
eclipsess 已提交
1384
class TransposeParam : public OpParam {
N
nhzlx 已提交
1385 1386 1387
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1388 1389
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1390 1391 1392 1393
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1394 1395 1396
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1397
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1398

1399
  GType *Out() const { return out_; }
E
eclipsess 已提交
1400 1401 1402 1403

  const vector<int> &Axis() const { return axis_; }

 private:
1404 1405
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1406 1407
  vector<int> axis_;
};
L
liuruilong 已提交
1408
#endif
E
eclipsess 已提交
1409

L
lijiancheng0614 已提交
1410 1411 1412 1413 1414 1415 1416 1417
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1418 1419 1420 1421 1422
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1423 1424 1425
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1426
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1427

1428
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1429

1430
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1431 1432 1433 1434

  const vector<int> &Axis() const { return axis_; }

 private:
1435 1436 1437
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1438 1439 1440 1441
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1442 1443 1444 1445 1446 1447 1448 1449
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1450 1451 1452 1453 1454
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1481 1482
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1483
    // todo crf params
1484 1485 1486 1487
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1488 1489 1490 1491 1492 1493
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1494 1495
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1496 1497 1498 1499 1500 1501 1502 1503
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1504 1505
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1506 1507 1508 1509
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1510
#ifdef RESHAPE_OP
N
nhzlx 已提交
1511
template <typename Dtype>
E
eclipsess 已提交
1512
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1513 1514 1515
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1516 1517
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1518 1519 1520 1521 1522
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1523
    shape_ = GetAttr<vector<int>>("shape", attrs);
1524 1525 1526 1527 1528 1529 1530

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1531 1532
  }

1533
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1534

1535
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1536

1537
  GType *Out() const { return out_; }
E
eclipsess 已提交
1538 1539 1540 1541 1542 1543

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1544 1545 1546
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1547 1548 1549
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1550
#endif
E
eclipsess 已提交
1551

L
lijiancheng0614 已提交
1552 1553 1554 1555 1556 1557 1558 1559
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1560 1561 1562 1563 1564 1565
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1566 1567 1568 1569 1570 1571 1572 1573
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1574
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1575

E
eclipsess 已提交
1576
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1577

E
eclipsess 已提交
1578
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1579

E
eclipsess 已提交
1580
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1581 1582 1583 1584 1585 1586

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1587 1588 1589 1590
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1591 1592 1593 1594 1595
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1596
#ifdef SCALE_OP
N
nhzlx 已提交
1597
template <typename Dtype>
I
itminner 已提交
1598
class ScaleParam : public OpParam {
N
nhzlx 已提交
1599 1600 1601
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1602 1603
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1604 1605 1606 1607
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1608 1609
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1610 1611
  }

1612
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1613

1614
  GType *Out() const { return out_; }
I
itminner 已提交
1615

1616
  const float Scale() const { return scale_; }
I
itminner 已提交
1617

1618
  const float Bias() const { return bias_; }
I
itminner 已提交
1619 1620

 private:
1621 1622
  GType *input_x_;
  GType *out_;
1623 1624
  float scale_;
  float bias_;
I
itminner 已提交
1625
};
T
Tian 已提交
1626 1627 1628
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1629
template <typename Dtype>
I
itminner 已提交
1630
class SliceParam : public OpParam {
N
nhzlx 已提交
1631 1632 1633
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1634 1635
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1636 1637 1638 1639
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1640

1641 1642 1643
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1644 1645

    original_output_dims_size_ = output_->dims().size();
1646
  }
I
itminner 已提交
1647

1648 1649 1650 1651 1652 1653
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1654
  int original_output_dims_size_;
I
itminner 已提交
1655
};
T
Tian 已提交
1656 1657 1658
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1659
template <typename Dtype>
T
Tian 已提交
1660
class ResizeParam : public OpParam {
N
nhzlx 已提交
1661 1662 1663
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1664 1665
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1666 1667 1668 1669 1670
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1671 1672 1673 1674 1675 1676
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1677

1678
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1679

1680
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1681

1682
  GType *Out() const { return out_; }
T
Tian 已提交
1683

I
itminner 已提交
1684
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1685

I
itminner 已提交
1686
  const int &Height() const { return height_; }
T
Tian 已提交
1687

I
itminner 已提交
1688
  const int &Width() const { return width_; }
T
Tian 已提交
1689

I
itminner 已提交
1690
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1691

I
itminner 已提交
1692
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1693

I
itminner 已提交
1694
 private:
1695 1696 1697
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1698 1699 1700 1701 1702
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1703 1704 1705
};
#endif

L
liuruilong 已提交
1706
#ifdef RELU_OP
L
liuruilong 已提交
1707 1708 1709
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1710
template <typename Dtype>
D
relu  
dolphin8 已提交
1711
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1712 1713 1714
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1715
 public:
D
relu  
dolphin8 已提交
1716
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1717 1718 1719 1720
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1721 1722
  }

1723
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1724

1725
  GType *Out() const { return out_; }
E
eclipsess 已提交
1726 1727

 private:
1728 1729
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1730
};
D
relu  
dolphin8 已提交
1731 1732 1733

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1734
 public:
D
relu  
dolphin8 已提交
1735 1736 1737
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1752
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1753 1754
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1755
 public:
D
relu  
dolphin8 已提交
1756
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1757 1758 1759
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1760 1761
  framework::CLImage midImage;
};
Y
yangfei 已提交
1762
#endif
D
relu  
dolphin8 已提交
1763

L
liuruilong 已提交
1764
#endif
E
eclipsess 已提交
1765

Z
zhangyang 已提交
1766 1767 1768 1769 1770 1771 1772 1773
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1774 1775 1776 1777
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1778
  }
1779 1780
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1781 1782

 private:
1783 1784
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1785 1786 1787
#ifdef PADDLE_MOBILE_FPGA

 private:
1788
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1789 1790 1791
  fpga::BypassArgs fpga_bypass_args;

 public:
1792
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1793 1794
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1795
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1796 1797 1798
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1799
};
L
liuruilong 已提交
1800
#endif
E
eclipsess 已提交
1801

T
Tian 已提交
1802
#ifdef PRELU_OP
N
nhzlx 已提交
1803
template <typename Dtype>
T
Tian 已提交
1804
class PReluParam : public OpParam {
N
nhzlx 已提交
1805 1806 1807
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1808 1809
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1810 1811
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1812
    DLOG << "PReluParam inputs before";
1813 1814
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1815
    framework::DDim dims = alpha_->dims();
1816
    out_ = OutFrom<GType>(outputs, *scope);
1817
    mode_ = GetStringAttr("mode", attrs);
1818
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1819
  }
1820 1821 1822
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1823
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1824

I
itminner 已提交
1825
 private:
1826 1827 1828
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1829
  std::string mode_;
T
Tian 已提交
1830 1831 1832
};
#endif

1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1858
template <typename Dtype>
L
liuruilong 已提交
1859
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1860 1861 1862
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1863
 public:
L
liuruilong 已提交
1864
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1865 1866 1867 1868 1869 1870
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1871 1872 1873 1874
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1875
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1876

1877
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1878

1879
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1880

xiebaiyuan's avatar
xiebaiyuan 已提交
1881
  GType *Out() const { return out_; }
E
eclipsess 已提交
1882 1883 1884 1885 1886 1887 1888 1889

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1890
  GType *input_x_;
1891 1892
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1893
  GType *out_;
E
eclipsess 已提交
1894 1895 1896
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1897

Z
ZhenWang 已提交
1898
#ifdef PADDLE_MOBILE_FPGA
1899
 private:  // NOLINT
Z
zhangyang 已提交
1900
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1901 1902

 public:
Z
zhangyang 已提交
1903 1904
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1905
#endif
E
eclipsess 已提交
1906
};
1907 1908

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1909 1910
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1911
#endif
E
eclipsess 已提交
1912

N
nhzlx 已提交
1913
template <typename Dtype>
1914
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1915 1916 1917
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1918
 public:
L
liuruilong 已提交
1919
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1920
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1921
                     Scope *scope)
1922
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1923
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1924
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1925
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1926
  }
1927
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1928 1929 1930

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1931
 protected:
1932
  GType *bias_;
W
wangliu 已提交
1933 1934 1935
  int axis_;
};

N
nhzlx 已提交
1936 1937
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1938

Z
zhangyang 已提交
1939
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1940 1941
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1942
 public:
L
liuruilong 已提交
1943
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1944
                         const VariableNameMap &outputs,
1945
                         const AttributeMap &attrs, Scope *scope)
1946
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1947 1948 1949
};
#endif

1950
#ifdef FUSION_CONVADDPRELU_OP
1951 1952 1953 1954
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1955 1956 1957 1958

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1959
                          const AttributeMap &attrs, Scope *scope)
1960
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1961
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1962
    mode_ = OpParam::GetStringAttr("mode", attrs);
1963
    framework::DDim dims = alpha_->dims();
1964
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1965
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1966
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1967
  }
1968
  const GType *InputAlpha() const { return alpha_; }
1969
  const std::string &Mode() const { return mode_; }
1970
  GType *Bias() const { return bias_; }
1971 1972 1973
  const int &Axis() const { return axis_; }

 protected:
1974
  GType *bias_;
1975
  int axis_;
1976
  GType *alpha_;
1977 1978 1979 1980 1981
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1982 1983 1984 1985
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1986 1987 1988 1989

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1990
                             const AttributeMap &attrs, Scope *scope)
1991
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1992 1993
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1994
    mode_ = OpParam::GetStringAttr("mode", attrs);
1995
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1996
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1997
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1998 1999 2000
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
2001
    if (keyX1_ == keyOutput_) {
2002
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
2003
    } else if (keyY1_ == keyOutput_) {
2004
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
2005
    }
H
update  
hjchen2 已提交
2006
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2007
  }
2008
  const GType *InputAlpha() const { return alpha_; }
2009
  const std::string &Mode() const { return mode_; }
2010
  const GType *Bias1() const { return bias1_; }
2011

2012
  GType *Bias() const { return bias_; }
2013 2014 2015 2016

  const int &Axis() const { return axis_; }

 protected:
2017
  GType *bias_;
2018
  int axis_;
2019
  GType *alpha_;
2020
  std::string mode_;
2021
  GType *bias1_;
2022 2023 2024 2025 2026 2027
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
2028
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
2029
template <typename Dtype>
2030
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2031 2032 2033
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2034 2035 2036
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2037
                           const AttributeMap &attrs, Scope *scope)
2038
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2039
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2040
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2041 2042 2043 2044
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2045 2046
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2047
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2048
  }
2049
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2050 2051 2052

  const int &Axis() const { return axis_; }

2053
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2054

2055
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2056

2057
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2058

2059
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2060 2061 2062 2063 2064

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2065
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2066

2067
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2068

2069
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2070

2071
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2072 2073

 protected:
2074
  GType *bias_;
E
eclipsess 已提交
2075
  int axis_;
2076 2077 2078 2079
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2080 2081
  float epsilon_;
  float momentum_;
2082 2083
  GType *new_bias_;
  GType *new_scale_;
2084 2085 2086 2087 2088
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2089
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2090 2091 2092 2093 2094 2095
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2096
                           const AttributeMap &attrs, Scope *scope)
2097
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2098
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2099
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2100 2101 2102 2103
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2104 2105
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2106 2107 2108
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2109
    if (keyX_ == keyBNY_) {
2110
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2111
    } else if (keyY_ == keyBNY_) {
2112
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2113
    }
H
update  
hjchen2 已提交
2114
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2115
  }
2116
  GType *Bias() const { return bias_; }
2117 2118 2119

  const int &Axis() const { return axis_; }

2120
  const GType *InputBias() const { return input_bias_; }
2121

2122
  const GType *InputMean() const { return input_mean_; }
2123

2124
  const GType *InputScale() const { return input_scale_; }
2125

2126
  const GType *InputVariance() const { return input_variance_; }
2127 2128 2129 2130 2131

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2132
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2133

2134
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2135

2136
  const GType *NewScale() const { return new_scale_; }
2137

2138
  const GType *NewBias() const { return new_bias_; }
2139 2140

 protected:
2141
  GType *bias_;
2142
  int axis_;
2143 2144 2145 2146
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2147 2148
  float epsilon_;
  float momentum_;
2149 2150
  GType *new_bias_;
  GType *new_scale_;
2151 2152 2153
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2154
};
2155
#endif
E
eclipsess 已提交
2156

Z
zhangyang 已提交
2157
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2158
template <typename Dtype>
2159
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2160 2161 2162
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2163 2164 2165
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2166
                    Scope *scope)
2167
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2168 2169 2170 2171
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2172 2173
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2174
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2175 2176
  }

2177
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2178

2179
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2180

2181
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2182

2183
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2184 2185 2186 2187 2188

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2189
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2190

2191
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2192

2193
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2194

2195
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2196 2197

 protected:
2198 2199 2200 2201
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2202 2203
  float epsilon_;
  float momentum_;
2204 2205
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2206 2207 2208
};
#endif

2209
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2210
template <typename Dtype>
2211
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2212 2213 2214
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2215 2216 2217
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2218
                       const AttributeMap &attrs, Scope *scope)
2219
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2220
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2221
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2222 2223 2224 2225
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2226 2227
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2228
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2229
  }
2230
  GType *Bias() const { return bias_; }
2231 2232 2233

  const int &Axis() const { return axis_; }

2234
  const GType *InputBias() const { return input_bias_; }
2235

2236
  const GType *InputMean() const { return input_mean_; }
2237

2238
  const GType *InputScale() const { return input_scale_; }
2239

2240
  const GType *InputVariance() const { return input_variance_; }
2241 2242 2243 2244 2245

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2246
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2247

2248
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2249

2250
  const GType *NewScale() const { return new_scale_; }
2251

2252
  const GType *NewBias() const { return new_bias_; }
2253 2254

 protected:
2255
  GType *bias_;
2256
  int axis_;
2257 2258 2259 2260
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2261 2262
  float epsilon_;
  float momentum_;
2263 2264
  GType *new_bias_;
  GType *new_scale_;
2265
};
E
eclipsess 已提交
2266
#endif
Y
Yao,kun 已提交
2267

E
eclipsess 已提交
2268
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2269
template <typename Dtype>
2270
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2271 2272 2273
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2274 2275 2276
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2277
                          const AttributeMap &attrs, Scope *scope)
2278
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2279 2280 2281 2282
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2283 2284
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2285
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2286 2287
  }

2288
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2289

2290
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2291

2292
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2293

2294
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2295 2296 2297 2298 2299

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2300
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2301

2302
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2303

2304
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2305

2306
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2307 2308

 protected:
2309 2310 2311 2312
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2313 2314
  float epsilon_;
  float momentum_;
2315 2316
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2317 2318 2319 2320
};

#endif

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2337
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2338
template <typename Dtype>
2339
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2340 2341 2342
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2343 2344 2345
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2346
                        const AttributeMap &attrs, Scope *scope)
2347
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2348 2349 2350 2351
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2352 2353
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2354
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2355 2356
  }

2357
  const GType *InputBias() const { return input_bias_; }
2358

2359
  const GType *InputMean() const { return input_mean_; }
2360

2361
  const GType *InputScale() const { return input_scale_; }
2362

2363
  const GType *InputVariance() const { return input_variance_; }
2364 2365 2366 2367 2368

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2369
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2370

2371
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2372

2373
  const GType *NewScale() const { return new_scale_; }
2374

2375
  const GType *NewBias() const { return new_bias_; }
2376 2377

 protected:
2378 2379 2380 2381
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2382 2383
  float epsilon_;
  float momentum_;
2384 2385
  GType *new_bias_;
  GType *new_scale_;
2386 2387 2388
};
#endif

Y
Yao,kun 已提交
2389
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2390
template <typename Dtype>
Y
Yao,kun 已提交
2391
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2392 2393 2394
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2395 2396 2397
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2398 2399 2400 2401
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2402 2403 2404 2405 2406
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2407
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2408

E
eclipsess 已提交
2409
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2410 2411 2412 2413 2414 2415 2416 2417

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2418 2419
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2420 2421 2422 2423
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2424
#endif
Y
Yao,kun 已提交
2425

2426
#ifdef DROPOUT_OP
N
nhzlx 已提交
2427
template <typename Dtype>
Y
Yao,kun 已提交
2428
class DropoutParam : public OpParam {
N
nhzlx 已提交
2429 2430 2431
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2432 2433
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2434 2435 2436 2437
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2438 2439

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2440 2441
  }

2442
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2443

2444
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2445

Y
yangfei 已提交
2446 2447
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2448
 private:
2449 2450
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2451
  float dropout_prob_;
Y
Yao,kun 已提交
2452
};
2453
#endif
Y
Yao,kun 已提交
2454

N
nhzlx 已提交
2455
template <typename Dtype>
L
liuruilong 已提交
2456
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2457 2458 2459
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2460 2461 2462
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2463 2464 2465 2466
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2467
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2468
    if (outputs.count("Output")) {
2469
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2470
    }
L
liuruilong 已提交
2471 2472 2473 2474 2475 2476
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2477
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2478

2479
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2480

2481
  GType *Output() const { return output_; }
L
liuruilong 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2491 2492 2493 2494 2495 2496 2497 2498 2499
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2500
 private:
2501 2502 2503
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2504 2505 2506 2507
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2508
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2509 2510 2511 2512 2513

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2514
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2515 2516 2517

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2518 2519 2520
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2521
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2522 2523 2524
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2525
#endif
L
liuruilong 已提交
2526
};
Z
zhangyang 已提交
2527

qnqinan's avatar
qnqinan 已提交
2528 2529 2530 2531 2532
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2533 2534

 public:
qnqinan's avatar
qnqinan 已提交
2535
  FusionDeconvAddParam(const VariableNameMap &inputs,
2536
                       const VariableNameMap &outputs,
2537
                       const AttributeMap &attrs, Scope *scope)
2538
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2539
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2540
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2541
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2542
  }
2543
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2544 2545 2546

  const int &Axis() const { return axis_; }

2547
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2548 2549

 protected:
2550
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2551
  int axis_;
2552
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2553 2554 2555 2556 2557 2558 2559
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2560 2561 2562 2563 2564 2565 2566 2567 2568
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2569
                         const AttributeMap &attrs, Scope *scope)
2570
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2571 2572 2573 2574 2575
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2576 2577 2578 2579 2580 2581 2582
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2626
                          const AttributeMap &attrs, Scope *scope)
2627
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2628 2629 2630 2631 2632
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2633 2634 2635 2636 2637 2638
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2682
                             const AttributeMap &attrs, Scope *scope)
2683
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2684 2685 2686 2687 2688
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2730

Z
zhangyang 已提交
2731 2732 2733 2734 2735
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2750 2751 2752 2753 2754 2755 2756 2757
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2758
    output_batch_reset_hidden_prev_ =
2759 2760 2761
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2762 2763
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2797 2798 2799 2800 2801 2802 2803
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2804 2805 2806 2807 2808 2809 2810 2811
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2812
    output_reset_hidden_prev_ =
2813 2814
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2843 2844 2845 2846 2847 2848 2849 2850
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2851 2852 2853 2854
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2855
    axis = GetAttr<int>("axis", attrs);
2856
  }
2857 2858
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2859
  const int &Axis() const { return axis; }
2860 2861

 private:
2862 2863
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2864
  int axis;
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2876 2877 2878 2879
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2880
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2881 2882 2883 2884 2885 2886
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2887
  }
2888
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2889 2890 2891 2892 2893
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2894 2895

 private:
2896
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2897
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2898
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2899 2900 2901
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2902 2903 2904 2905 2906 2907 2908 2909 2910
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2923 2924 2925 2926 2927
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2928 2929
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2930
  }
2931
  const GType *InputX() const { return input_x_; }
2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
2964 2965
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2966 2967
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2968 2969

 private:
2970 2971 2972
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2973 2974
  int out_h_;
  int out_w_;
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2986 2987 2988 2989
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2990
  }
2991 2992
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2993 2994

 private:
2995 2996
  GType *input_;
  GType *out_;
2997 2998 2999
};
#endif

H
hjchen2 已提交
3000 3001 3002 3003 3004 3005 3006 3007
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3008 3009 3010 3011 3012
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
3013 3014 3015 3016
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
3017 3018 3019
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3032 3033 3034 3035
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
3036 3037 3038 3039 3040
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
3041 3042
  GType *input_;
  GType *output_;
H
hjchen2 已提交
3043 3044 3045 3046 3047
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

3048
#ifdef QUANT_OP
3049
template <typename Dtype>
3050 3051 3052 3053 3054
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3055
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3056 3057 3058 3059
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3060 3061
    // online
    // scale = max(abs(x))
3062
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3063
    // offline
3064
    if (inputs.count("InScale")) {
3065
      offline_ = true;
3066
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3067 3068
    }
    // x = round(scale * x)
3069 3070
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3071
    }
3072 3073 3074 3075
  }

 public:
  // op input
3076
  GType *input_;
3077
  // op output
3078
  GType *output_;
3079
  GType *online_scale_;
3080
  // quantize offline scale
3081
  GType *offline_scale_;
3082 3083
  // if offine scale or not
  bool offline_ = false;
3084
  // round method type
3085 3086
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3087
};
3088
#endif
3089

3090
#ifdef DEQUANT_OP
3091
template <typename Dtype>
3092 3093 3094 3095 3096
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3097
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3098 3099 3100 3101 3102
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3103
    // dequantization is performed as x = x / static_scale / online_scale
3104 3105
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3106
    } else {
3107
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3108 3109 3110 3111 3112
    }
  }

 public:
  // op input
3113
  GType *input_;
3114
  // op output
3115
  GType *output_;
3116
  GType *activation_scale_;
3117 3118
  float weight_scale_;
};
3119
#endif
3120

3121 3122 3123 3124
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3125
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3126
template <typename Dtype>
3127
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3128 3129 3130 3131
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3132 3133
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3134
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3135 3136
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3137 3138 3139 3140
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3141 3142 3143 3144 3145
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3146 3147 3148 3149
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3150
  float epsilon_;
3151 3152 3153
};
#endif

3154 3155 3156 3157
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3158 3159 3160 3161 3162 3163 3164 3165
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3166
                          const AttributeMap &attrs, Scope *scope)
3167 3168 3169
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3170
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3171 3172 3173 3174 3175
  }

 public:
  // elementwise add
  int axis_;
3176
  GType *bias_;
3177 3178 3179
};
#endif

3180 3181 3182 3183 3184 3185 3186 3187 3188
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3189
                               const AttributeMap &attrs, Scope *scope)
3190 3191
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3192
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3193
    // offline
3194 3195
    if (inputs.count("InScale")) {
      offline_ = true;
3196
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3197 3198 3199 3200 3201 3202 3203 3204
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3205
  GType *online_scale_;
3206
  // quantize offline scale
3207
  GType *offline_scale_;
3208 3209
  // if offine scale or not
  bool offline_ = false;
3210 3211 3212 3213 3214 3215
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3216 3217 3218 3219 3220 3221 3222 3223 3224
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3225 3226 3227 3228 3229
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3253 3254 3255 3256
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3257 3258
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3259
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3270 3271 3272 3273 3274 3275 3276 3277
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3278 3279 3280 3281
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3282 3283
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3284
      input_y_ = InputYFrom<GType>(inputs, *scope);
3285 3286 3287
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
Z
zp7 已提交
3288 3289 3290
    if (HasAttr("append", attrs)) {
      append = OpParam::GetAttr<bool>("append", attrs);
    }
3291 3292 3293 3294 3295 3296 3297
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
3298
  bool append;
3299 3300 3301
};
#endif  // LOD_RESET_OP

3302 3303 3304 3305 3306 3307 3308 3309
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3310 3311 3312 3313 3314
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3326
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3327
template <typename Dtype>
Z
zhaojiaying01 已提交
3328
class LogicalBinaryParam : public OpParam {
3329 3330 3331 3332
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3333 3334
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3335 3336 3337 3338 3339
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3351
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3352 3353 3354

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3355
class LogicalUnaryParam : public OpParam {
3356 3357 3358 3359
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3360 3361
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3362 3363 3364 3365
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3377 3378 3379
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3380 3381 3382
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3383 3384 3385
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3386 3387
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3388 3389 3390
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3391 3392 3393
  }

 public:
H
hjchen2 已提交
3394 3395 3396
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3397 3398 3399 3400 3401 3402
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3403 3404 3405
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3406 3407 3408
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3409 3410
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3411 3412 3413
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3414 3415 3416
  }

 public:
H
hjchen2 已提交
3417 3418 3419
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3420 3421 3422
};
#endif

Z
zhaojiaying01 已提交
3423 3424 3425 3426 3427 3428 3429 3430
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3431 3432 3433 3434
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3454
                 const AttributeMap &attrs, Scope *scope)
3455
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3456 3457
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3458
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3459 3460 3461 3462
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3463
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3464 3465 3466 3467

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3468
  float step_;
Z
zhaojiaying01 已提交
3469 3470
};
#endif  // INCREMENT_OP
3471 3472 3473 3474 3475 3476 3477 3478
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3479 3480 3481 3482
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3483 3484 3485 3486 3487 3488 3489 3490 3491
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
H
Huie 已提交
3492 3493 3494 3495 3496
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3497

H
Huie 已提交
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3513 3514
}  // namespace operators
}  // namespace paddle_mobile