op_param.h 100.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
27 28 29 30 31 32 33

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
34
#endif
朔-望's avatar
朔-望 已提交
35

C
Chon 已提交
36 37 38 39
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
40 41
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
42
#endif
朔-望's avatar
朔-望 已提交
43 44

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
45 46
namespace operators {

W
wangliu 已提交
47 48 49 50 51
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
52
using framework::Variable;
W
wangliu 已提交
53 54
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
55

N
nhzlx 已提交
56 57 58 59 60 61 62 63 64
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
65
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
66 67 68 69 70 71 72 73
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
74
#endif
L
liuruilong 已提交
75

L
liuruilong 已提交
76
class OpParam {
77 78
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
79 80
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
81

82 83
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
84

C
Chon 已提交
85 86 87 88 89 90
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
91
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
92 93 94 95
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
96 97 98 99 100 101 102

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

103 104 105 106 107
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

108 109 110 111 112 113 114 115 116
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
117 118 119 120 121
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

149 150 151 152
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
153 154 155 156 157 158

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

159 160 161 162 163
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
164 165 166 167 168
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

169 170 171 172 173
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
174 175 176 177
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
178 179 180 181 182 183 184 185 186 187 188 189
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
190 191 192 193
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
210

E
eclipsess 已提交
211 212 213 214 215 216 217 218 219 220
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
221 222 223 224
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
225

226
  template <typename T>
W
wangliu 已提交
227 228
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
229 230 231
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
232 233 234 235 236
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
237 238 239 240 241 242
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
243 244 245 246 247
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
265 266 267 268 269 270 271 272 273 274 275 276
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

277 278 279 280 281
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
282 283 284 285 286
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

287 288 289 290 291
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
292 293 294 295 296 297
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

298 299 300 301 302
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
303 304 305 306 307 308
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
315 316 317 318 319
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
325 326 327 328 329 330
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

331 332 333 334 335 336 337 338 339 340 341
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
342
  static const T GetAttr(const string &key, const AttributeMap &map) {
343 344
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
345 346
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
347 348
    return ((Attribute)map.at(key)).GetString();
  }
349

350 351 352 353
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

354
  template <typename T>
W
wangliu 已提交
355
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
356
                        const Scope &scope) {
W
wangliu 已提交
357 358
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
359 360 361 362 363 364
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
365
    }
366
  }
朔-望's avatar
朔-望 已提交
367

E
eclipsess 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

381
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
382
                            int index) {
383 384
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

403
  template <typename T>
W
wangliu 已提交
404 405 406
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
407 408
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
409
    vector<T *> var_res;
410 411 412
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
413
    }
414 415
    return var_res;
  }
E
eclipsess 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
429 430
};

431 432 433 434 435 436
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
437
template <typename Dtype>
438
class ConvParam : public OpParam {
N
nhzlx 已提交
439 440 441
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
442
 public:
443
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
444 445 446 447
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
448
    if (outputs.count("Output")) {
449
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
450 451 452 453 454
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
455
  }
朔-望's avatar
朔-望 已提交
456

457
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
458

459
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
460

461
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
462

W
wangliu 已提交
463
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
464

W
wangliu 已提交
465
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
466

W
wangliu 已提交
467
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
468

H
hjchen2 已提交
469 470 471
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
472 473
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
474 475
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
476
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
477
    EXEC_GEMM_INT8,
H
hjchen2 已提交
478
    EXEC_DEPTHWISE3x3_INT8,
479
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
480 481
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
482 483 484 485 486
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
H
hjchen2 已提交
487 488 489 490
  };

  ExecMode &ExecMode() const { return exec_mode_; }

491
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
492

493 494 495 496 497 498 499
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
500
 public:
501 502 503 504
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
505 506 507
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
508
  mutable enum ExecMode exec_mode_;
509
  int groups;
510 511 512 513

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
514 515 516

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
517
 public:
Z
zhangyang 已提交
518 519 520 521 522
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
523 524 525 526 527 528 529

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
530
#endif
朔-望's avatar
朔-望 已提交
531
};
N
nhzlx 已提交
532 533
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
534

N
nhzlx 已提交
535
template <typename Dtype>
536
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
537 538 539
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
540
 public:
541
  ElementwiseAddParam(const VariableNameMap &inputs,
542
                      const VariableNameMap &outputs, const AttributeMap &attrs,
543 544 545 546 547
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
548 549 550
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
551
  const GType *InputX() const { return input_x_; }
552

xiebaiyuan's avatar
xiebaiyuan 已提交
553
  const GType *InputY() const { return input_y_; }
554

xiebaiyuan's avatar
xiebaiyuan 已提交
555
  GType *Out() const { return out_; }
556 557 558

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
559
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
560 561 562
  GType *input_x_;
  GType *input_y_;
  GType *out_;
563
  int axis_;
Z
zhangyang 已提交
564 565 566
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
567
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
568 569

 public:
H
hanbuhe 已提交
570 571
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
572 573 574 575

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
576
#endif
朔-望's avatar
朔-望 已提交
577 578
};

E
eclipsess 已提交
579
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
580
template <typename Dtype>
581
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
582 583 584 585 586 587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
588 589 590 591 592
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
609 610 611 612 613 614
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
615
};
S
suiyang 已提交
616
#endif
E
eclipsess 已提交
617

618
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
619 620
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
621 622
#endif

623
#ifdef ELEMENTWISESUB_OP
624
template <typename Dtype>
625
class ElementwiseSubParam : public OpParam {
626 627 628 629 630 631
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
632 633 634 635 636
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
654
#endif
655

L
liuruilong 已提交
656
#ifdef MUL_OP
N
nhzlx 已提交
657
template <typename Dtype>
658
class MulParam : public OpParam {
N
nhzlx 已提交
659 660 661
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
662
 public:
663
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
664 665 666 667 668
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
669 670 671
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
672

xiebaiyuan's avatar
xiebaiyuan 已提交
673
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
674

xiebaiyuan's avatar
xiebaiyuan 已提交
675
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
676

xiebaiyuan's avatar
xiebaiyuan 已提交
677
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
678

679
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
680

681
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
682

朔-望's avatar
朔-望 已提交
683
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
684 685 686
  GType *input_x_;
  GType *input_y_;
  GType *out_;
687 688
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
689
};
L
liuruilong 已提交
690
#endif
朔-望's avatar
朔-望 已提交
691

L
liuruilong 已提交
692
#ifdef CONCAT_OP
N
nhzlx 已提交
693
template <typename Dtype>
朔-望's avatar
朔-望 已提交
694
class ConcatParam : public OpParam {
N
nhzlx 已提交
695 696 697
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
698
 public:
699
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
700 701 702 703
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
704 705
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
706

N
nhzlx 已提交
707
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
708

xiebaiyuan's avatar
xiebaiyuan 已提交
709
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
710

711
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
712

朔-望's avatar
朔-望 已提交
713
 private:
N
nhzlx 已提交
714
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
715
  GType *out_;
716
  int axis_;
Z
zhangyang 已提交
717 718 719 720 721 722 723 724 725
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
726
};
L
liuruilong 已提交
727
#endif
朔-望's avatar
朔-望 已提交
728

E
eclipsess 已提交
729 730 731 732 733 734 735 736
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
737 738 739 740 741 742
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
761
#ifdef LRN_OP
N
nhzlx 已提交
762
template <typename Dtype>
E
eclipsess 已提交
763
class LrnParam : public OpParam {
N
nhzlx 已提交
764 765 766
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
767
 public:
768
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
769 770 771 772 773
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
774 775 776 777
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
778
    data_format_ = GetStringAttr("data_format", attrs);
779
  }
E
eclipsess 已提交
780

781
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
782

783
  GType *Out() const { return out_; }
E
eclipsess 已提交
784

785
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
786

787
  const int &N() const { return n_; }
E
eclipsess 已提交
788

789
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
790

791
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
792

793
  const float &K() const { return k_; }
E
eclipsess 已提交
794

W
wangliu 已提交
795
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
796

朔-望's avatar
朔-望 已提交
797
 private:
798 799 800
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
801 802 803 804
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
805
  string data_format_;
E
eclipsess 已提交
806
};
L
liuruilong 已提交
807 808
#endif

Z
zhaojiaying01 已提交
809 810
#ifdef NORM_OP
template <typename Dtype>
811
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
812 813 814 815 816
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
817 818 819 820 821
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
822 823 824 825
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

826
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
827

828
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
829

830
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
831 832 833 834 835 836

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
837 838 839
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
840 841 842 843 844
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
845
#ifdef BATCHNORM_OP
N
nhzlx 已提交
846
template <typename Dtype>
847
class BatchNormParam : public OpParam {
N
nhzlx 已提交
848 849 850
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
851
 public:
852
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
853 854 855 856 857 858 859 860
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
861 862
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
863
    //    is_test_ = GetAttr<bool>("is_test", attrs);
864
  }
E
eclipsess 已提交
865

866
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
867

868
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
869

870
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
871

872
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
873

874
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
875

876
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
877

878
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
879

880
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
881

882
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
883

W
wangliu 已提交
884
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
885

886
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
887

888
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
889

890
  const GType *NewScale() const { return new_scale_; }
891

892
  const GType *NewBias() const { return new_bias_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
895 896 897 898 899 900
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
901 902 903
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
904
  string data_format_;
905 906
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
907
};
L
liuruilong 已提交
908 909 910
#endif

#ifdef POOL_OP
N
nhzlx 已提交
911
template <typename Dtype>
912
class PoolParam : public OpParam {
N
nhzlx 已提交
913 914 915
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
916
 public:
917
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
918 919 920
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
921

922
    output_ = OutFrom<GType>(outputs, *scope);
923
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
924 925 926
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
927
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
928
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
929
  }
930

931
  const GType *Input() const { return input_; }
932

933
  GType *Output() const { return output_; }
934

W
wangliu 已提交
935
  const string &PoolingType() const { return pooling_type_; }
936

W
wangliu 已提交
937
  const vector<int> &Ksize() const { return ksize_; }
938

W
wangliu 已提交
939
  const vector<int> &Strides() const { return strides_; }
940

W
wangliu 已提交
941
  const vector<int> &Paddings() const { return paddings_; }
942

943
  bool isCeilMode() const { return ceil_mode_; }
944

Z
zhangyang 已提交
945
  bool isGlobalPooling() const { return global_pooling_; }
946

朔-望's avatar
朔-望 已提交
947
 private:
948 949
  GType *input_;
  GType *output_;
W
wangliu 已提交
950 951 952 953
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
954
  bool ceil_mode_;
955
  bool global_pooling_ = false;
Z
zhangyang 已提交
956
#ifdef PADDLE_MOBILE_FPGA
957 958

 private:
H
hanbuhe 已提交
959
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
960 961

 public:
H
hanbuhe 已提交
962 963
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
964
#endif
965
};
L
liuruilong 已提交
966 967 968
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
969
template <typename Dtype>
E
eclipsess 已提交
970
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
971 972 973
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
974 975
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
976 977 978 979 980 981
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
982 983 984 985
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
986 987 988 989

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
990 991
    } else {
      min_max_aspect_ratios_order_ = false;
992
    }
E
eclipsess 已提交
993 994 995 996 997 998
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
999
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1000

1001
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1002

1003
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1004

1005
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1008

W
wangliu 已提交
1009
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1010

W
wangliu 已提交
1011
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1012

W
wangliu 已提交
1013
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1025 1026 1027 1028
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1029
 private:
1030 1031 1032 1033
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1034 1035 1036 1037
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1038 1039 1040 1041 1042
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1043
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1044
};
L
liuruilong 已提交
1045
#endif
E
eclipsess 已提交
1046

L
liuruilong 已提交
1047
#ifdef BOXCODER_OP
N
nhzlx 已提交
1048
template <typename Dtype>
E
eclipsess 已提交
1049
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1050 1051 1052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1053 1054
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1055 1056 1057 1058 1059 1060
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1061
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1062
  }
1063
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1064

1065
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1066

1067
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1068

1069
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1070 1071 1072 1073

  const std::string &CodeType() const { return code_type_; }

 private:
1074 1075 1076 1077
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1078 1079
  std::string code_type_;
};
L
liuruilong 已提交
1080
#endif
W
wangliu 已提交
1081

L
liuruilong 已提交
1082
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1083
template <typename Dtype>
W
wangliu 已提交
1084
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1085 1086 1087
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1088 1089
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1090 1091 1092 1093
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1094
  }
H
hjchen2 已提交
1095 1096
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1097 1098

 private:
H
hjchen2 已提交
1099 1100
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1101 1102 1103 1104

#ifdef PADDLE_MOBILE_FPGA

 private:
1105
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1106 1107 1108
  fpga::BypassArgs fpga_bypass_args;

 public:
1109
  GType *FloatInput() const {
H
hanbuhe 已提交
1110 1111
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1112
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1113 1114 1115
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1116
};
L
liuruilong 已提交
1117
#endif
W
wangliu 已提交
1118

L
liuruilong 已提交
1119
#ifdef SIGMOID_OP
N
nhzlx 已提交
1120
template <typename Dtype>
W
wangliu 已提交
1121
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1122 1123 1124
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1125 1126
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1127 1128 1129 1130
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1131
  }
1132 1133
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1134 1135

 private:
1136 1137
  GType *input_x_;
  GType *out_;
1138 1139 1140 1141 1142 1143 1144 1145 1146
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1147
};
L
liuruilong 已提交
1148 1149 1150
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1151
template <typename Dtype>
E
eclipsess 已提交
1152
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1153 1154 1155
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1156 1157 1158
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1159 1160 1161 1162 1163
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1164 1165 1166 1167 1168 1169 1170 1171
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1172
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1173

1174
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1175

1176
  GType *Out() const { return out_; }
E
eclipsess 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1191 1192 1193
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1194 1195 1196 1197 1198 1199 1200
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1201
#endif
W
wangliu 已提交
1202

L
lijiancheng0614 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1212 1213 1214 1215
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1216
  }
1217 1218
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1219 1220

 private:
1221 1222
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1223 1224 1225
};
#endif

N
nhzlx 已提交
1226
template <typename Dtype>
L
liuruilong 已提交
1227
class FeedParam : public OpParam {
N
nhzlx 已提交
1228 1229 1230
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1231 1232
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1233
            const AttributeMap &attrs, Scope *scope)
1234
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1235
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1236
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1237
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1238
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1239
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1240
  }
H
hjchen2 已提交
1241
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1242
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1243
  const int Col() const { return col_; }
W
wangliu 已提交
1244
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1245

L
liuruilong 已提交
1246
 private:
H
hjchen2 已提交
1247
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1248
  GType *out_;
H
update  
hjchen2 已提交
1249
  int col_;
W
wangliu 已提交
1250
  int batch_size;
L
liuruilong 已提交
1251 1252
};

N
nhzlx 已提交
1253
template <typename Dtype>
L
liuruilong 已提交
1254
class FetchParam : public OpParam {
N
nhzlx 已提交
1255 1256 1257
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1258 1259
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1260
             const AttributeMap &attrs, Scope *scope)
1261
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1262 1263
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1264
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1265
  }
L
liuruilong 已提交
1266

H
hjchen2 已提交
1267 1268
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1269
  const int Col() const { return col_; }
L
liuruilong 已提交
1270

L
liuruilong 已提交
1271
 private:
H
hjchen2 已提交
1272 1273
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1274
  int col_;
qnqinan's avatar
qnqinan 已提交
1275
#ifdef PADDLE_MOBILE_FPGA
1276

qnqinan's avatar
qnqinan 已提交
1277
 public:
1278
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1279
  fpga::BypassArgs fpga_bypass_args;
1280
#endif
1281
  Tensor aligned_out;
qnqinan's avatar
qnqinan 已提交
1282
#endif
L
liuruilong 已提交
1283 1284
};

L
lijiancheng0614 已提交
1285 1286 1287 1288 1289 1290 1291 1292 1293
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1294 1295 1296 1297
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1298 1299 1300 1301 1302 1303 1304
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1305
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1315
  GType *out_;
L
lijiancheng0614 已提交
1316 1317 1318 1319 1320 1321
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1322
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1323
template <typename Dtype>
E
eclipsess 已提交
1324
class TransposeParam : public OpParam {
N
nhzlx 已提交
1325 1326 1327
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1328 1329
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1330 1331 1332 1333
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1334 1335 1336
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1337
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1338

1339
  GType *Out() const { return out_; }
E
eclipsess 已提交
1340 1341 1342 1343

  const vector<int> &Axis() const { return axis_; }

 private:
1344 1345
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1346 1347
  vector<int> axis_;
};
L
liuruilong 已提交
1348
#endif
E
eclipsess 已提交
1349

L
lijiancheng0614 已提交
1350 1351 1352 1353 1354 1355 1356 1357
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1358 1359 1360 1361 1362
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1363 1364 1365
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1366
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1367

1368
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1369

1370
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1371 1372 1373 1374

  const vector<int> &Axis() const { return axis_; }

 private:
1375 1376 1377
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1378 1379 1380 1381
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1382 1383 1384 1385 1386 1387 1388 1389
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1390 1391 1392 1393 1394
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1421 1422
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1423
    // todo crf params
1424 1425 1426 1427
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1428 1429 1430 1431 1432 1433
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1434 1435
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1436 1437 1438 1439 1440 1441 1442 1443
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1444 1445
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1446 1447 1448 1449
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1450
#ifdef RESHAPE_OP
N
nhzlx 已提交
1451
template <typename Dtype>
E
eclipsess 已提交
1452
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1453 1454 1455
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1456 1457
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1458 1459 1460 1461 1462
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1463
    shape_ = GetAttr<vector<int>>("shape", attrs);
1464 1465 1466 1467 1468 1469 1470

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1471 1472
  }

1473
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1474

1475
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1476

1477
  GType *Out() const { return out_; }
E
eclipsess 已提交
1478 1479 1480 1481 1482 1483

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1484 1485 1486
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1487 1488 1489
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1490
#endif
E
eclipsess 已提交
1491

L
lijiancheng0614 已提交
1492 1493 1494 1495 1496 1497 1498 1499
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1500 1501 1502 1503 1504 1505
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1506 1507 1508 1509 1510 1511 1512 1513
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1514
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1515

E
eclipsess 已提交
1516
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1517

E
eclipsess 已提交
1518
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1519

E
eclipsess 已提交
1520
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1521 1522 1523 1524 1525 1526

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1527 1528 1529 1530
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1531 1532 1533 1534 1535
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1536
#ifdef SCALE_OP
N
nhzlx 已提交
1537
template <typename Dtype>
I
itminner 已提交
1538
class ScaleParam : public OpParam {
N
nhzlx 已提交
1539 1540 1541
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1542 1543
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1544 1545 1546 1547
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1548 1549
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1550 1551
  }

1552
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1553

1554
  GType *Out() const { return out_; }
I
itminner 已提交
1555

1556
  const float Scale() const { return scale_; }
I
itminner 已提交
1557

1558
  const float Bias() const { return bias_; }
I
itminner 已提交
1559 1560

 private:
1561 1562
  GType *input_x_;
  GType *out_;
1563 1564
  float scale_;
  float bias_;
I
itminner 已提交
1565
};
T
Tian 已提交
1566 1567 1568
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1569
template <typename Dtype>
I
itminner 已提交
1570
class SliceParam : public OpParam {
N
nhzlx 已提交
1571 1572 1573
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1574 1575
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1576 1577 1578 1579
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1580

1581 1582 1583 1584
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1585

1586 1587 1588 1589 1590 1591
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1592
};
T
Tian 已提交
1593 1594 1595
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1596
template <typename Dtype>
T
Tian 已提交
1597
class ResizeParam : public OpParam {
N
nhzlx 已提交
1598 1599 1600
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1601 1602
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1603 1604 1605 1606 1607
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1608 1609 1610 1611 1612 1613
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1614

1615
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1616

1617
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1618

1619
  GType *Out() const { return out_; }
T
Tian 已提交
1620

I
itminner 已提交
1621
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1622

I
itminner 已提交
1623
  const int &Height() const { return height_; }
T
Tian 已提交
1624

I
itminner 已提交
1625
  const int &Width() const { return width_; }
T
Tian 已提交
1626

I
itminner 已提交
1627
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1628

I
itminner 已提交
1629
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1630

I
itminner 已提交
1631
 private:
1632 1633 1634
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1635 1636 1637 1638 1639
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1640 1641 1642
};
#endif

L
liuruilong 已提交
1643
#ifdef RELU_OP
L
liuruilong 已提交
1644 1645 1646
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1647
template <typename Dtype>
D
relu  
dolphin8 已提交
1648
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1649 1650 1651
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1652
 public:
D
relu  
dolphin8 已提交
1653
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1654 1655 1656 1657
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1658 1659
  }

1660
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1661

1662
  GType *Out() const { return out_; }
E
eclipsess 已提交
1663 1664

 private:
1665 1666
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1667
};
D
relu  
dolphin8 已提交
1668 1669 1670

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1671
 public:
D
relu  
dolphin8 已提交
1672 1673 1674
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1675
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1676 1677
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1678
 public:
D
relu  
dolphin8 已提交
1679
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1680 1681 1682
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1683 1684
  framework::CLImage midImage;
};
Y
yangfei 已提交
1685
#endif
D
relu  
dolphin8 已提交
1686

L
liuruilong 已提交
1687
#endif
E
eclipsess 已提交
1688

Z
zhangyang 已提交
1689 1690 1691 1692 1693 1694 1695 1696
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1697 1698 1699 1700
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1701
  }
1702 1703
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1704 1705

 private:
1706 1707
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1708 1709 1710
#ifdef PADDLE_MOBILE_FPGA

 private:
1711
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1712 1713 1714
  fpga::BypassArgs fpga_bypass_args;

 public:
1715
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1716 1717
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1718
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1719 1720 1721
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1722
};
L
liuruilong 已提交
1723
#endif
E
eclipsess 已提交
1724

T
Tian 已提交
1725
#ifdef PRELU_OP
N
nhzlx 已提交
1726
template <typename Dtype>
T
Tian 已提交
1727
class PReluParam : public OpParam {
N
nhzlx 已提交
1728 1729 1730
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1731 1732
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1733 1734
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1735
    DLOG << "PReluParam inputs before";
1736 1737
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1738
    framework::DDim dims = alpha_->dims();
1739
    out_ = OutFrom<GType>(outputs, *scope);
1740
    mode_ = GetStringAttr("mode", attrs);
1741
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1742
  }
1743 1744 1745
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1746
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1747

I
itminner 已提交
1748
 private:
1749 1750 1751
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1752
  std::string mode_;
T
Tian 已提交
1753 1754 1755
};
#endif

N
nhzlx 已提交
1756
template <typename Dtype>
L
liuruilong 已提交
1757
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1758 1759 1760
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1761
 public:
L
liuruilong 已提交
1762
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1763 1764 1765 1766 1767 1768
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1769 1770 1771 1772
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1773
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1774

1775
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1776

1777
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1778

xiebaiyuan's avatar
xiebaiyuan 已提交
1779
  GType *Out() const { return out_; }
E
eclipsess 已提交
1780 1781 1782 1783 1784 1785 1786 1787

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1788
  GType *input_x_;
1789 1790
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1791
  GType *out_;
E
eclipsess 已提交
1792 1793 1794
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1795

Z
ZhenWang 已提交
1796
#ifdef PADDLE_MOBILE_FPGA
1797
 private:  // NOLINT
Z
zhangyang 已提交
1798
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1799 1800

 public:
Z
zhangyang 已提交
1801 1802
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1803
#endif
E
eclipsess 已提交
1804
};
1805 1806

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1807 1808
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1809
#endif
E
eclipsess 已提交
1810

N
nhzlx 已提交
1811
template <typename Dtype>
1812
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1813 1814 1815
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1816
 public:
L
liuruilong 已提交
1817
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1818
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1819
                     Scope *scope)
1820
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1821
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1822
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1823
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1824
  }
1825
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1826 1827 1828

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1829
 protected:
1830
  GType *bias_;
W
wangliu 已提交
1831 1832 1833
  int axis_;
};

N
nhzlx 已提交
1834 1835
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1836

Z
zhangyang 已提交
1837
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1838 1839
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1840
 public:
L
liuruilong 已提交
1841
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1842
                         const VariableNameMap &outputs,
1843
                         const AttributeMap &attrs, Scope *scope)
1844
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1845 1846 1847
};
#endif

1848
#ifdef FUSION_CONVADDPRELU_OP
1849 1850 1851 1852
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1853 1854 1855 1856

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1857
                          const AttributeMap &attrs, Scope *scope)
1858
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1859
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1860
    mode_ = OpParam::GetStringAttr("mode", attrs);
1861
    framework::DDim dims = alpha_->dims();
1862
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1863
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1864
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1865
  }
1866
  const GType *InputAlpha() const { return alpha_; }
1867
  const std::string &Mode() const { return mode_; }
1868
  GType *Bias() const { return bias_; }
1869 1870 1871
  const int &Axis() const { return axis_; }

 protected:
1872
  GType *bias_;
1873
  int axis_;
1874
  GType *alpha_;
1875 1876 1877 1878 1879
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1880 1881 1882 1883
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1884 1885 1886 1887

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1888
                             const AttributeMap &attrs, Scope *scope)
1889
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1890 1891
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1892
    mode_ = OpParam::GetStringAttr("mode", attrs);
1893
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1894
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1895
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1896 1897 1898
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1899
    if (keyX1_ == keyOutput_) {
1900
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1901
    } else if (keyY1_ == keyOutput_) {
1902
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1903
    }
H
update  
hjchen2 已提交
1904
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1905
  }
1906
  const GType *InputAlpha() const { return alpha_; }
1907
  const std::string &Mode() const { return mode_; }
1908
  const GType *Bias1() const { return bias1_; }
1909

1910
  GType *Bias() const { return bias_; }
1911 1912 1913 1914

  const int &Axis() const { return axis_; }

 protected:
1915
  GType *bias_;
1916
  int axis_;
1917
  GType *alpha_;
1918
  std::string mode_;
1919
  GType *bias1_;
1920 1921 1922 1923 1924 1925
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1926
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1927
template <typename Dtype>
1928
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1929 1930 1931
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1932 1933 1934
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1935
                           const AttributeMap &attrs, Scope *scope)
1936
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1937
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1938
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1939 1940 1941 1942
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1943 1944
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1945
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1946
  }
1947
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1948 1949 1950

  const int &Axis() const { return axis_; }

1951
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1952

1953
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1954

1955
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1956

1957
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1958 1959 1960 1961 1962

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1963
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1964

1965
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1966

1967
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1968

1969
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1970 1971

 protected:
1972
  GType *bias_;
E
eclipsess 已提交
1973
  int axis_;
1974 1975 1976 1977
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1978 1979
  float epsilon_;
  float momentum_;
1980 1981
  GType *new_bias_;
  GType *new_scale_;
1982 1983 1984 1985 1986
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1987
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1988 1989 1990 1991 1992 1993
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1994
                           const AttributeMap &attrs, Scope *scope)
1995
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1996
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1997
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1998 1999 2000 2001
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2002 2003
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2004 2005 2006
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2007
    if (keyX_ == keyBNY_) {
2008
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2009
    } else if (keyY_ == keyBNY_) {
2010
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2011
    }
H
update  
hjchen2 已提交
2012
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2013
  }
2014
  GType *Bias() const { return bias_; }
2015 2016 2017

  const int &Axis() const { return axis_; }

2018
  const GType *InputBias() const { return input_bias_; }
2019

2020
  const GType *InputMean() const { return input_mean_; }
2021

2022
  const GType *InputScale() const { return input_scale_; }
2023

2024
  const GType *InputVariance() const { return input_variance_; }
2025 2026 2027 2028 2029

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2030
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2031

2032
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2033

2034
  const GType *NewScale() const { return new_scale_; }
2035

2036
  const GType *NewBias() const { return new_bias_; }
2037 2038

 protected:
2039
  GType *bias_;
2040
  int axis_;
2041 2042 2043 2044
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2045 2046
  float epsilon_;
  float momentum_;
2047 2048
  GType *new_bias_;
  GType *new_scale_;
2049 2050 2051
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2052
};
2053
#endif
E
eclipsess 已提交
2054

Z
zhangyang 已提交
2055
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2056
template <typename Dtype>
2057
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2058 2059 2060
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2061 2062 2063
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2064
                    Scope *scope)
2065
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2066 2067 2068 2069
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2070 2071
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2072
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2073 2074
  }

2075
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2076

2077
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2078

2079
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2080

2081
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2082 2083 2084 2085 2086

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2087
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2088

2089
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2090

2091
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2092

2093
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2094 2095

 protected:
2096 2097 2098 2099
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2100 2101
  float epsilon_;
  float momentum_;
2102 2103
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2104 2105 2106
};
#endif

2107
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2108
template <typename Dtype>
2109
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2110 2111 2112
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2113 2114 2115
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2116
                       const AttributeMap &attrs, Scope *scope)
2117
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2118
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2119
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2120 2121 2122 2123
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2124 2125
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2126
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2127
  }
2128
  GType *Bias() const { return bias_; }
2129 2130 2131

  const int &Axis() const { return axis_; }

2132
  const GType *InputBias() const { return input_bias_; }
2133

2134
  const GType *InputMean() const { return input_mean_; }
2135

2136
  const GType *InputScale() const { return input_scale_; }
2137

2138
  const GType *InputVariance() const { return input_variance_; }
2139 2140 2141 2142 2143

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2144
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2145

2146
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2147

2148
  const GType *NewScale() const { return new_scale_; }
2149

2150
  const GType *NewBias() const { return new_bias_; }
2151 2152

 protected:
2153
  GType *bias_;
2154
  int axis_;
2155 2156 2157 2158
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2159 2160
  float epsilon_;
  float momentum_;
2161 2162
  GType *new_bias_;
  GType *new_scale_;
2163
};
E
eclipsess 已提交
2164
#endif
Y
Yao,kun 已提交
2165

E
eclipsess 已提交
2166
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2167
template <typename Dtype>
2168
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2169 2170 2171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2172 2173 2174
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2175
                          const AttributeMap &attrs, Scope *scope)
2176
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2177 2178 2179 2180
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2181 2182
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2183
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2184 2185
  }

2186
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2187

2188
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2189

2190
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2191

2192
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2193 2194 2195 2196 2197

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2198
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2199

2200
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2201

2202
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2203

2204
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2205 2206

 protected:
2207 2208 2209 2210
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2211 2212
  float epsilon_;
  float momentum_;
2213 2214
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2215 2216 2217 2218
};

#endif

2219
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2220
template <typename Dtype>
2221
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2222 2223 2224
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2225 2226 2227
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2228
                        const AttributeMap &attrs, Scope *scope)
2229
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2230 2231 2232 2233
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2234 2235
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2236
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2237 2238
  }

2239
  const GType *InputBias() const { return input_bias_; }
2240

2241
  const GType *InputMean() const { return input_mean_; }
2242

2243
  const GType *InputScale() const { return input_scale_; }
2244

2245
  const GType *InputVariance() const { return input_variance_; }
2246 2247 2248 2249 2250

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2251
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2252

2253
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2254

2255
  const GType *NewScale() const { return new_scale_; }
2256

2257
  const GType *NewBias() const { return new_bias_; }
2258 2259

 protected:
2260 2261 2262 2263
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2264 2265
  float epsilon_;
  float momentum_;
2266 2267
  GType *new_bias_;
  GType *new_scale_;
2268 2269 2270
};
#endif

Y
Yao,kun 已提交
2271
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2272
template <typename Dtype>
Y
Yao,kun 已提交
2273
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2274 2275 2276
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2277 2278 2279
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2280 2281 2282 2283
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2284 2285 2286 2287 2288
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2289
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2290

E
eclipsess 已提交
2291
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2292 2293 2294 2295 2296 2297 2298 2299

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2300 2301
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2302 2303 2304 2305
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2306
#endif
Y
Yao,kun 已提交
2307

2308
#ifdef DROPOUT_OP
N
nhzlx 已提交
2309
template <typename Dtype>
Y
Yao,kun 已提交
2310
class DropoutParam : public OpParam {
N
nhzlx 已提交
2311 2312 2313
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2314 2315
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2316 2317 2318 2319
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2320 2321

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2322 2323
  }

2324
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2325

2326
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2327

Y
yangfei 已提交
2328 2329
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2330
 private:
2331 2332
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2333
  float dropout_prob_;
Y
Yao,kun 已提交
2334
};
2335
#endif
Y
Yao,kun 已提交
2336

N
nhzlx 已提交
2337
template <typename Dtype>
L
liuruilong 已提交
2338
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2339 2340 2341
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2342 2343 2344
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2345 2346 2347 2348
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2349
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2350
    if (outputs.count("Output")) {
2351
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2352
    }
L
liuruilong 已提交
2353 2354 2355 2356 2357 2358
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2359
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2360

2361
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2362

2363
  GType *Output() const { return output_; }
L
liuruilong 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2382
 private:
2383 2384 2385
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2386 2387 2388 2389
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2390
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2391 2392 2393 2394 2395

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2396
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2397 2398 2399

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2400 2401 2402
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2403
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2404 2405 2406
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2407
#endif
L
liuruilong 已提交
2408
};
Z
zhangyang 已提交
2409

qnqinan's avatar
qnqinan 已提交
2410 2411 2412 2413 2414
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2415 2416

 public:
qnqinan's avatar
qnqinan 已提交
2417
  FusionDeconvAddParam(const VariableNameMap &inputs,
2418
                       const VariableNameMap &outputs,
2419
                       const AttributeMap &attrs, Scope *scope)
2420
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2421
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2422
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2423
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2424
  }
2425
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2426 2427 2428

  const int &Axis() const { return axis_; }

2429
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2430 2431

 protected:
2432
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2433
  int axis_;
2434
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2435 2436 2437 2438 2439 2440 2441
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2442 2443 2444 2445 2446 2447 2448 2449 2450
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2451
                         const AttributeMap &attrs, Scope *scope)
2452
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2453 2454 2455 2456 2457
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2458 2459 2460 2461 2462 2463 2464
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2508
                          const AttributeMap &attrs, Scope *scope)
2509
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2510 2511 2512 2513 2514
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2515 2516 2517 2518 2519 2520
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2564
                             const AttributeMap &attrs, Scope *scope)
2565
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2566 2567 2568 2569 2570
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2612

Z
zhangyang 已提交
2613 2614 2615 2616 2617
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2632 2633 2634 2635 2636 2637 2638 2639
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2640
    output_batch_reset_hidden_prev_ =
2641 2642 2643
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2644 2645
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2679 2680 2681 2682 2683 2684 2685
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2686 2687 2688 2689 2690 2691 2692 2693
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2694
    output_reset_hidden_prev_ =
2695 2696
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2725 2726 2727 2728 2729 2730 2731 2732
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2733 2734 2735 2736
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2737
    axis = GetAttr<int>("axis", attrs);
2738
  }
2739 2740
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2741
  const int &Axis() const { return axis; }
2742 2743

 private:
2744 2745
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2746
  int axis;
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2758 2759 2760 2761
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2762
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2763 2764 2765 2766 2767 2768
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2769
  }
2770
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2771 2772 2773 2774 2775
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2776 2777

 private:
2778
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2779
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2780
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2781 2782 2783
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2784 2785 2786 2787 2788 2789 2790 2791 2792
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2805 2806 2807 2808 2809
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2810 2811
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2812
  }
2813 2814 2815
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2816 2817
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2818 2819

 private:
2820 2821 2822
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2823 2824
  int out_h_;
  int out_w_;
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2836 2837 2838 2839
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2840
  }
2841 2842
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2843 2844

 private:
2845 2846
  GType *input_;
  GType *out_;
2847 2848 2849
};
#endif

H
hjchen2 已提交
2850 2851 2852 2853 2854 2855 2856 2857
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2858 2859 2860 2861 2862
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2863 2864 2865 2866
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2867 2868 2869
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2882 2883 2884 2885
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2886 2887 2888 2889 2890
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2891 2892
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2893 2894 2895 2896 2897
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2898
#ifdef QUANT_OP
2899
template <typename Dtype>
2900 2901 2902 2903 2904
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2905
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2906 2907 2908 2909
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2910 2911
    // online
    // scale = max(abs(x))
2912
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2913
    // offline
2914
    if (inputs.count("InScale")) {
2915
      offline_ = true;
2916
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2917 2918
    }
    // x = round(scale * x)
2919 2920
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2921
    }
2922 2923 2924 2925
  }

 public:
  // op input
2926
  GType *input_;
2927
  // op output
2928
  GType *output_;
2929
  GType *online_scale_;
2930
  // quantize offline scale
2931
  GType *offline_scale_;
2932 2933
  // if offine scale or not
  bool offline_ = false;
2934
  // round method type
2935 2936
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2937
};
2938
#endif
2939

2940
#ifdef DEQUANT_OP
2941
template <typename Dtype>
2942 2943 2944 2945 2946
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2947
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2948 2949 2950 2951 2952
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2953
    // dequantization is performed as x = x / static_scale / online_scale
2954 2955
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2956
    } else {
2957
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2958 2959 2960 2961 2962
    }
  }

 public:
  // op input
2963
  GType *input_;
2964
  // op output
2965
  GType *output_;
2966
  GType *activation_scale_;
2967 2968
  float weight_scale_;
};
2969
#endif
2970

2971 2972 2973 2974
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2975
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2976
template <typename Dtype>
2977
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2978 2979 2980 2981
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2982 2983
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2984
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2985 2986
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2987 2988 2989 2990
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2991 2992 2993 2994 2995
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2996 2997 2998 2999
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3000
  float epsilon_;
3001 3002 3003
};
#endif

3004 3005 3006 3007
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3008 3009 3010 3011 3012 3013 3014 3015
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3016
                          const AttributeMap &attrs, Scope *scope)
3017 3018 3019
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3020
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3021 3022 3023 3024 3025
  }

 public:
  // elementwise add
  int axis_;
3026
  GType *bias_;
3027 3028 3029
};
#endif

3030 3031 3032 3033 3034 3035 3036 3037 3038
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3039
                               const AttributeMap &attrs, Scope *scope)
3040 3041
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3042
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3043
    // offline
3044 3045
    if (inputs.count("InScale")) {
      offline_ = true;
3046
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3047 3048 3049 3050 3051 3052 3053 3054
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3055
  GType *online_scale_;
3056
  // quantize offline scale
3057
  GType *offline_scale_;
3058 3059
  // if offine scale or not
  bool offline_ = false;
3060 3061 3062 3063 3064 3065
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3066 3067 3068 3069 3070 3071 3072 3073 3074
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3075 3076 3077 3078 3079
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3103 3104 3105 3106
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3107 3108
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3109
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3120 3121 3122 3123 3124 3125 3126 3127
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3128 3129 3130 3131
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3132 3133
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3134
      input_y_ = InputYFrom<GType>(inputs, *scope);
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3148 3149 3150 3151 3152 3153 3154 3155
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3156 3157 3158 3159 3160
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3172
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3173
template <typename Dtype>
Z
zhaojiaying01 已提交
3174
class LogicalBinaryParam : public OpParam {
3175 3176 3177 3178
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3179 3180
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3181 3182 3183 3184 3185
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3197
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3198 3199 3200

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3201
class LogicalUnaryParam : public OpParam {
3202 3203 3204 3205
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3206 3207
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3208 3209 3210 3211
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3223 3224 3225
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3226 3227 3228
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3229 3230 3231
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3232 3233
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3234 3235 3236
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3237 3238 3239
  }

 public:
H
hjchen2 已提交
3240 3241 3242
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3243 3244 3245 3246 3247 3248
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3249 3250 3251
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3252 3253 3254
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3255 3256
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3257 3258 3259
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3260 3261 3262
  }

 public:
H
hjchen2 已提交
3263 3264 3265
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3266 3267 3268
};
#endif

Z
zhaojiaying01 已提交
3269 3270 3271 3272 3273 3274 3275 3276
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3277 3278 3279 3280
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3300
                 const AttributeMap &attrs, Scope *scope)
3301
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3302 3303
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3304
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3305 3306 3307 3308
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3309
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3310 3311 3312 3313

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3314
  float step_;
Z
zhaojiaying01 已提交
3315 3316
};
#endif  // INCREMENT_OP
3317 3318 3319 3320 3321 3322 3323 3324
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3325 3326 3327 3328
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3329 3330 3331 3332 3333 3334 3335 3336 3337
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3338

朔-望's avatar
朔-望 已提交
3339 3340
}  // namespace operators
}  // namespace paddle_mobile