Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
889c8ebc
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
889c8ebc
编写于
12月 08, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove int8 conv/fc fusion ops since leadding to float model prediction failure
上级
368073f4
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
14 addition
and
685 deletion
+14
-685
src/common/types.cpp
src/common/types.cpp
+0
-4
src/common/types.h
src/common/types.h
+0
-2
src/framework/op_registry.h
src/framework/op_registry.h
+0
-18
src/operators/fusion_conv_add_relu_int8_op.cpp
src/operators/fusion_conv_add_relu_int8_op.cpp
+0
-56
src/operators/fusion_conv_add_relu_int8_op.h
src/operators/fusion_conv_add_relu_int8_op.h
+0
-42
src/operators/fusion_fc_int8_op.cpp
src/operators/fusion_fc_int8_op.cpp
+0
-61
src/operators/fusion_fc_int8_op.h
src/operators/fusion_fc_int8_op.h
+0
-50
src/operators/kernel/arm/conv_add_relu_kernel.cpp
src/operators/kernel/arm/conv_add_relu_kernel.cpp
+0
-14
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
...perators/kernel/central-arm-func/conv_add_relu_arm_func.h
+0
-6
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
+7
-22
src/operators/math/pooling.cpp
src/operators/math/pooling.cpp
+4
-2
src/operators/op_param.h
src/operators/op_param.h
+2
-26
test/CMakeLists.txt
test/CMakeLists.txt
+0
-4
test/net/test_benchmark.cpp
test/net/test_benchmark.cpp
+1
-0
test/operators/test_fusion_conv_add_relu_int8_op.cpp
test/operators/test_fusion_conv_add_relu_int8_op.cpp
+0
-364
test/operators/test_fusion_fc_op.cpp
test/operators/test_fusion_fc_op.cpp
+0
-14
未找到文件。
src/common/types.cpp
浏览文件 @
889c8ebc
...
...
@@ -24,7 +24,6 @@ const char *G_OP_TYPE_CONCAT = "concat";
const
char
*
G_OP_TYPE_ELEMENTWISE_ADD
=
"elementwise_add"
;
const
char
*
G_OP_TYPE_FILL_CONSTANT
=
"fill_constant"
;
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_RELU
=
"fusion_conv_add_relu"
;
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8
=
"fusion_conv_add_relu_int8"
;
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_PRELU
=
"fusion_conv_add_prelu"
;
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU
=
"fusion_conv_add_add_prelu"
;
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_BN_RELU
=
"fusion_conv_add_bn_relu"
;
...
...
@@ -32,7 +31,6 @@ const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU = "fusion_conv_bn_add_relu";
const
char
*
G_OP_TYPE_FUSION_DWCONV_BN_RELU
=
"fusion_dwconv_bn_relu"
;
const
char
*
G_OP_TYPE_FUSION_CONV_BN_RELU
=
"fusion_conv_bn_relu"
;
const
char
*
G_OP_TYPE_FC
=
"fusion_fc"
;
const
char
*
G_OP_TYPE_FC_INT8
=
"fusion_fc_int8"
;
const
char
*
G_OP_TYPE_FUSION_CONV_ADD
=
"fusion_conv_add"
;
const
char
*
G_OP_TYPE_LRN
=
"lrn"
;
const
char
*
G_OP_TYPE_MUL
=
"mul"
;
...
...
@@ -119,13 +117,11 @@ std::unordered_map<
{
G_OP_TYPE_MULTICLASS_NMS
,
{{
"BBoxes"
,
"Scores"
},
{
"Out"
}}},
{
G_OP_TYPE_POLYGON_BOX_TRANSFORM
,
{{
"Input"
},
{
"Output"
}}},
{
G_OP_TYPE_FC
,
{{
"X"
,
"Y"
,
"Z"
},
{
"Out"
}}},
{
G_OP_TYPE_FC_INT8
,
{{
"X"
,
"Y"
,
"Z"
,
"Scale"
},
{
"Out"
}}},
{
G_OP_TYPE_RESHAPE
,
{{
"X"
},
{
"Out"
}}},
{
G_OP_TYPE_RESHAPE2
,
{{
"X"
},
{
"Out"
,
"XShape"
}}},
{
G_OP_TYPE_DEPTHWISE_CONV
,
{{
"Input"
},
{
"Output"
}}},
{
G_OP_TYPE_FILL_CONSTANT
,
{{},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_RELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8
,
{{
"Input"
,
"Scale"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_PRELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU
,
{{
"Input"
},
{
"Out"
}}},
{
G_OP_TYPE_IM2SEQUENCE
,
{{
"X"
},
{
"Out"
}}},
...
...
src/common/types.h
浏览文件 @
889c8ebc
...
...
@@ -108,11 +108,9 @@ extern const char *G_OP_TYPE_BOX_CODER;
extern
const
char
*
G_OP_TYPE_CONCAT
;
extern
const
char
*
G_OP_TYPE_ELEMENTWISE_ADD
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_RELU_INT8
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_PRELU
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU
;
extern
const
char
*
G_OP_TYPE_FC
;
extern
const
char
*
G_OP_TYPE_FC_INT8
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_ADD
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_ADD_BN_RELU
;
extern
const
char
*
G_OP_TYPE_FUSION_CONV_BN_ADD_RELU
;
...
...
src/framework/op_registry.h
浏览文件 @
889c8ebc
...
...
@@ -98,24 +98,6 @@ class OpRegistry {
}
};
#define REGISTER_OPERATOR_INT8(op_type, op_class, device_name, device_type) \
template class op_class<device_type, int8_t>; \
template <typename Dtype, typename T> \
class _OpClass_##op_type##_##device_name : public op_class<Dtype, T> { \
public: \
DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_##device_name, op_class); \
}; \
static paddle_mobile::framework::OperatorRegistrar< \
device_type, _OpClass_##op_type##_##device_name<device_type, int8_t>> \
__op_registrar_##op_type##_##device_name(#op_type); \
int TouchOpRegistrar_##op_type##_##device_name() { \
__op_registrar_##op_type##_##device_name.Touch(); \
return 0; \
}
#define REGISTER_OPERATOR_CPU_INT8(op_type, op_class) \
REGISTER_OPERATOR_INT8(op_type, op_class, cpu, paddle_mobile::CPU);
#define REGISTER_OPERATOR(op_type, op_class, device_name, device_type) \
template class op_class<device_type, float>; \
template <typename Dtype, typename T> \
...
...
src/operators/fusion_conv_add_relu_int8_op.cpp
已删除
100644 → 0
浏览文件 @
368073f4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#include "operators/fusion_conv_add_relu_int8_op.h"
#include <vector>
#include "operators/math/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionConvAddReluInt8Op
<
Dtype
,
T
>::
InferShape
()
const
{
auto
in_dims
=
this
->
param_
.
Input
()
->
dims
();
auto
filter_dims
=
this
->
param_
.
Filter
()
->
dims
();
const
std
::
vector
<
int
>
&
strides
=
this
->
param_
.
Strides
();
std
::
vector
<
int
>
paddings
=
this
->
param_
.
Paddings
();
int
groups
=
this
->
param_
.
Groups
();
std
::
vector
<
int
>
dilations
=
this
->
param_
.
Dilations
();
PADDLE_MOBILE_ENFORCE
((
in_dims
.
size
()
==
filter_dims
.
size
()
&&
dilations
.
size
()
==
paddings
.
size
()
&&
paddings
.
size
()
==
strides
.
size
()),
"ConvParam is not suitable"
);
std
::
vector
<
int64_t
>
output_shape
({
in_dims
[
0
],
filter_dims
[
0
]});
for
(
size_t
i
=
0
;
i
<
strides
.
size
();
++
i
)
{
output_shape
.
push_back
(
math
::
ConvOutputSize
(
in_dims
[
i
+
2
],
filter_dims
[
i
+
2
],
dilations
[
i
],
paddings
[
i
],
strides
[
i
]));
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_shape
);
this
->
param_
.
Output
()
->
Resize
(
ddim
);
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU_INT8
(
fusion_conv_add_relu_int8
,
ops
::
FusionConvAddReluInt8Op
);
#endif
#endif // FUSION_CONVADDRELU_INT8_OP
src/operators/fusion_conv_add_relu_int8_op.h
已删除
100644 → 0
浏览文件 @
368073f4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADDRELU_INT8_OP
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
FusionConvAddReluInt8Op
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddReluParam
<
DeviceType
>
,
ConvAddReluKernel
<
DeviceType
,
T
>>
{
public:
FusionConvAddReluInt8Op
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionConvAddReluParam
<
DeviceType
>
,
ConvAddReluKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_CONVADDRELU_INT8_OP
src/operators/fusion_fc_int8_op.cpp
已删除
100644 → 0
浏览文件 @
368073f4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_INT8_OP
#include "operators/fusion_fc_int8_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
FusionFcInt8Op
<
Dtype
,
T
>::
InferShape
()
const
{
auto
x_dims
=
this
->
param_
.
InputX
()
->
dims
();
auto
y_dims
=
this
->
param_
.
InputY
()
->
dims
();
int
x_num_col_dims
=
this
->
param_
.
XNumColDims
();
int
y_num_col_dims
=
this
->
param_
.
YNumColDims
();
assert
(
x_dims
.
size
()
>
x_num_col_dims
);
assert
(
y_dims
.
size
()
>
y_num_col_dims
);
/// (1,2,3,4) , x_num_col_dims = 2 -> (2,12)
auto
x_mat_dims
=
framework
::
flatten_to_2d
(
x_dims
,
x_num_col_dims
);
auto
y_mat_dims
=
framework
::
flatten_to_2d
(
y_dims
,
y_num_col_dims
);
assert
(
x_mat_dims
[
1
]
==
y_mat_dims
[
0
]);
std
::
vector
<
int64_t
>
output_dims
;
output_dims
.
reserve
(
static_cast
<
size_t
>
(
x_num_col_dims
+
y_dims
.
size
()
-
y_num_col_dims
));
for
(
int
i
=
0
;
i
<
x_num_col_dims
;
++
i
)
{
output_dims
.
push_back
(
x_dims
[
i
]);
}
for
(
int
i
=
y_num_col_dims
;
i
<
y_dims
.
size
();
++
i
)
{
output_dims
.
push_back
(
y_dims
[
i
]);
}
framework
::
DDim
ddim
=
framework
::
make_ddim
(
output_dims
);
this
->
param_
.
Out
()
->
Resize
(
ddim
);
}
}
// namespace operators
}
// namespace paddle_mobile
namespace
ops
=
paddle_mobile
::
operators
;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU_INT8
(
fusion_fc_int8
,
ops
::
FusionFcInt8Op
);
#endif
#endif // FUSION_FC_INT8_OP
src/operators/fusion_fc_int8_op.h
已删除
100644 → 0
浏览文件 @
368073f4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_FC_INT8_OP
#pragma once
#include <string>
#include <vector>
#include "framework/operator.h"
#include "framework/program/program-optimize/fusion_op_register.h"
#include "operators/kernel/fusion_fc_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
FusionFcInt8Op
:
public
framework
::
OperatorWithKernel
<
DeviceType
,
FusionFcParam
<
DeviceType
>
,
FusionFcKernel
<
DeviceType
,
T
>>
{
public:
FusionFcInt8Op
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
,
FusionFcParam
<
DeviceType
>
,
FusionFcKernel
<
DeviceType
,
T
>>
(
type
,
inputs
,
outputs
,
attrs
,
scope
)
{}
void
InferShape
()
const
override
;
};
}
// namespace operators
}
// namespace paddle_mobile
#endif // FUSION_FC_INT8_OP
src/operators/kernel/arm/conv_add_relu_kernel.cpp
浏览文件 @
889c8ebc
...
...
@@ -32,20 +32,6 @@ void ConvAddReluKernel<CPU, float>::Compute(
}
template
class
ConvAddReluKernel
<
CPU
,
float
>;
#ifdef FUSION_CONVADDRELU_INT8_OP
template
<
>
bool
ConvAddReluKernel
<
CPU
,
int8_t
>::
Init
(
FusionConvAddReluParam
<
CPU
>
*
param
)
{
return
true
;
}
template
<
>
void
ConvAddReluKernel
<
CPU
,
int8_t
>::
Compute
(
const
FusionConvAddReluParam
<
CPU
>
&
param
)
{
ConvAddReluCompute
<
int8_t
,
int32_t
>
(
param
);
}
template
class
ConvAddReluKernel
<
CPU
,
int8_t
>;
#endif
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/central-arm-func/conv_add_relu_arm_func.h
浏览文件 @
889c8ebc
...
...
@@ -37,12 +37,6 @@ void ConvAddReluCompute(const FusionConvAddReluParam<CPU> ¶m) {
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
#ifdef FUSION_CONVADDRELU_INT8_OP
alpha
=
param
.
InputScale
()
->
data
<
float
>
()[
0
];
beta
=
0.0
f
;
#endif
int32_t
groups
=
param
.
Groups
();
std
::
vector
<
int32_t
>
strides
=
param
.
Strides
();
std
::
vector
<
int32_t
>
paddings
=
param
.
Paddings
();
...
...
src/operators/kernel/central-arm-func/fusion_fc_arm_func.h
浏览文件 @
889c8ebc
...
...
@@ -37,7 +37,6 @@ void FusionFcCompute(const FusionFcParam<CPU> ¶m) {
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
const
Tensor
x_matrix
=
input_x
->
dims
().
size
()
>
2
?
framework
::
ReshapeToMatrix
(
*
input_x
,
param
.
XNumColDims
())
...
...
@@ -57,28 +56,14 @@ void FusionFcCompute(const FusionFcParam<CPU> ¶m) {
axis
=
(
axis
==
-
1
?
out_dim
.
size
()
-
input_z
->
dims
().
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
==
1
,
" to fit broadcast, axis = 1. "
);
if
(
std
::
is_same
<
P
,
int8_t
>::
value
)
{
#ifdef FUSION_FC_INT8_OP
alpha
=
param
.
InputScale
()
->
data
<
float
>
()[
0
];
beta
=
0.0
f
;
math
::
matmul
(
x_matrix
,
false
,
y_matrix
,
false
,
alpha
,
out
,
beta
,
false
,
input_z_data
,
true
);
#endif
}
else
{
// bias_data的维度和out的第二个维度一致
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
alpha
,
out
,
beta
,
false
);
// bias_data的维度和out的第二个维度一致
int64_t
classes
=
input_z
->
numel
();
for
(
int
i
=
0
;
i
<
out_dim
[
0
];
i
++
)
{
memory
::
Copy
(
out_data
+
i
*
classes
,
input_z_data
,
sizeof
(
float
)
*
classes
);
}
PADDLE_MOBILE_ENFORCE
(
out_dim
.
size
()
==
2
,
" out_dim.size must be 2."
);
// if (out_dim.size() != 2) {
// out->Resize(out_dim);
// }
math
::
matmul
<
float
>
(
x_matrix
,
false
,
y_matrix
,
false
,
alpha
,
out
,
beta
,
false
);
}
}
// namespace operators
...
...
src/operators/math/pooling.cpp
浏览文件 @
889c8ebc
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#ifdef POOL_OP
#include "pooling.h"
#include "operators/math/pooling.h"
#include <algorithm>
#include <vector>
#include "common/types.h"
#ifdef _OPENMP
#include <omp.h>
...
...
@@ -60,7 +62,7 @@ class PoolFunctor<CPU, PoolProcess, T> {
T
*
output_data
=
output
->
mutable_data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
#pragma omp parallel for
#pragma omp parallel for
for
(
int
ph
=
0
;
ph
<
output_height
;
++
ph
)
{
int
hstart
=
ph
*
stride_height
-
padding_height
;
int
hend
=
std
::
min
(
hstart
+
ksize_height
,
input_height
);
...
...
src/operators/op_param.h
浏览文件 @
889c8ebc
...
...
@@ -1632,10 +1632,6 @@ class FusionFcParam : public OpParam {
x_num_col_dims_
=
GetAttr
<
int
>
(
"x_num_col_dims"
,
attrs
);
y_num_col_dims_
=
GetAttr
<
int
>
(
"y_num_col_dims"
,
attrs
);
axis_
=
GetAttr
<
int
>
(
"axis"
,
attrs
);
#ifdef FUSION_FC_INT8_OP
scale_
=
InputScaleFrom
<
GType
>
(
inputs
,
scope
);
#endif
}
GType
*
InputX
()
const
{
return
input_x_
;
}
...
...
@@ -1660,16 +1656,8 @@ class FusionFcParam : public OpParam {
int
y_num_col_dims_
;
int
axis_
;
#ifdef FUSION_FC_INT8_OP
public:
const
RType
*
InputScale
()
const
{
return
scale_
;
}
private:
RType
*
scale_
;
#endif
#ifdef PADDLE_MOBILE_FPGA
private:
private:
// NOLINT
fpga
::
SplitConvArgs
fpga_conv_args
;
public:
...
...
@@ -1719,19 +1707,7 @@ class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
FusionConvAddReluParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
:
FusionConvAddParam
<
DeviceType
>
(
inputs
,
outputs
,
attrs
,
scope
)
{
#ifdef FUSION_CONVADDRELU_INT8_OP
scale_
=
OpParam
::
InputScaleFrom
<
GType
>
(
inputs
,
scope
);
#endif
}
#ifdef FUSION_CONVADDRELU_INT8_OP
typedef
typename
DtypeTensorTrait
<
DeviceType
>::
gtype
GType
;
typedef
typename
DtypeTensorTrait
<
DeviceType
>::
rtype
RType
;
const
RType
*
InputScale
()
const
{
return
scale_
;
}
private:
RType
*
scale_
;
#endif
:
FusionConvAddParam
<
DeviceType
>
(
inputs
,
outputs
,
attrs
,
scope
)
{}
};
#endif
...
...
test/CMakeLists.txt
浏览文件 @
889c8ebc
...
...
@@ -324,10 +324,6 @@ if (NOT FOUND_MATCH)
ADD_EXECUTABLE
(
test-conv-add-relu-op operators/test_conv_add_relu_op.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-conv-add-relu-op paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-conv-add-relu-int8-op operators/test_fusion_conv_add_relu_int8_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-conv-add-relu-int8-op paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-conv-add-bn-relu-op operators/test_fusion_conv_add_bn_relu_op.cpp test_helper.h test_include.h executor_for_test.h
)
target_link_libraries
(
test-conv-add-bn-relu-op paddle-mobile
)
...
...
test/net/test_benchmark.cpp
浏览文件 @
889c8ebc
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#include <sstream>
#include "../test_helper.h"
#include "../test_include.h"
...
...
test/operators/test_fusion_conv_add_relu_int8_op.cpp
已删除
100644 → 0
浏览文件 @
368073f4
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <iostream>
#ifdef FUSION_CONVADDRELU_INT8_OP
#include <limits>
#include "../test_helper.h"
#include "../test_include.h"
#include "operators/fusion_conv_add_relu_int8_op.h"
namespace
paddle_mobile
{
int32_t
qadd_int32
(
int32_t
l
,
int32_t
r
)
{
int64_t
res
=
static_cast
<
int64_t
>
(
l
)
+
static_cast
<
int64_t
>
(
r
);
if
(
res
>
std
::
numeric_limits
<
int32_t
>::
max
())
return
std
::
numeric_limits
<
int32_t
>::
max
();
else
if
(
res
<
std
::
numeric_limits
<
int32_t
>::
min
())
return
std
::
numeric_limits
<
int32_t
>::
min
();
else
return
static_cast
<
int32_t
>
(
res
);
}
// round to zero
float
round2zero
(
float
v
)
{
float
res
;
if
(
v
>
0
)
res
=
std
::
floor
(
v
);
else
if
(
v
<
0
)
res
=
std
::
ceil
(
v
);
return
res
;
}
int8_t
qscale_int32
(
int32_t
v
,
float
scale
)
{
float
res
=
static_cast
<
float
>
(
v
)
*
scale
;
res
=
round2zero
(
res
);
if
(
res
>
127
)
return
static_cast
<
int8_t
>
(
127
);
else
if
(
res
<
-
127
)
return
static_cast
<
int8_t
>
(
-
127
);
else
return
static_cast
<
int8_t
>
(
res
);
}
// Reference convolution from Caffe for checking results.
// accumulate through explicit loops over input, output, and filters.
template
<
typename
T
>
void
conv2d
(
const
framework
::
Tensor
*
input
,
const
framework
::
Tensor
*
filter
,
const
framework
::
Tensor
*
bias
,
const
framework
::
AttributeMap
&
attrs
,
framework
::
Tensor
*
output
,
float
scale
)
{
framework
::
AttrReader
attr_reader
(
attrs
);
std
::
vector
<
int
>
paddings
=
attr_reader
.
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
strides
=
attr_reader
.
Get
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
dilations
=
attr_reader
.
Get
<
std
::
vector
<
int
>>
(
"dilations"
);
int
groups
=
attr_reader
.
Get
<
int
>
(
"groups"
);
int
kernel_h
=
filter
->
dims
()[
2
];
int
kernel_w
=
filter
->
dims
()[
3
];
int
pad_h
=
paddings
[
0
];
int
pad_w
=
paddings
[
1
];
int
stride_h
=
strides
[
0
];
int
stride_w
=
strides
[
1
];
int
dilation_h
=
dilations
[
0
];
int
dilation_w
=
dilations
[
1
];
auto
in_shape
=
input
->
dims
();
auto
out_shape
=
output
->
dims
();
const
bool
has_depth
=
0
;
int
kernel_d
,
pad_d
,
stride_d
,
dilation_d
;
if
(
has_depth
)
{
kernel_d
=
kernel_h
;
stride_d
=
stride_h
;
pad_d
=
pad_h
;
dilation_d
=
dilation_h
;
}
else
{
kernel_d
=
stride_d
=
dilation_d
=
1
;
pad_d
=
0
;
}
// Groups
int
o_g
=
out_shape
[
1
]
/
groups
;
int
k_g
=
in_shape
[
1
]
/
groups
;
int
o_head
,
k_head
;
// Convolution
vector
<
int
>
weight_offset
(
4
+
has_depth
);
vector
<
int
>
in_offset
(
4
+
has_depth
);
vector
<
int
>
out_offset
(
4
+
has_depth
);
auto
offset
=
[](
const
framework
::
Tensor
*
input
,
const
vector
<
int
>
&
indics
)
{
framework
::
DDim
shape
=
input
->
dims
();
size_t
count
=
0
;
for
(
int
i
=
0
;
i
<
indics
.
size
();
++
i
)
{
count
*=
shape
[
i
];
count
+=
indics
[
i
];
}
return
count
;
};
const
T
*
in_data
=
input
->
data
<
T
>
();
const
T
*
w_data
=
filter
->
data
<
T
>
();
framework
::
Tensor
output_32
;
int32_t
*
out_data_32
=
output_32
.
mutable_data
<
int32_t
>
(
out_shape
);
memset
(
out_data_32
,
0
,
output_32
.
numel
()
*
sizeof
(
int32_t
));
for
(
int
n
=
0
;
n
<
out_shape
[
0
];
n
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
o_head
=
o_g
*
g
;
k_head
=
k_g
*
g
;
for
(
int
o
=
0
;
o
<
o_g
;
o
++
)
{
for
(
int
k
=
0
;
k
<
k_g
;
k
++
)
{
for
(
int
z
=
0
;
z
<
(
has_depth
?
out_shape
[
2
]
:
1
);
z
++
)
{
for
(
int
y
=
0
;
y
<
out_shape
[
2
+
has_depth
];
y
++
)
{
for
(
int
x
=
0
;
x
<
out_shape
[
3
+
has_depth
];
x
++
)
{
for
(
int
r
=
0
;
r
<
kernel_d
;
r
++
)
{
for
(
int
p
=
0
;
p
<
kernel_h
;
p
++
)
{
for
(
int
q
=
0
;
q
<
kernel_w
;
q
++
)
{
int
in_z
=
z
*
stride_d
-
pad_d
+
r
*
dilation_d
;
int
in_y
=
y
*
stride_h
-
pad_h
+
p
*
dilation_h
;
int
in_x
=
x
*
stride_w
-
pad_w
+
q
*
dilation_w
;
if
(
in_z
>=
0
&&
in_z
<
(
has_depth
?
in_shape
[
2
]
:
1
)
&&
in_y
>=
0
&&
in_y
<
in_shape
[
2
+
has_depth
]
&&
in_x
>=
0
&&
in_x
<
in_shape
[
3
+
has_depth
])
{
weight_offset
[
0
]
=
o
+
o_head
;
weight_offset
[
1
]
=
k
;
if
(
has_depth
)
{
weight_offset
[
2
]
=
r
;
}
weight_offset
[
2
+
has_depth
]
=
p
;
weight_offset
[
3
+
has_depth
]
=
q
;
in_offset
[
0
]
=
n
;
in_offset
[
1
]
=
k
+
k_head
;
if
(
has_depth
)
{
in_offset
[
2
]
=
in_z
;
}
in_offset
[
2
+
has_depth
]
=
in_y
;
in_offset
[
3
+
has_depth
]
=
in_x
;
out_offset
[
0
]
=
n
;
out_offset
[
1
]
=
o
+
o_head
;
if
(
has_depth
)
{
out_offset
[
2
]
=
z
;
}
out_offset
[
2
+
has_depth
]
=
y
;
out_offset
[
3
+
has_depth
]
=
x
;
out_data_32
[
offset
(
output
,
out_offset
)]
+=
in_data
[
offset
(
input
,
in_offset
)]
*
w_data
[
offset
(
filter
,
weight_offset
)];
}
}
}
}
}
}
}
}
}
}
}
T
*
out_data
=
output
->
mutable_data
<
T
>
();
int32_t
n
=
out_shape
[
0
];
int32_t
c
=
out_shape
[
1
];
int32_t
h
=
out_shape
[
2
];
int32_t
w
=
out_shape
[
3
];
const
int32_t
*
bias_data
=
bias
->
data
<
int32_t
>
();
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
j
=
0
;
j
<
c
;
++
j
)
{
int32_t
bias_v
=
bias_data
[
j
];
for
(
int
k
=
0
;
k
<
h
;
++
k
)
{
for
(
int
l
=
0
;
l
<
w
;
++
l
)
{
int32_t
tmp
=
out_data_32
[
i
*
c
*
h
*
w
+
j
*
h
*
w
+
k
*
w
+
l
];
tmp
=
qadd_int32
(
tmp
,
bias_v
);
tmp
=
std
::
max
(
0
,
tmp
);
out_data
[
i
*
c
*
h
*
w
+
j
*
h
*
w
+
k
*
w
+
l
]
=
qscale_int32
(
tmp
,
scale
);
}
}
}
}
}
template
<
typename
T
,
int
Kernel
,
int
Pad
,
int
Stride
>
int
TestConvOp
(
int
in_channels
,
int
in_height
,
int
in_width
,
int
out_channels
)
{
int
kernel_h
=
Kernel
;
int
kernel_w
=
Kernel
;
int
pad_h
=
Pad
;
int
pad_w
=
Pad
;
int
stride_h
=
Stride
;
int
stride_w
=
Stride
;
int
dilation_h
=
1
;
int
dilation_w
=
1
;
int
batch_size
=
1
;
int
input_c
=
in_channels
;
int
input_h
=
in_height
;
int
input_w
=
in_width
;
int
output_c
=
out_channels
;
framework
::
DDim
input_shape
=
framework
::
make_ddim
({
batch_size
,
input_c
,
input_h
,
input_w
});
framework
::
DDim
filter_shape
=
framework
::
make_ddim
({
output_c
,
input_c
,
kernel_h
,
kernel_w
});
int
kernel_extent_h
=
dilation_h
*
(
kernel_h
-
1
)
+
1
;
int
kernel_extent_w
=
dilation_w
*
(
kernel_w
-
1
)
+
1
;
int
output_h
=
(
input_h
+
2
*
pad_h
-
kernel_extent_h
)
/
stride_h
+
1
;
int
output_w
=
(
input_w
+
2
*
pad_w
-
kernel_extent_w
)
/
stride_w
+
1
;
framework
::
DDim
output_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
({
batch_size
,
output_c
,
output_h
,
output_w
}));
framework
::
DDim
bias_shape
=
framework
::
make_ddim
({
output_c
});
VariableNameMap
inputs
;
VariableNameMap
outputs
;
auto
scope
=
std
::
make_shared
<
framework
::
Scope
>
();
inputs
[
"Input"
]
=
std
::
vector
<
std
::
string
>
({
"input"
});
inputs
[
"Filter"
]
=
std
::
vector
<
std
::
string
>
({
"filter"
});
inputs
[
"Scale"
]
=
std
::
vector
<
std
::
string
>
({
"scale"
});
inputs
[
"Y"
]
=
std
::
vector
<
std
::
string
>
({
"bias"
});
outputs
[
"Out"
]
=
std
::
vector
<
std
::
string
>
({
"output"
});
auto
input_var
=
scope
.
get
()
->
Var
(
"input"
);
auto
input
=
input_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
SetupTensor
<
T
>
(
input
,
input_shape
,
-
127
,
127
);
auto
filter_var
=
scope
.
get
()
->
Var
(
"filter"
);
auto
filter
=
filter_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
SetupTensor
<
T
>
(
filter
,
filter_shape
,
-
127
,
127
);
auto
scale_var
=
scope
.
get
()
->
Var
(
"scale"
);
auto
scale
=
scale_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
scale
->
Resize
(
framework
::
make_ddim
({
1
}));
float
scale_v
=
0.000828
f
;
scale
->
mutable_data
<
float
>
()[
0
]
=
scale_v
;
auto
bias_var
=
scope
.
get
()
->
Var
(
"bias"
);
auto
bias
=
bias_var
->
template
GetMutable
<
framework
::
LoDTensor
>();
SetupTensor
<
int32_t
>
(
bias
,
bias_shape
,
-
127
,
127
);
auto
output_var
=
scope
.
get
()
->
Var
(
"output"
);
framework
::
AttributeMap
attrs
;
attrs
[
"strides"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
stride_h
,
stride_w
}));
attrs
[
"paddings"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
pad_h
,
pad_w
}));
attrs
[
"dilations"
].
Set
<
vector
<
int
>>
(
std
::
vector
<
int
>
({
dilation_h
,
dilation_w
}));
attrs
[
"groups"
].
Set
<
int
>
(
1
);
attrs
[
"axis"
].
Set
<
int
>
(
0
);
auto
*
op
=
new
operators
::
FusionConvAddReluInt8Op
<
CPU
,
T
>
(
"fusion_conv_add_relu_int8"
,
inputs
,
outputs
,
attrs
,
scope
);
op
->
InferShape
();
op
->
Init
();
op
->
Run
();
framework
::
Tensor
output_cmp
;
output_cmp
.
mutable_data
<
T
>
(
output_shape
);
conv2d
<
T
>
(
input
,
filter
,
bias
,
attrs
,
&
output_cmp
,
scale_v
);
// compare results
int
eq
=
0
;
int
neq
=
0
;
auto
output
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
const
T
*
output_data
=
output
->
data
<
T
>
();
T
*
output_cmp_data
=
output_cmp
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
PADDLE_MOBILE_ENFORCE
(
output_data
[
i
]
==
output_cmp_data
[
i
],
"The execution of test_fusion_conv_add_relu_int8_op is failed!"
);
if
(
output_data
[
i
]
==
output_cmp_data
[
i
])
{
++
eq
;
}
else
{
++
neq
;
}
}
std
::
cout
<<
"eq = "
<<
eq
<<
", neq = "
<<
neq
<<
std
::
endl
;
delete
op
;
return
0
;
}
}
// namespace paddle_mobile
int
main
(
int
argc
,
char
*
argv
[])
{
if
(
argc
<
5
)
{
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"Usage:
\n
"
<<
" ./test-conv-add-relu-int8-op in_channels in_height in_width "
"out_channels
\n
"
<<
" params:
\n
"
<<
" -in_channels: int, input image's channels
\n
"
<<
" -in_height: int, input image's height
\n
"
<<
" -in_width: int, input image's width
\n
"
<<
" -out_channels: int, conv output channels
\n
"
;
return
1
;
}
int
in_channels
=
atoi
(
argv
[
1
]);
int
in_height
=
atoi
(
argv
[
2
]);
int
in_width
=
atoi
(
argv
[
3
]);
int
out_channels
=
atoi
(
argv
[
4
]);
// kernel = 3, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8_t, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 0, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
0
,
2
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 1, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
1
,
2
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 3, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
3
,
2
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 3, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
3
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 5, stride = 3
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=5, stride=3"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
5
,
3
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 7, pad = 3, stride = 4
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=4"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
7
,
3
,
4
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 3, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
3
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 3, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
3
,
1
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 5, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=5, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
5
,
0
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
// kernel = 5, pad = 2, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=5, pad=2, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
5
,
2
,
1
>
(
in_channels
,
in_height
,
in_width
,
out_channels
);
}
#else
int
main
()
{
std
::
cout
<<
"FUSION_CONVADDRELU_INT8_OP is not defined!"
<<
std
::
endl
;
return
0
;
}
#endif
test/operators/test_fusion_fc_op.cpp
浏览文件 @
889c8ebc
...
...
@@ -17,7 +17,6 @@ limitations under the License. */
#include "../test_helper.h"
#include "../test_include.h"
#include "framework/operator.h"
#include "operators/fusion_fc_int8_op.h"
#include "operators/fusion_fc_op.h"
#define a(i, j) a[(i)*lda + (j)]
...
...
@@ -103,18 +102,8 @@ int TestFcOP() {
attrs
[
"y_num_col_dims"
].
Set
<
int
>
(
1
);
attrs
[
"axis"
].
Set
<
int
>
(
1
);
operators
::
OperatorBase
<
CPU
>
*
op
=
nullptr
;
#ifdef FUSION_FC_INT8_OP
if
(
std
::
is_same
<
T
,
int8_t
>::
value
)
{
op
=
new
operators
::
FusionFcInt8Op
<
CPU
,
T
>
(
"fusion_fc_int8"
,
inputs
,
outputs
,
attrs
,
scope
);
}
else
{
op
=
new
operators
::
FusionFcOp
<
CPU
,
T
>
(
"fusion_fc"
,
inputs
,
outputs
,
attrs
,
scope
);
}
#else
op
=
new
operators
::
FusionFcOp
<
CPU
,
T
>
(
"fusion_fc"
,
inputs
,
outputs
,
attrs
,
scope
);
#endif
op
->
InferShape
();
op
->
Run
();
auto
output
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
...
...
@@ -166,9 +155,6 @@ int TestFcOP() {
int
main
()
{
paddle_mobile
::
PaddleMobile
<
paddle_mobile
::
CPU
>
paddle_mobile
;
paddle_mobile
.
SetThreadNum
(
4
);
#ifdef FUSION_FC_INT8_OP
paddle_mobile
::
TestFcOP
<
int8_t
,
int32_t
>
();
#endif
paddle_mobile
::
TestFcOP
<
float
,
float
>
();
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录