op_param.h 60.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
76 77 78 79 80
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

81 82 83 84 85 86 87 88 89
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
90 91 92 93
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
94 95 96 97 98 99

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

100 101 102 103 104
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
105 106 107 108 109
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
127 128 129 130
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
147

E
eclipsess 已提交
148 149 150 151 152 153 154 155 156 157
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
158 159 160 161
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
162

163
  template <typename T>
W
wangliu 已提交
164 165
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    return GetMultiVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
184 185 186 187 188 189
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
190 191 192 193 194
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
195 196 197 198 199 200
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

201 202 203 204 205 206 207 208 209 210 211
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
212
  static const T GetAttr(const string &key, const AttributeMap &map) {
213 214 215
    return ((Attribute)map.at(key)).Get<T>();
  }

216 217 218 219
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

220
  template <typename T>
W
wangliu 已提交
221
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
222
                        const Scope &scope) {
W
wangliu 已提交
223 224
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
225 226 227 228 229 230
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
231
    }
232
  }
朔-望's avatar
朔-望 已提交
233

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

254
  template <typename T>
W
wangliu 已提交
255 256 257
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
258 259
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
260
    vector<T *> var_res;
261 262 263
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
264
    }
265 266
    return var_res;
  }
朔-望's avatar
朔-望 已提交
267 268
};

L
liuruilong 已提交
269
#ifdef CONV_OP
N
nhzlx 已提交
270
template <typename Dtype>
朔-望's avatar
朔-望 已提交
271
class ConvParam : OpParam {
N
nhzlx 已提交
272 273 274
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
275
 public:
276
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
277
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
278 279 280
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
281 282 283
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
284 285
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
286

N
nhzlx 已提交
287
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
288

N
nhzlx 已提交
289
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
290

N
nhzlx 已提交
291
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
292

W
wangliu 已提交
293
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
294

W
wangliu 已提交
295
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
296

W
wangliu 已提交
297
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
298

299
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
300

朔-望's avatar
朔-望 已提交
301
 private:
N
nhzlx 已提交
302 303 304
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
305 306 307
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
308
  int groups;
朔-望's avatar
朔-望 已提交
309
};
N
nhzlx 已提交
310 311
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
312
#endif
朔-望's avatar
朔-望 已提交
313

N
nhzlx 已提交
314
template <typename Dtype>
朔-望's avatar
朔-望 已提交
315
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
316 317 318
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
319
 public:
320
  ElementwiseAddParam(const VariableNameMap &inputs,
321 322
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
323 324 325
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
326 327 328
    axis_ = GetAttr<int>("axis", attrs);
  }

N
nhzlx 已提交
329
  const RType *InputX() const { return input_x_; }
330

N
nhzlx 已提交
331
  const RType *InputY() const { return input_y_; }
332

N
nhzlx 已提交
333
  RType *Out() const { return out_; }
334 335 336

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
337
 private:
N
nhzlx 已提交
338 339 340
  RType *input_x_;
  RType *input_y_;
  RType *out_;
341
  int axis_;
Z
zhangyang 已提交
342 343 344
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
345
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
346 347

 public:
H
hanbuhe 已提交
348 349
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
350
#endif
朔-望's avatar
朔-望 已提交
351 352
};

353
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
354 355
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
356 357 358
#endif

#ifdef MUL_OP
N
nhzlx 已提交
359
template <typename Dtype>
朔-望's avatar
朔-望 已提交
360
class MulParam : OpParam {
N
nhzlx 已提交
361 362 363
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
364
 public:
365
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
366
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
367 368 369
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
370 371 372
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
373

N
nhzlx 已提交
374
  const RType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
375

N
nhzlx 已提交
376
  const RType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
377

N
nhzlx 已提交
378
  RType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
379

380
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
381

382
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
383

朔-望's avatar
朔-望 已提交
384
 private:
N
nhzlx 已提交
385 386 387
  RType *input_x_;
  RType *input_y_;
  RType *out_;
388 389
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
390
};
L
liuruilong 已提交
391
#endif
朔-望's avatar
朔-望 已提交
392

L
liuruilong 已提交
393
#ifdef CONCAT_OP
N
nhzlx 已提交
394
template <typename Dtype>
朔-望's avatar
朔-望 已提交
395
class ConcatParam : public OpParam {
N
nhzlx 已提交
396 397 398
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
399
 public:
400
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
401
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
402 403
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
404 405
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
406

N
nhzlx 已提交
407
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
408

N
nhzlx 已提交
409
  RType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
410

411
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
412

朔-望's avatar
朔-望 已提交
413
 private:
N
nhzlx 已提交
414 415
  vector<GType *> inputs_;
  RType *out_;
416
  int axis_;
朔-望's avatar
朔-望 已提交
417
};
L
liuruilong 已提交
418
#endif
朔-望's avatar
朔-望 已提交
419

L
liuruilong 已提交
420
#ifdef LRN_OP
N
nhzlx 已提交
421
template <typename Dtype>
E
eclipsess 已提交
422
class LrnParam : public OpParam {
N
nhzlx 已提交
423 424 425
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
426
 public:
427
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
428
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
429 430 431
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
432 433 434 435
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
436
    data_format_ = GetAttr<string>("data_format", attrs);
437
  }
E
eclipsess 已提交
438

N
nhzlx 已提交
439
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
440

N
nhzlx 已提交
441
  RType *Out() const { return out_; }
E
eclipsess 已提交
442

N
nhzlx 已提交
443
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
444

445
  const int &N() const { return n_; }
E
eclipsess 已提交
446

447
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
448

449
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
450

451
  const float &K() const { return k_; }
E
eclipsess 已提交
452

W
wangliu 已提交
453
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
454

朔-望's avatar
朔-望 已提交
455
 private:
N
nhzlx 已提交
456 457 458
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
459 460 461 462
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
463
  string data_format_;
E
eclipsess 已提交
464
};
L
liuruilong 已提交
465 466 467
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
468
template <typename Dtype>
E
eclipsess 已提交
469
class BatchNormParam : OpParam {
N
nhzlx 已提交
470 471 472
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
473
 public:
474
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
475
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
476 477 478 479 480 481
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
482 483
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
484
    //    is_test_ = GetAttr<bool>("is_test", attrs);
485
  }
E
eclipsess 已提交
486

N
nhzlx 已提交
487
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
488

N
nhzlx 已提交
489
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
490

N
nhzlx 已提交
491
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
492

N
nhzlx 已提交
493
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
494

N
nhzlx 已提交
495
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
496

N
nhzlx 已提交
497
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
498

499
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
500

501
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
502

503
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
504

W
wangliu 已提交
505
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
506

朔-望's avatar
朔-望 已提交
507
 private:
N
nhzlx 已提交
508 509 510 511 512 513
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
514 515 516
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
517
  string data_format_;
E
eclipsess 已提交
518
};
L
liuruilong 已提交
519 520 521
#endif

#ifdef POOL_OP
N
nhzlx 已提交
522
template <typename Dtype>
523
class PoolParam : public OpParam {
N
nhzlx 已提交
524 525 526
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
527
 public:
528
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
529
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
530
    input_ = InputXFrom<GType>(inputs, scope);
531

N
nhzlx 已提交
532
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
533 534 535 536
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
537
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
538
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
539
  }
540

N
nhzlx 已提交
541
  const RType *Input() const { return input_; }
542

N
nhzlx 已提交
543
  RType *Output() const { return output_; }
544

W
wangliu 已提交
545
  const string &PoolingType() const { return pooling_type_; }
546

W
wangliu 已提交
547
  const vector<int> &Ksize() const { return ksize_; }
548

W
wangliu 已提交
549
  const vector<int> &Strides() const { return strides_; }
550

W
wangliu 已提交
551
  const vector<int> &Paddings() const { return paddings_; }
552

553
  bool isCeilMode() const { return ceil_mode_; }
554

Z
zhangyang 已提交
555
  bool isGlobalPooling() const { return global_pooling_; }
556

朔-望's avatar
朔-望 已提交
557
 private:
N
nhzlx 已提交
558 559
  RType *input_;
  RType *output_;
W
wangliu 已提交
560 561 562 563
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
564
  bool ceil_mode_;
565
  bool global_pooling_ = false;
Z
zhangyang 已提交
566
#ifdef PADDLE_MOBILE_FPGA
567 568

 private:
H
hanbuhe 已提交
569
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
570 571

 public:
H
hanbuhe 已提交
572 573
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
574
#endif
575
};
L
liuruilong 已提交
576 577 578
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
579
template <typename Dtype>
E
eclipsess 已提交
580
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
581 582 583
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
584 585
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
586
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
587 588 589 590
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
591 592 593 594
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
595 596 597 598 599 600
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
601
  const RType *Input() const { return input_; }
E
eclipsess 已提交
602

N
nhzlx 已提交
603
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
604

N
nhzlx 已提交
605
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
606

N
nhzlx 已提交
607
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
608

W
wangliu 已提交
609
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
610

W
wangliu 已提交
611
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
612

W
wangliu 已提交
613
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
614

W
wangliu 已提交
615
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
616 617 618 619 620 621 622 623 624 625 626 627

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
628 629 630 631
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
632 633 634 635
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
636 637 638 639 640 641
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
642
#endif
E
eclipsess 已提交
643

L
liuruilong 已提交
644
#ifdef BOXCODER_OP
N
nhzlx 已提交
645
template <typename Dtype>
E
eclipsess 已提交
646
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
647 648 649
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
650 651
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
652
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
653 654 655 656
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
657 658
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
659
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
660

N
nhzlx 已提交
661
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
662

N
nhzlx 已提交
663
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
664

N
nhzlx 已提交
665
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
666 667 668 669

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
670 671 672 673
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
674 675
  std::string code_type_;
};
L
liuruilong 已提交
676
#endif
W
wangliu 已提交
677

L
liuruilong 已提交
678
#ifdef SOFTMAX_OP
N
nhzlx 已提交
679
template <typename Dtype>
W
wangliu 已提交
680
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
681 682 683
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
684 685
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
686
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
687 688
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
689
  }
N
nhzlx 已提交
690 691
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
692 693

 private:
N
nhzlx 已提交
694 695
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
696 697 698 699

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
700
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
701 702 703
  fpga::BypassArgs fpga_bypass_args;

 public:
N
nhzlx 已提交
704
  RType *FloatInput() {
H
hanbuhe 已提交
705 706 707 708 709 710
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
711
};
L
liuruilong 已提交
712
#endif
W
wangliu 已提交
713

L
liuruilong 已提交
714
#ifdef SIGMOID_OP
N
nhzlx 已提交
715
template <typename Dtype>
W
wangliu 已提交
716
class SigmoidParam : public OpParam {
N
nhzlx 已提交
717 718 719
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
720 721
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
722
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
723 724
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
725
  }
N
nhzlx 已提交
726 727
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
728 729

 private:
N
nhzlx 已提交
730 731
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
732
};
L
liuruilong 已提交
733 734 735
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
736
template <typename Dtype>
E
eclipsess 已提交
737
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
738 739 740
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
741 742 743 744
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
745 746 747
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
748 749 750 751 752 753 754 755
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
756
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
757

N
nhzlx 已提交
758
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
759

N
nhzlx 已提交
760
  RType *Out() const { return out_; }
E
eclipsess 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
775 776 777
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
778 779 780 781 782 783 784
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
785
#endif
W
wangliu 已提交
786

N
nhzlx 已提交
787
template <typename Dtype>
L
liuruilong 已提交
788
class FeedParam : public OpParam {
N
nhzlx 已提交
789 790 791
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
792 793
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
794
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
795 796
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
797
    auto var = scope->Var("batch_size");
W
wangliu 已提交
798
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
799
  }
N
nhzlx 已提交
800 801
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
802
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
803

L
liuruilong 已提交
804
 private:
N
nhzlx 已提交
805 806
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
807
  int batch_size;
L
liuruilong 已提交
808 809
};

N
nhzlx 已提交
810
template <typename Dtype>
L
liuruilong 已提交
811
class FetchParam : public OpParam {
N
nhzlx 已提交
812 813 814
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
815 816
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
817
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
818 819
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
820
  }
N
nhzlx 已提交
821 822
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
823

L
liuruilong 已提交
824
 private:
N
nhzlx 已提交
825 826
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
827 828
};

L
liuruilong 已提交
829
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
830
template <typename Dtype>
E
eclipsess 已提交
831
class TransposeParam : public OpParam {
N
nhzlx 已提交
832 833 834
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
835 836 837
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
838 839
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
840 841 842
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
843
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
844

N
nhzlx 已提交
845
  RType *Out() const { return out_; }
E
eclipsess 已提交
846 847 848 849

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
850 851
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
852 853
  vector<int> axis_;
};
L
liuruilong 已提交
854
#endif
E
eclipsess 已提交
855

L
liuruilong 已提交
856
#ifdef RESHAPE_OP
N
nhzlx 已提交
857
template <typename Dtype>
E
eclipsess 已提交
858
class ReshapeParam : public OpParam {
N
nhzlx 已提交
859 860 861
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
862 863 864
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
865 866 867
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
868
    shape_ = GetAttr<vector<int>>("shape", attrs);
869 870 871 872 873 874 875

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
876 877
  }

N
nhzlx 已提交
878
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
879

N
nhzlx 已提交
880
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
881

N
nhzlx 已提交
882
  RType *Out() const { return out_; }
E
eclipsess 已提交
883 884 885 886 887 888

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
889 890 891
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
892 893 894
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
895
#endif
E
eclipsess 已提交
896

T
Tian 已提交
897
#ifdef SCALE_OP
N
nhzlx 已提交
898
template <typename Dtype>
I
itminner 已提交
899
class ScaleParam : public OpParam {
N
nhzlx 已提交
900 901 902
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
903 904 905
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
906 907 908
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
909 910 911 912 913 914
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
915
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
916

N
nhzlx 已提交
917
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
918

N
nhzlx 已提交
919
  RType *Out() const { return out_; }
I
itminner 已提交
920 921 922 923 924 925 926 927 928 929

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
930 931 932
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
933 934 935 936 937
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
938 939 940
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
941
template <typename Dtype>
I
itminner 已提交
942
class SliceParam : public OpParam {
N
nhzlx 已提交
943 944 945
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
946 947 948
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
949 950 951
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
952 953 954 955 956
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
957
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
958

N
nhzlx 已提交
959
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
960

N
nhzlx 已提交
961
  RType *Out() const { return out_; }
I
itminner 已提交
962 963 964 965 966 967 968 969

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
970 971 972
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
973 974 975 976
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
977 978 979
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
980
template <typename Dtype>
T
Tian 已提交
981
class ResizeParam : public OpParam {
N
nhzlx 已提交
982 983 984
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
985 986 987
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
988 989 990
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
991 992 993 994 995 996
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
997

N
nhzlx 已提交
998
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
999

N
nhzlx 已提交
1000
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1001

N
nhzlx 已提交
1002
  RType *Out() const { return out_; }
T
Tian 已提交
1003

I
itminner 已提交
1004
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1005

I
itminner 已提交
1006
  const int &Height() const { return height_; }
T
Tian 已提交
1007

I
itminner 已提交
1008
  const int &Width() const { return width_; }
T
Tian 已提交
1009

I
itminner 已提交
1010
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1011

I
itminner 已提交
1012
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1013

I
itminner 已提交
1014
 private:
N
nhzlx 已提交
1015 1016 1017
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1018 1019 1020 1021 1022
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1023 1024 1025
};
#endif

L
liuruilong 已提交
1026
#ifdef RELU_OP
L
liuruilong 已提交
1027 1028 1029
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1030
template <typename Dtype>
E
eclipsess 已提交
1031
class ReluParam : public OpParam {
N
nhzlx 已提交
1032 1033 1034
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1035 1036 1037
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1038 1039
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1040 1041
  }

N
nhzlx 已提交
1042
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1043

N
nhzlx 已提交
1044
  RType *Out() const { return out_; }
E
eclipsess 已提交
1045 1046

 private:
N
nhzlx 已提交
1047 1048
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1049
};
L
liuruilong 已提交
1050
#endif
E
eclipsess 已提交
1051

T
Tian 已提交
1052
#ifdef PRELU_OP
N
nhzlx 已提交
1053
template <typename Dtype>
T
Tian 已提交
1054
class PReluParam : public OpParam {
N
nhzlx 已提交
1055 1056 1057
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1058 1059 1060
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1061
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1062
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1063
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1064
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1065
    out_ = OutFrom<GType>(outputs, scope);
1066 1067
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1068
  }
N
nhzlx 已提交
1069
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1070
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1071
  RType *Out() const { return out_; }
1072
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1073

I
itminner 已提交
1074
 private:
N
nhzlx 已提交
1075 1076
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1077
  RType *alpha_;
1078
  std::string mode_;
T
Tian 已提交
1079 1080 1081
};
#endif

N
nhzlx 已提交
1082
template <typename Dtype>
L
liuruilong 已提交
1083
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1084 1085 1086
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1087
 public:
L
liuruilong 已提交
1088
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1089
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1090 1091 1092 1093
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1094 1095 1096 1097
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
N
nhzlx 已提交
1098
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1099

1100
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1101
  RType *InputY() const { return input_y_; }
1102
#else
N
nhzlx 已提交
1103
  const RType *InputY() const { return input_y_; }
1104
#endif
E
eclipsess 已提交
1105

N
nhzlx 已提交
1106
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1107

N
nhzlx 已提交
1108
  RType *Out() const { return out_; }
E
eclipsess 已提交
1109 1110 1111 1112 1113 1114 1115 1116

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1117 1118 1119 1120
  RType *input_x_;
  RType *input_y_;
  RType *input_z_;
  RType *out_;
E
eclipsess 已提交
1121 1122 1123
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1124 1125 1126
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1127
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1128 1129

 public:
H
hanbuhe 已提交
1130 1131
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1132
#endif
E
eclipsess 已提交
1133
};
1134 1135

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1136 1137
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1138
#endif
E
eclipsess 已提交
1139

N
nhzlx 已提交
1140
template <typename Dtype>
L
liuruilong 已提交
1141
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1142 1143 1144
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1145
 public:
L
liuruilong 已提交
1146
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1147 1148
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1149
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1150
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1151 1152 1153
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1154 1155 1156 1157 1158
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1159
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1160 1161 1162

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1163
  const RType *Input() const { return input_; }
W
wangliu 已提交
1164

1165
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1166
  RType *Filter() const { return filter_; }
1167
#else
N
nhzlx 已提交
1168
  const RType *Filter() const { return filter_; }
1169
#endif
W
wangliu 已提交
1170

N
nhzlx 已提交
1171
  RType *Output() const { return output_; }
W
wangliu 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1181
 protected:
N
nhzlx 已提交
1182
  RType *bias_;
W
wangliu 已提交
1183
  int axis_;
N
nhzlx 已提交
1184 1185 1186
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1187 1188 1189 1190
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1191 1192 1193
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1194
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1195 1196

 public:
H
hanbuhe 已提交
1197 1198
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1199
#endif
W
wangliu 已提交
1200 1201
};

N
nhzlx 已提交
1202 1203
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1204

Z
zhangyang 已提交
1205
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1206 1207
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1208
 public:
L
liuruilong 已提交
1209
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1210 1211
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1212
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1213 1214 1215
};
#endif

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
#ifdef FUSION_CONVADDPRELU_OP
template <typename DeviceType>
class FusionConvAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
template <typename DeviceType>
class FusionConvAddAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
                             const AttributeMap &attrs, const Scope &scope) {
    bias1_ = InputYFrom1<GType>(inputs, scope);
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    keyOutput_ = getkey("addOut", inputs, 0);
    keyX1_ = getkey("addX", inputs, 1);
    keyY1_ = getkey("Y", inputs, 1);
    if (keyX1_ == keyOutput_) {
      bias1_ = InputYFrom1<GType>(inputs, scope);
    } else if (keyY1_ == keyOutput_) {
      bias1_ = InputXFrom1<GType>(inputs, scope);
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

E
eclipsess 已提交
1373
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1374
template <typename Dtype>
E
eclipsess 已提交
1375
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1376 1377 1378
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1379 1380 1381 1382
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1383
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1384
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1385 1386 1387
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1388 1389 1390 1391
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1392 1393 1394 1395
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1396 1397
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1398
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1399
  }
N
nhzlx 已提交
1400
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1401 1402 1403

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1404
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1405

1406
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1407
  RType *Filter() const { return filter_; }
1408
#else
N
nhzlx 已提交
1409
  const RType *Filter() const { return filter_; }
1410
#endif
E
eclipsess 已提交
1411

N
nhzlx 已提交
1412
  RType *Output() const { return output_; }
E
eclipsess 已提交
1413 1414 1415 1416 1417 1418 1419 1420 1421

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1422
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1423

N
nhzlx 已提交
1424
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1425

N
nhzlx 已提交
1426
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1427

N
nhzlx 已提交
1428
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1429 1430 1431 1432 1433 1434 1435

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1436
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1437

N
nhzlx 已提交
1438
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1439

N
nhzlx 已提交
1440
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1441

N
nhzlx 已提交
1442
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1443 1444

 protected:
N
nhzlx 已提交
1445
  RType *bias_;
E
eclipsess 已提交
1446
  int axis_;
N
nhzlx 已提交
1447 1448 1449
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1450 1451 1452 1453
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1454 1455 1456 1457
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1458 1459 1460
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1461 1462
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1463 1464 1465
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1466
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1467 1468

 public:
H
hanbuhe 已提交
1469
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
class FusionConvBNAddReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    keyBNY_ = getkey("BNY", inputs, 0);
    keyX_ = getkey("X", inputs, 0);
    keyY_ = getkey("Y", inputs, 0);
    if (keyX_ == keyBNY_) {
      bias_ = InputYFrom<GType>(inputs, scope);
    } else if (keyY_ == keyBNY_) {
      bias_ = InputXFrom<GType>(inputs, scope);
    }
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
H
hanbuhe 已提交
1583
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1584
#endif
E
eclipsess 已提交
1585
};
1586
#endif
E
eclipsess 已提交
1587

Z
zhangyang 已提交
1588
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1589
template <typename Dtype>
Z
zhangyang 已提交
1590
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1591 1592 1593
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1594 1595 1596 1597
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
N
nhzlx 已提交
1598 1599 1600
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
1601 1602 1603 1604
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1605 1606 1607 1608
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
Z
zhangyang 已提交
1609 1610 1611 1612 1613
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1614
  const RType *Input() const { return input_; }
Z
zhangyang 已提交
1615 1616

#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1617
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1618
#else
N
nhzlx 已提交
1619
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1620
#endif
N
nhzlx 已提交
1621
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1631
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1632

N
nhzlx 已提交
1633
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1634

N
nhzlx 已提交
1635
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1636

N
nhzlx 已提交
1637
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1638 1639 1640 1641 1642 1643 1644

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1645
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1646

N
nhzlx 已提交
1647
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1648

N
nhzlx 已提交
1649
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1650

N
nhzlx 已提交
1651
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1652 1653

 protected:
N
nhzlx 已提交
1654 1655 1656
  RType *input_;
  RType *output_y_;
  RType *filter_;
Z
zhangyang 已提交
1657 1658 1659 1660
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1661 1662 1663 1664
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1665 1666 1667
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1668 1669
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

1682
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1683
template <typename Dtype>
1684
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1685 1686 1687
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1688 1689 1690 1691
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1692
    bias_ = InputYFrom<GType>(inputs, scope);
1693
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1694 1695 1696
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1697 1698 1699 1700
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1701 1702 1703 1704
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1705 1706 1707 1708
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1709
  RType *Bias() const { return bias_; }
1710 1711 1712

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1713
  const RType *Input() const { return input_; }
1714

1715
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1716
  RType *Filter() const { return filter_; }
1717
#else
N
nhzlx 已提交
1718
  const RType *Filter() const { return filter_; }
1719
#endif
N
nhzlx 已提交
1720
  RType *Output() const { return output_y_; }
1721 1722 1723 1724 1725 1726 1727 1728 1729

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1730
  const RType *InputBias() const { return input_bias_; }
1731

N
nhzlx 已提交
1732
  const RType *InputMean() const { return input_mean_; }
1733

N
nhzlx 已提交
1734
  const RType *InputScale() const { return input_scale_; }
1735

N
nhzlx 已提交
1736
  const RType *InputVariance() const { return input_variance_; }
1737 1738 1739 1740 1741 1742 1743

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1744
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1745

N
nhzlx 已提交
1746
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1747

N
nhzlx 已提交
1748
  const RType *NewScale() const { return new_scale_; }
1749

N
nhzlx 已提交
1750
  const RType *NewBias() const { return new_bias_; }
1751 1752

 protected:
N
nhzlx 已提交
1753
  RType *bias_;
1754
  int axis_;
N
nhzlx 已提交
1755 1756 1757
  RType *input_;
  RType *output_y_;
  RType *filter_;
1758 1759 1760 1761
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1762 1763 1764 1765
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1766 1767 1768
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1769 1770
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1771 1772 1773
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1774
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1775 1776

 public:
H
hanbuhe 已提交
1777 1778
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1779
#endif
1780
};
E
eclipsess 已提交
1781
#endif
Y
Yao,kun 已提交
1782

E
eclipsess 已提交
1783
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1784
template <typename Dtype>
E
eclipsess 已提交
1785
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1786 1787 1788
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1789 1790 1791 1792
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1793 1794 1795
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1796 1797 1798 1799
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1800 1801 1802 1803
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1804 1805
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1806
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1807 1808
  }

N
nhzlx 已提交
1809
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1810

N
nhzlx 已提交
1811
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1812

N
nhzlx 已提交
1813
  RType *Output() const { return output_; }
E
eclipsess 已提交
1814 1815 1816 1817 1818 1819 1820 1821 1822

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1823
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1824

N
nhzlx 已提交
1825
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1826

N
nhzlx 已提交
1827
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1828

N
nhzlx 已提交
1829
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1830 1831 1832 1833 1834 1835 1836

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1837
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1838

N
nhzlx 已提交
1839
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1840

N
nhzlx 已提交
1841
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1842

N
nhzlx 已提交
1843
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1844 1845

 protected:
N
nhzlx 已提交
1846 1847 1848
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1849 1850 1851 1852
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1853 1854 1855 1856
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1857 1858 1859
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1860 1861
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1862 1863 1864 1865
};

#endif

1866
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1867
template <typename Dtype>
1868
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
1869 1870 1871
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1872 1873 1874 1875
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1876 1877 1878
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
1879 1880 1881 1882 1883

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1884 1885 1886 1887
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1888 1889 1890 1891 1892
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1893
  const RType *Input() const { return input_; }
1894

Z
zhangyang 已提交
1895
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1896
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1897
#else
N
nhzlx 已提交
1898
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1899
#endif
1900

N
nhzlx 已提交
1901
  RType *Output() const { return output_; }
1902 1903 1904 1905 1906 1907 1908 1909 1910

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1911
  const RType *InputBias() const { return input_bias_; }
1912

N
nhzlx 已提交
1913
  const RType *InputMean() const { return input_mean_; }
1914

N
nhzlx 已提交
1915
  const RType *InputScale() const { return input_scale_; }
1916

N
nhzlx 已提交
1917
  const RType *InputVariance() const { return input_variance_; }
1918 1919 1920 1921 1922 1923 1924

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1925
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1926

N
nhzlx 已提交
1927
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1928

N
nhzlx 已提交
1929
  const RType *NewScale() const { return new_scale_; }
1930

N
nhzlx 已提交
1931
  const RType *NewBias() const { return new_bias_; }
1932 1933

 protected:
N
nhzlx 已提交
1934 1935 1936
  RType *input_;
  RType *output_;
  RType *filter_;
1937 1938 1939 1940
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1941 1942 1943 1944
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1945 1946 1947
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1948 1949
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
1959 1960 1961
};
#endif

Y
Yao,kun 已提交
1962
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1963
template <typename Dtype>
Y
Yao,kun 已提交
1964
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1965 1966 1967
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1968 1969 1970 1971
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1972 1973
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1974 1975 1976 1977 1978
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1979
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1980

N
nhzlx 已提交
1981
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1982 1983 1984 1985 1986 1987 1988 1989

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1990 1991
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1992 1993 1994 1995
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1996
#endif
Y
Yao,kun 已提交
1997

1998
#ifdef DROPOUT_OP
N
nhzlx 已提交
1999
template <typename Dtype>
Y
Yao,kun 已提交
2000
class DropoutParam : public OpParam {
N
nhzlx 已提交
2001 2002 2003
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2004 2005 2006
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2007 2008
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2009 2010
  }

N
nhzlx 已提交
2011
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2012

N
nhzlx 已提交
2013
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2014 2015

 private:
N
nhzlx 已提交
2016 2017
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2018
};
2019
#endif
Y
Yao,kun 已提交
2020

L
liuruilong 已提交
2021
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
2022
template <typename Dtype>
L
liuruilong 已提交
2023
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2024 2025 2026
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2027 2028 2029 2030
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2031 2032 2033
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2034 2035 2036 2037 2038 2039
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2040
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2041

N
nhzlx 已提交
2042
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2043

N
nhzlx 已提交
2044
  RType *Output() const { return output_; }
L
liuruilong 已提交
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2055 2056 2057
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2058 2059 2060 2061 2062 2063 2064
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

朔-望's avatar
朔-望 已提交
2065 2066
}  // namespace operators
}  // namespace paddle_mobile