op_param.h 102.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
96
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
97 98 99 100
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
101 102 103 104 105 106 107

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

108 109 110 111 112
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

113 114 115 116 117 118 119 120 121
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
122 123 124 125 126
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

154 155 156 157
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
158 159 160 161 162 163

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

164 165 166 167 168
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
169 170 171 172 173
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

174 175 176 177 178
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
179 180 181 182
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
183 184 185 186 187 188 189 190 191 192 193 194
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
215

E
eclipsess 已提交
216 217 218 219 220 221 222 223 224 225
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
226 227 228 229
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
230

231
  template <typename T>
W
wangliu 已提交
232 233
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
234 235 236
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
237 238 239 240 241
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
248 249 250 251 252
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
253 254 255 256 257 258 259 260 261 262 263
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
264 265 266 267 268 269
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
270 271 272 273 274 275 276 277 278 279 280 281
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
287 288 289 290 291
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

292 293 294 295 296
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
297 298 299 300 301 302
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

303 304 305 306 307
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318 319
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
325 326 327 328 329
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
330 331 332 333 334 335
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

336 337 338 339 340 341 342 343 344 345 346
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
347
  static const T GetAttr(const string &key, const AttributeMap &map) {
348 349
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
350 351
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
352 353
    return ((Attribute)map.at(key)).GetString();
  }
354

355 356 357 358
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

359
  template <typename T>
W
wangliu 已提交
360
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
361
                        const Scope &scope) {
W
wangliu 已提交
362 363
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
364 365 366 367 368 369
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
370
    }
371
  }
朔-望's avatar
朔-望 已提交
372

E
eclipsess 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

386
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
387
                            int index) {
388 389
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

408
  template <typename T>
W
wangliu 已提交
409 410 411
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
412 413
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
414
    vector<T *> var_res;
415 416 417
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
418
    }
419 420
    return var_res;
  }
E
eclipsess 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
434 435
};

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

N
nhzlx 已提交
456
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470 471
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
472 473
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
474 475 476
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
477
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
478
    EXEC_GEMM_INT8,
H
hjchen2 已提交
479
    EXEC_DEPTHWISE3x3_INT8,
480
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
481 482 483 484
  };

  ExecMode &ExecMode() const { return exec_mode_; }

485
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
486

487 488 489 490 491 492 493
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
494
 public:
N
nhzlx 已提交
495
  RType *input_;
496 497
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
498
  RType *transformed_filter_;
W
wangliu 已提交
499 500 501
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
502
  mutable enum ExecMode exec_mode_;
503
  int groups;
504 505 506 507

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
508 509 510

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
511
 public:
Z
zhangyang 已提交
512 513 514 515 516
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
517 518 519 520 521 522 523

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
524
#endif
朔-望's avatar
朔-望 已提交
525
};
N
nhzlx 已提交
526 527
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
528

N
nhzlx 已提交
529
template <typename Dtype>
530
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
531 532 533
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
534
 public:
535
  ElementwiseAddParam(const VariableNameMap &inputs,
536
                      const VariableNameMap &outputs, const AttributeMap &attrs,
537 538 539 540 541
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
542 543 544
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
545
  const GType *InputX() const { return input_x_; }
546

xiebaiyuan's avatar
xiebaiyuan 已提交
547
  const GType *InputY() const { return input_y_; }
548

xiebaiyuan's avatar
xiebaiyuan 已提交
549
  GType *Out() const { return out_; }
550 551 552

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
553
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
554 555 556
  GType *input_x_;
  GType *input_y_;
  GType *out_;
557
  int axis_;
Z
zhangyang 已提交
558 559 560
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
561
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
562 563

 public:
H
hanbuhe 已提交
564 565
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
566
#endif
朔-望's avatar
朔-望 已提交
567 568
};

E
eclipsess 已提交
569
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
570
template <typename Dtype>
571
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
572 573 574 575 576 577
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
578 579 580 581 582
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
600
#endif
E
eclipsess 已提交
601

602
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
603 604
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
605 606
#endif

607
#ifdef ELEMENTWISESUB_OP
608
template <typename Dtype>
609
class ElementwiseSubParam : public OpParam {
610 611 612 613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
616 617 618 619 620
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
638
#endif
639

L
liuruilong 已提交
640
#ifdef MUL_OP
N
nhzlx 已提交
641
template <typename Dtype>
642
class MulParam : public OpParam {
N
nhzlx 已提交
643 644 645
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
646
 public:
647
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
648 649 650 651 652
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
653 654 655
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
656

xiebaiyuan's avatar
xiebaiyuan 已提交
657
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
658

xiebaiyuan's avatar
xiebaiyuan 已提交
659
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
664

665
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
666

朔-望's avatar
朔-望 已提交
667
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
668 669 670
  GType *input_x_;
  GType *input_y_;
  GType *out_;
671 672
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
673
};
L
liuruilong 已提交
674
#endif
朔-望's avatar
朔-望 已提交
675

L
liuruilong 已提交
676
#ifdef CONCAT_OP
N
nhzlx 已提交
677
template <typename Dtype>
朔-望's avatar
朔-望 已提交
678
class ConcatParam : public OpParam {
N
nhzlx 已提交
679 680 681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
682
 public:
683
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
684 685 686 687
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
688 689
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
690

N
nhzlx 已提交
691
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
692

xiebaiyuan's avatar
xiebaiyuan 已提交
693
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
694

695
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
696

朔-望's avatar
朔-望 已提交
697
 private:
N
nhzlx 已提交
698
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
699
  GType *out_;
700
  int axis_;
Z
zhangyang 已提交
701 702 703 704 705 706 707 708 709
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
710
};
L
liuruilong 已提交
711
#endif
朔-望's avatar
朔-望 已提交
712

E
eclipsess 已提交
713 714 715 716 717 718 719 720
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
721 722 723 724 725 726
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
745
#ifdef LRN_OP
N
nhzlx 已提交
746
template <typename Dtype>
E
eclipsess 已提交
747
class LrnParam : public OpParam {
N
nhzlx 已提交
748 749 750
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
751
 public:
752
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
753 754 755 756 757
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
758 759 760 761
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
762
    data_format_ = GetStringAttr("data_format", attrs);
763
  }
E
eclipsess 已提交
764

N
nhzlx 已提交
765
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
766

N
nhzlx 已提交
767
  RType *Out() const { return out_; }
E
eclipsess 已提交
768

N
nhzlx 已提交
769
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
770

771
  const int &N() const { return n_; }
E
eclipsess 已提交
772

773
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
774

775
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
776

777
  const float &K() const { return k_; }
E
eclipsess 已提交
778

W
wangliu 已提交
779
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
780

朔-望's avatar
朔-望 已提交
781
 private:
N
nhzlx 已提交
782 783 784
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
785 786 787 788
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
789
  string data_format_;
E
eclipsess 已提交
790
};
L
liuruilong 已提交
791 792
#endif

Z
zhaojiaying01 已提交
793 794
#ifdef NORM_OP
template <typename Dtype>
795
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
796 797 798 799 800
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
801 802 803 804 805
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputNorm() const { return output_norm_; }

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_norm_;
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
829
#ifdef BATCHNORM_OP
N
nhzlx 已提交
830
template <typename Dtype>
831
class BatchNormParam : public OpParam {
N
nhzlx 已提交
832 833 834
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
835
 public:
836
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
837 838 839 840 841 842 843 844
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
845 846
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
847
    //    is_test_ = GetAttr<bool>("is_test", attrs);
848
  }
E
eclipsess 已提交
849

N
nhzlx 已提交
850
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
851

N
nhzlx 已提交
852
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
853

N
nhzlx 已提交
854
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
855

N
nhzlx 已提交
856
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
857

N
nhzlx 已提交
858
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
859

N
nhzlx 已提交
860
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
861

862
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
863

864
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
865

866
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
867

W
wangliu 已提交
868
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
869

870 871 872 873 874 875 876 877
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
878
 private:
N
nhzlx 已提交
879 880 881 882 883 884
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
885 886 887
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
888
  string data_format_;
889 890
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
891
};
L
liuruilong 已提交
892 893 894
#endif

#ifdef POOL_OP
N
nhzlx 已提交
895
template <typename Dtype>
896
class PoolParam : public OpParam {
N
nhzlx 已提交
897 898 899
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
900
 public:
901
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
902 903 904
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
905

906
    output_ = OutFrom<GType>(outputs, *scope);
907
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
908 909 910
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
911
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
912
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
913
  }
914

N
nhzlx 已提交
915
  const RType *Input() const { return input_; }
916

N
nhzlx 已提交
917
  RType *Output() const { return output_; }
918

W
wangliu 已提交
919
  const string &PoolingType() const { return pooling_type_; }
920

W
wangliu 已提交
921
  const vector<int> &Ksize() const { return ksize_; }
922

W
wangliu 已提交
923
  const vector<int> &Strides() const { return strides_; }
924

W
wangliu 已提交
925
  const vector<int> &Paddings() const { return paddings_; }
926

927
  bool isCeilMode() const { return ceil_mode_; }
928

Z
zhangyang 已提交
929
  bool isGlobalPooling() const { return global_pooling_; }
930

朔-望's avatar
朔-望 已提交
931
 private:
N
nhzlx 已提交
932 933
  RType *input_;
  RType *output_;
W
wangliu 已提交
934 935 936 937
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
938
  bool ceil_mode_;
939
  bool global_pooling_ = false;
Z
zhangyang 已提交
940
#ifdef PADDLE_MOBILE_FPGA
941 942

 private:
H
hanbuhe 已提交
943
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
944 945

 public:
H
hanbuhe 已提交
946 947
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
948
#endif
949
};
L
liuruilong 已提交
950 951 952
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
953
template <typename Dtype>
E
eclipsess 已提交
954
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
955 956 957
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
958 959
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
960 961 962 963 964 965
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
966 967 968 969
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
970 971 972 973

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
974 975
    } else {
      min_max_aspect_ratios_order_ = false;
976
    }
E
eclipsess 已提交
977 978 979 980 981 982
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
983
  const RType *Input() const { return input_; }
E
eclipsess 已提交
984

N
nhzlx 已提交
985
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
986

N
nhzlx 已提交
987
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
988

N
nhzlx 已提交
989
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
990

W
wangliu 已提交
991
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
992

W
wangliu 已提交
993
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
994

W
wangliu 已提交
995
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
996

W
wangliu 已提交
997
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1009 1010 1011 1012
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1013
 private:
N
nhzlx 已提交
1014 1015 1016 1017
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
1018 1019 1020 1021
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1022 1023 1024 1025 1026
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1027
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1028
};
L
liuruilong 已提交
1029
#endif
E
eclipsess 已提交
1030

L
liuruilong 已提交
1031
#ifdef BOXCODER_OP
N
nhzlx 已提交
1032
template <typename Dtype>
E
eclipsess 已提交
1033
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1034 1035 1036
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1037 1038
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1039 1040 1041 1042 1043 1044
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1045
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1046
  }
N
nhzlx 已提交
1047
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1048

N
nhzlx 已提交
1049
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1050

N
nhzlx 已提交
1051
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1052

N
nhzlx 已提交
1053
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1054 1055 1056 1057

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
1058 1059 1060 1061
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
1062 1063
  std::string code_type_;
};
L
liuruilong 已提交
1064
#endif
W
wangliu 已提交
1065

L
liuruilong 已提交
1066
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1067
template <typename Dtype>
W
wangliu 已提交
1068
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1069 1070 1071
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1072 1073
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1074 1075 1076 1077
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1078
  }
H
hjchen2 已提交
1079 1080
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1081 1082

 private:
H
hjchen2 已提交
1083 1084
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1085 1086 1087 1088

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
1089
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
1090 1091 1092
  fpga::BypassArgs fpga_bypass_args;

 public:
1093
  RType *FloatInput() const {
H
hanbuhe 已提交
1094 1095 1096 1097 1098 1099
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1100
};
L
liuruilong 已提交
1101
#endif
W
wangliu 已提交
1102

L
liuruilong 已提交
1103
#ifdef SIGMOID_OP
N
nhzlx 已提交
1104
template <typename Dtype>
W
wangliu 已提交
1105
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1106 1107 1108
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1109 1110
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1111 1112 1113 1114
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1115
  }
N
nhzlx 已提交
1116 1117
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1118 1119

 private:
N
nhzlx 已提交
1120 1121
  RType *input_x_;
  RType *out_;
1122 1123 1124 1125 1126 1127 1128 1129 1130
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1131
};
L
liuruilong 已提交
1132 1133 1134
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1135
template <typename Dtype>
E
eclipsess 已提交
1136
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1137 1138 1139
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1140 1141 1142
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1143 1144 1145 1146 1147
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1148 1149 1150 1151 1152 1153 1154 1155
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1156
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1157

Y
yangfei 已提交
1158
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1159

N
nhzlx 已提交
1160
  RType *Out() const { return out_; }
E
eclipsess 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1175 1176 1177
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1178 1179 1180 1181 1182 1183 1184
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1185
#endif
W
wangliu 已提交
1186

L
lijiancheng0614 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1196 1197 1198 1199
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1210
template <typename Dtype>
L
liuruilong 已提交
1211
class FeedParam : public OpParam {
N
nhzlx 已提交
1212 1213 1214
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1215 1216
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1217 1218
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1219 1220 1221 1222 1223 1224
#ifdef PADDLE_MOBILE_FPGA
    static int feed_num = 0;
    auto new_name = std::string("feed") + std::to_string(feed_num++);
    const_cast<VariableNameMap &>(inputs).at("X") = {string(new_name)};
#endif

1225 1226 1227
    input_x_ = InputXFrom<LoDTensor>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1228
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1229
  }
Y
yangfei 已提交
1230
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1231
  GType *Out() const { return out_; }
W
wangliu 已提交
1232
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1233

L
liuruilong 已提交
1234
 private:
Y
yangfei 已提交
1235
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1236
  GType *out_;
W
wangliu 已提交
1237
  int batch_size;
L
liuruilong 已提交
1238 1239
};

N
nhzlx 已提交
1240
template <typename Dtype>
L
liuruilong 已提交
1241
class FetchParam : public OpParam {
N
nhzlx 已提交
1242 1243 1244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1245 1246
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1247 1248
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1249 1250 1251 1252 1253
#ifdef PADDLE_MOBILE_FPGA
    static int fetch_num = 0;
    auto new_name = std::string("fetch") + std::to_string(fetch_num++);
    const_cast<VariableNameMap &>(outputs).at("Out") = {string(new_name)};
#endif
1254 1255
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom(outputs, *scope);
L
liuruilong 已提交
1256
  }
L
liuruilong 已提交
1257

N
nhzlx 已提交
1258
  const RType *InputX() const { return input_x_; }
1259 1260 1261
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1262
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1263
  }
L
liuruilong 已提交
1264

L
liuruilong 已提交
1265
 private:
N
nhzlx 已提交
1266
  RType *input_x_;
Y
yangfei 已提交
1267
  Tensor *out_;
qnqinan's avatar
qnqinan 已提交
1268
#ifdef PADDLE_MOBILE_FPGA
1269

1270
 public:
qnqinan's avatar
qnqinan 已提交
1271 1272 1273
  fpga::BypassArgs fpga_bypass_args;

#endif
L
liuruilong 已提交
1274 1275
};

L
lijiancheng0614 已提交
1276 1277 1278 1279 1280 1281 1282 1283 1284
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1285 1286 1287 1288
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1313
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1314
template <typename Dtype>
E
eclipsess 已提交
1315
class TransposeParam : public OpParam {
N
nhzlx 已提交
1316 1317 1318
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1319 1320
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1321 1322 1323 1324
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1325 1326 1327
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1328
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1329

N
nhzlx 已提交
1330
  RType *Out() const { return out_; }
E
eclipsess 已提交
1331 1332 1333 1334

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1335 1336
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1337 1338
  vector<int> axis_;
};
L
liuruilong 已提交
1339
#endif
E
eclipsess 已提交
1340

L
lijiancheng0614 已提交
1341 1342 1343 1344 1345 1346 1347 1348
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1349 1350 1351 1352 1353
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1373 1374 1375 1376 1377 1378 1379 1380
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1381 1382 1383 1384 1385
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1412 1413
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1414
    // todo crf params
1415 1416 1417 1418
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1441
#ifdef RESHAPE_OP
N
nhzlx 已提交
1442
template <typename Dtype>
E
eclipsess 已提交
1443
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1444 1445 1446
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1447 1448
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1449 1450 1451 1452 1453
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1454
    shape_ = GetAttr<vector<int>>("shape", attrs);
1455 1456 1457 1458 1459 1460 1461

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1462 1463
  }

N
nhzlx 已提交
1464
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1465

N
nhzlx 已提交
1466
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1467

N
nhzlx 已提交
1468
  RType *Out() const { return out_; }
E
eclipsess 已提交
1469 1470 1471 1472 1473 1474

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1475 1476 1477
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1478 1479 1480
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1481
#endif
E
eclipsess 已提交
1482

L
lijiancheng0614 已提交
1483 1484 1485 1486 1487 1488 1489 1490
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1491 1492 1493 1494 1495 1496
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1497 1498 1499 1500 1501 1502 1503 1504
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1505
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1506

E
eclipsess 已提交
1507
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1508

E
eclipsess 已提交
1509
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1510

E
eclipsess 已提交
1511
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1512 1513 1514 1515 1516 1517

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1518 1519 1520 1521
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1522 1523 1524 1525 1526
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1527
#ifdef SCALE_OP
N
nhzlx 已提交
1528
template <typename Dtype>
I
itminner 已提交
1529
class ScaleParam : public OpParam {
N
nhzlx 已提交
1530 1531 1532
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1533 1534
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1535 1536 1537 1538 1539
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1540 1541 1542 1543 1544 1545
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1546
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1547

N
nhzlx 已提交
1548
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1549

N
nhzlx 已提交
1550
  RType *Out() const { return out_; }
I
itminner 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1561 1562 1563
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1564 1565 1566 1567 1568
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1569 1570 1571
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1572
template <typename Dtype>
I
itminner 已提交
1573
class SliceParam : public OpParam {
N
nhzlx 已提交
1574 1575 1576
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1577 1578
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1579 1580 1581 1582
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1583

1584 1585 1586 1587
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1588

1589 1590 1591 1592 1593 1594
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1595
};
T
Tian 已提交
1596 1597 1598
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1599
template <typename Dtype>
T
Tian 已提交
1600
class ResizeParam : public OpParam {
N
nhzlx 已提交
1601 1602 1603
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1604 1605
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1606 1607 1608 1609 1610
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1611 1612 1613 1614 1615 1616
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1617

N
nhzlx 已提交
1618
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1619

N
nhzlx 已提交
1620
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1621

N
nhzlx 已提交
1622
  RType *Out() const { return out_; }
T
Tian 已提交
1623

I
itminner 已提交
1624
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1625

I
itminner 已提交
1626
  const int &Height() const { return height_; }
T
Tian 已提交
1627

I
itminner 已提交
1628
  const int &Width() const { return width_; }
T
Tian 已提交
1629

I
itminner 已提交
1630
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1631

I
itminner 已提交
1632
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1633

I
itminner 已提交
1634
 private:
N
nhzlx 已提交
1635 1636 1637
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1638 1639 1640 1641 1642
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1643 1644 1645
};
#endif

L
liuruilong 已提交
1646
#ifdef RELU_OP
L
liuruilong 已提交
1647 1648 1649
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1650
template <typename Dtype>
D
relu  
dolphin8 已提交
1651
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1652 1653 1654
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1655
 public:
D
relu  
dolphin8 已提交
1656
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1657 1658 1659 1660
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1661 1662
  }

N
nhzlx 已提交
1663
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1664

N
nhzlx 已提交
1665
  RType *Out() const { return out_; }
E
eclipsess 已提交
1666 1667

 private:
N
nhzlx 已提交
1668 1669
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1670
};
D
relu  
dolphin8 已提交
1671 1672 1673

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1674
 public:
D
relu  
dolphin8 已提交
1675 1676 1677
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1678
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1679 1680
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1681
 public:
D
relu  
dolphin8 已提交
1682
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1683 1684 1685
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1686 1687
  framework::CLImage midImage;
};
Y
yangfei 已提交
1688
#endif
D
relu  
dolphin8 已提交
1689

L
liuruilong 已提交
1690
#endif
E
eclipsess 已提交
1691

Z
zhangyang 已提交
1692 1693 1694 1695 1696 1697 1698 1699
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1700 1701 1702 1703
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1704 1705 1706 1707 1708 1709 1710
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1725
};
L
liuruilong 已提交
1726
#endif
E
eclipsess 已提交
1727

T
Tian 已提交
1728
#ifdef PRELU_OP
N
nhzlx 已提交
1729
template <typename Dtype>
T
Tian 已提交
1730
class PReluParam : public OpParam {
N
nhzlx 已提交
1731 1732 1733
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1734 1735
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1736 1737
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1738
    DLOG << "PReluParam inputs before";
1739 1740
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1741
    framework::DDim dims = alpha_->dims();
1742
    out_ = OutFrom<GType>(outputs, *scope);
1743
    mode_ = GetStringAttr("mode", attrs);
1744
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1745
  }
N
nhzlx 已提交
1746
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1747
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1748
  RType *Out() const { return out_; }
1749
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1750

I
itminner 已提交
1751
 private:
N
nhzlx 已提交
1752 1753
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1754
  RType *alpha_;
1755
  std::string mode_;
T
Tian 已提交
1756 1757 1758
};
#endif

N
nhzlx 已提交
1759
template <typename Dtype>
L
liuruilong 已提交
1760
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1761 1762 1763
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1764
 public:
L
liuruilong 已提交
1765
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1766 1767 1768 1769 1770 1771
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1772 1773 1774 1775
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1776
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1777

Y
yangfei 已提交
1778
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1779

Y
yangfei 已提交
1780
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1781

xiebaiyuan's avatar
xiebaiyuan 已提交
1782
  GType *Out() const { return out_; }
E
eclipsess 已提交
1783 1784 1785 1786 1787 1788 1789 1790

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1791
  GType *input_x_;
N
nhzlx 已提交
1792 1793
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1794
  GType *out_;
E
eclipsess 已提交
1795 1796 1797
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1798

Z
ZhenWang 已提交
1799
#ifdef PADDLE_MOBILE_FPGA
1800
 private:  // NOLINT
Z
zhangyang 已提交
1801
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1802 1803

 public:
Z
zhangyang 已提交
1804 1805
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1806
#endif
E
eclipsess 已提交
1807
};
1808 1809

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1810 1811
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1812
#endif
E
eclipsess 已提交
1813

N
nhzlx 已提交
1814
template <typename Dtype>
1815
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1816 1817 1818
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1819
 public:
L
liuruilong 已提交
1820
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1821
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1822
                     Scope *scope)
1823
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1824
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1825
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1826
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1827
  }
N
nhzlx 已提交
1828
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1829 1830 1831

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1832
  RType *Output() const { return output_; }
W
wangliu 已提交
1833

L
liuruilong 已提交
1834
 protected:
N
nhzlx 已提交
1835
  RType *bias_;
W
wangliu 已提交
1836
  int axis_;
N
nhzlx 已提交
1837
  RType *output_;
W
wangliu 已提交
1838 1839
};

N
nhzlx 已提交
1840 1841
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1842

Z
zhangyang 已提交
1843
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1844 1845
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1846
 public:
L
liuruilong 已提交
1847
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1848
                         const VariableNameMap &outputs,
1849
                         const AttributeMap &attrs, Scope *scope)
1850
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1851 1852 1853
};
#endif

1854
#ifdef FUSION_CONVADDPRELU_OP
1855 1856 1857 1858
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1859 1860 1861 1862

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1863
                          const AttributeMap &attrs, Scope *scope)
1864
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1865
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1866
    mode_ = OpParam::GetStringAttr("mode", attrs);
1867
    framework::DDim dims = alpha_->dims();
1868
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1869
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1870
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1888 1889 1890 1891
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1892 1893 1894 1895

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1896
                             const AttributeMap &attrs, Scope *scope)
1897
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1898 1899
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1900
    mode_ = OpParam::GetStringAttr("mode", attrs);
1901
    framework::DDim dims = alpha_->dims();
1902 1903
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
1904
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1905 1906 1907
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1908
    if (keyX1_ == keyOutput_) {
1909
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1910
    } else if (keyY1_ == keyOutput_) {
1911
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1936
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1937
template <typename Dtype>
1938
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1939 1940 1941
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1942 1943 1944
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1945
                           const AttributeMap &attrs, Scope *scope)
1946
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1947
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1948
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1949 1950 1951 1952 1953
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1954 1955 1956
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1957
  }
N
nhzlx 已提交
1958
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1959 1960 1961

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1962
  RType *Output() const { return output_; }
E
eclipsess 已提交
1963

N
nhzlx 已提交
1964
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1965

N
nhzlx 已提交
1966
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1967

N
nhzlx 已提交
1968
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1969

N
nhzlx 已提交
1970
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1971 1972 1973 1974 1975 1976 1977

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1978
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1979

N
nhzlx 已提交
1980
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1981

N
nhzlx 已提交
1982
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1983

N
nhzlx 已提交
1984
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1985 1986

 protected:
N
nhzlx 已提交
1987
  RType *bias_;
E
eclipsess 已提交
1988
  int axis_;
N
nhzlx 已提交
1989 1990 1991 1992 1993
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1994 1995 1996
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1997 1998
  RType *new_bias_;
  RType *new_scale_;
1999 2000 2001 2002 2003
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2004
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2005 2006 2007 2008 2009 2010
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2011
                           const AttributeMap &attrs, Scope *scope)
2012
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2013
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2014
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2015 2016 2017 2018 2019
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2020 2021
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2022 2023 2024
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2025
    if (keyX_ == keyBNY_) {
2026
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2027
    } else if (keyY_ == keyBNY_) {
2028
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2029
    }
2030
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2076
};
2077
#endif
E
eclipsess 已提交
2078

Z
zhangyang 已提交
2079
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2080
template <typename Dtype>
2081
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2082 2083 2084
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2085 2086 2087
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2088
                    Scope *scope)
2089
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2090 2091 2092 2093 2094
    output_y_ = OpParam::OutputYFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2095 2096 2097
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2098
  }
N
nhzlx 已提交
2099
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
2100

N
nhzlx 已提交
2101
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2102

N
nhzlx 已提交
2103
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2104

N
nhzlx 已提交
2105
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2106

N
nhzlx 已提交
2107
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2108 2109 2110 2111 2112 2113 2114

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2115
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2116

N
nhzlx 已提交
2117
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2118

N
nhzlx 已提交
2119
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2120

N
nhzlx 已提交
2121
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2122 2123

 protected:
N
nhzlx 已提交
2124 2125 2126 2127 2128
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
2129 2130 2131
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2132 2133
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2134 2135 2136
};
#endif

2137
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2138
template <typename Dtype>
2139
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2140 2141 2142
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2143 2144 2145
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2146
                       const AttributeMap &attrs, Scope *scope)
2147
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2148
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2149
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2150 2151 2152 2153 2154
    output_y_ = OpParam::OutputYFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2155 2156 2157
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2158
  }
N
nhzlx 已提交
2159
  RType *Bias() const { return bias_; }
2160 2161 2162

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2163
  RType *Output() const { return output_y_; }
2164

N
nhzlx 已提交
2165
  const RType *InputBias() const { return input_bias_; }
2166

N
nhzlx 已提交
2167
  const RType *InputMean() const { return input_mean_; }
2168

N
nhzlx 已提交
2169
  const RType *InputScale() const { return input_scale_; }
2170

N
nhzlx 已提交
2171
  const RType *InputVariance() const { return input_variance_; }
2172 2173 2174 2175 2176 2177 2178

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2179
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2180

N
nhzlx 已提交
2181
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2182

N
nhzlx 已提交
2183
  const RType *NewScale() const { return new_scale_; }
2184

N
nhzlx 已提交
2185
  const RType *NewBias() const { return new_bias_; }
2186 2187

 protected:
N
nhzlx 已提交
2188
  RType *bias_;
2189
  int axis_;
N
nhzlx 已提交
2190 2191 2192 2193 2194
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2195 2196 2197
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2198 2199
  RType *new_bias_;
  RType *new_scale_;
2200
};
E
eclipsess 已提交
2201
#endif
Y
Yao,kun 已提交
2202

E
eclipsess 已提交
2203
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2204
template <typename Dtype>
2205
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2206 2207 2208
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2209 2210 2211
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2212
                          const AttributeMap &attrs, Scope *scope)
2213
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2214 2215 2216 2217 2218
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2219 2220 2221
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2222
  }
N
nhzlx 已提交
2223
  RType *Output() const { return output_; }
E
eclipsess 已提交
2224

N
nhzlx 已提交
2225
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2226

N
nhzlx 已提交
2227
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2228

N
nhzlx 已提交
2229
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2230

N
nhzlx 已提交
2231
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2232 2233 2234 2235 2236 2237 2238

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2239
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2240

N
nhzlx 已提交
2241
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2242

N
nhzlx 已提交
2243
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2244

N
nhzlx 已提交
2245
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2246 2247

 protected:
N
nhzlx 已提交
2248 2249 2250 2251 2252
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2253 2254 2255
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2256 2257
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2258 2259 2260 2261
};

#endif

2262
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2263
template <typename Dtype>
2264
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2265 2266 2267
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2268 2269 2270
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2271
                        const AttributeMap &attrs, Scope *scope)
2272
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2273 2274 2275 2276 2277
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2278 2279 2280
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2281
  }
N
nhzlx 已提交
2282
  RType *Output() const { return output_; }
2283

N
nhzlx 已提交
2284
  const RType *InputBias() const { return input_bias_; }
2285

N
nhzlx 已提交
2286
  const RType *InputMean() const { return input_mean_; }
2287

N
nhzlx 已提交
2288
  const RType *InputScale() const { return input_scale_; }
2289

N
nhzlx 已提交
2290
  const RType *InputVariance() const { return input_variance_; }
2291 2292 2293 2294 2295 2296 2297

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2298
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2299

N
nhzlx 已提交
2300
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2301

N
nhzlx 已提交
2302
  const RType *NewScale() const { return new_scale_; }
2303

N
nhzlx 已提交
2304
  const RType *NewBias() const { return new_bias_; }
2305 2306

 protected:
N
nhzlx 已提交
2307 2308 2309 2310 2311
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2312 2313 2314
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2315 2316
  RType *new_bias_;
  RType *new_scale_;
2317 2318 2319
};
#endif

Y
Yao,kun 已提交
2320
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2321
template <typename Dtype>
Y
Yao,kun 已提交
2322
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2323 2324 2325
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2326 2327 2328
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2329 2330 2331 2332
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2333 2334 2335 2336 2337
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2338
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2339

E
eclipsess 已提交
2340
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2341 2342 2343 2344 2345 2346 2347 2348

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2349 2350
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2351 2352 2353 2354
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2355
#endif
Y
Yao,kun 已提交
2356

2357
#ifdef DROPOUT_OP
N
nhzlx 已提交
2358
template <typename Dtype>
Y
Yao,kun 已提交
2359
class DropoutParam : public OpParam {
N
nhzlx 已提交
2360 2361 2362
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2363 2364
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2365 2366 2367 2368
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2369 2370

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2371 2372
  }

N
nhzlx 已提交
2373
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2374

N
nhzlx 已提交
2375
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2376

Y
yangfei 已提交
2377 2378
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2379
 private:
N
nhzlx 已提交
2380 2381
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2382
  float dropout_prob_;
Y
Yao,kun 已提交
2383
};
2384
#endif
Y
Yao,kun 已提交
2385

N
nhzlx 已提交
2386
template <typename Dtype>
L
liuruilong 已提交
2387
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2388 2389 2390
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2391 2392 2393
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2394 2395 2396 2397
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2398
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2399
    if (outputs.count("Output")) {
2400
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2401
    }
L
liuruilong 已提交
2402 2403 2404 2405 2406 2407
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2408
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2409

N
nhzlx 已提交
2410
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2411

N
nhzlx 已提交
2412
  RType *Output() const { return output_; }
L
liuruilong 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2423 2424 2425
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2426 2427 2428 2429
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2430 2431 2432 2433 2434

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2435
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2436 2437 2438

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2439 2440 2441
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2442
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2443 2444 2445
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2446
#endif
L
liuruilong 已提交
2447
};
Z
zhangyang 已提交
2448

qnqinan's avatar
qnqinan 已提交
2449 2450 2451 2452 2453
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2454 2455

 public:
qnqinan's avatar
qnqinan 已提交
2456
  FusionDeconvAddParam(const VariableNameMap &inputs,
2457
                       const VariableNameMap &outputs,
2458
                       const AttributeMap &attrs, Scope *scope)
2459
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2460
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2461
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2462
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2481 2482 2483 2484 2485 2486 2487 2488 2489
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2490
                         const AttributeMap &attrs, Scope *scope)
2491
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2492 2493 2494 2495 2496
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2497 2498 2499 2500 2501 2502 2503
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2603
                             const AttributeMap &attrs, Scope *scope)
2604
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2605 2606 2607 2608 2609
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2651

Z
zhangyang 已提交
2652 2653 2654 2655 2656
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2671 2672 2673 2674 2675 2676 2677 2678
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2679
    output_batch_reset_hidden_prev_ =
2680 2681 2682
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2683 2684
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2718 2719 2720 2721 2722 2723 2724
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2725 2726 2727 2728 2729 2730 2731 2732
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2733
    output_reset_hidden_prev_ =
2734 2735
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2764 2765 2766 2767 2768 2769 2770 2771
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2772 2773 2774 2775
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2776
    axis = GetAttr<int>("axis", attrs);
2777 2778 2779
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2780
  const int &Axis() const { return axis; }
2781 2782 2783 2784

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2785
  int axis;
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2797 2798 2799 2800
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2801
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2802 2803 2804 2805 2806 2807
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2808 2809
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2810 2811 2812 2813 2814
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2815 2816 2817

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2818
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2819
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2820 2821 2822
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2823 2824 2825 2826 2827 2828 2829 2830 2831
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2844 2845 2846 2847 2848
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2849 2850
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2851 2852
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2853
  const RType *InputOutPutSize() const { return input_outsize_; }
2854
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2855 2856
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2857 2858 2859 2860 2861

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2862 2863
  int out_h_;
  int out_w_;
2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2875 2876 2877 2878
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2879
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2880
  const RType *Input() const { return input_; }
2881 2882 2883 2884 2885 2886 2887 2888
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2889 2890 2891 2892 2893 2894 2895 2896
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2897 2898 2899 2900 2901
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2921 2922 2923 2924
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2937
#ifdef QUANT_OP
2938
template <typename Dtype>
2939 2940 2941 2942 2943
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2944
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2945 2946 2947 2948
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2949 2950
    // online
    // scale = max(abs(x))
2951
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2952
    // offline
2953
    if (inputs.count("InScale")) {
2954
      offline_ = true;
2955
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2956 2957
    }
    // x = round(scale * x)
2958 2959
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2960
    }
2961 2962 2963 2964
  }

 public:
  // op input
2965
  GType *input_;
2966
  // op output
2967
  GType *output_;
2968
  RType *online_scale_;
2969 2970 2971 2972
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2973
  // round method type
2974 2975
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2976
};
2977
#endif
2978

2979
#ifdef DEQUANT_OP
2980
template <typename Dtype>
2981 2982 2983 2984 2985
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2986
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2987 2988 2989 2990 2991
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2992
    // dequantization is performed as x = x / static_scale / online_scale
2993 2994
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2995
    } else {
2996
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2997 2998 2999 3000 3001
    }
  }

 public:
  // op input
3002
  GType *input_;
3003
  // op output
3004
  GType *output_;
3005 3006 3007
  RType *activation_scale_;
  float weight_scale_;
};
3008
#endif
3009

3010 3011 3012 3013
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3014
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3015
template <typename Dtype>
3016
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3017 3018 3019 3020
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3021 3022
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3023
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3024 3025
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3026 3027 3028 3029
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
3040 3041 3042
};
#endif

3043 3044 3045 3046
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3047 3048 3049 3050 3051 3052 3053 3054
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3055
                          const AttributeMap &attrs, Scope *scope)
3056 3057 3058
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3059
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3060 3061 3062 3063 3064 3065 3066 3067 3068
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

3069 3070 3071 3072 3073 3074 3075 3076 3077
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3078
                               const AttributeMap &attrs, Scope *scope)
3079 3080
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3081
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3082
    // offline
3083 3084
    if (inputs.count("InScale")) {
      offline_ = true;
3085
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3086 3087 3088 3089 3090 3091 3092 3093 3094
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
3095 3096 3097 3098
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
3099 3100 3101 3102 3103 3104
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3105 3106 3107 3108 3109 3110 3111 3112 3113
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3114 3115 3116 3117 3118
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3142 3143 3144 3145
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3146 3147
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3148
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3159 3160 3161 3162 3163 3164 3165 3166
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3167 3168 3169 3170
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3171 3172
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3173
      input_y_ = InputYFrom<GType>(inputs, *scope);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3187 3188 3189 3190 3191 3192 3193 3194
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3195 3196 3197 3198 3199
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3211
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3212
template <typename Dtype>
Z
zhaojiaying01 已提交
3213
class LogicalBinaryParam : public OpParam {
3214 3215 3216 3217
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3218 3219
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3220 3221 3222 3223 3224
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3236
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3237 3238 3239

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3240
class LogicalUnaryParam : public OpParam {
3241 3242 3243 3244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3245 3246
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3247 3248 3249 3250
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3262 3263 3264 3265 3266 3267
// #ifdef WHILE_OP
// template <typename Dtype>
// class WhileParam : public OpParam {
//  public:
//   WhileParam(const VariableNameMap &inputs,
//              const VariableNameMap &outputs, const AttributeMap &attrs,
3268
//              const Scope &scope) : OpParam(inputs, outputs, attrs, scope) {
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
//     cond_ = OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs,
//     scope); block_desc_ = OpParam::GetAttr<framework::BlockDesc
//     *>("sub_block", attrs);
//   }
//
//  public:
//   framework::LoDTensor *cond_;
//   const framework::BlockDesc *block_desc_;
// };
// #endif  // WHILE_OP

#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3286 3287 3288 3289
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, *scope);
3290
    output_ =
3291
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, *scope);
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3307 3308
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
3309
    input_ =
3310 3311 3312 3313
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, *scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, *scope);
3314 3315 3316 3317 3318 3319 3320 3321 3322
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
3323 3324 3325 3326 3327 3328 3329 3330
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3331 3332 3333 3334
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3354 3355 3356 3357
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
    step_ = OpParam::GetAttr<int>("step", attrs);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
  int Step() const { return step_; }

 public:
  GType *input_x_;
  GType *output_;
  int step_;
};
#endif  // INCREMENT_OP
3371 3372 3373 3374 3375 3376 3377 3378
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3379 3380 3381 3382
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3383 3384 3385 3386 3387 3388 3389 3390 3391
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3392

朔-望's avatar
朔-望 已提交
3393 3394
}  // namespace operators
}  // namespace paddle_mobile