Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
12ad8311
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
337
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12ad8311
编写于
5月 22, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add prior_box_op and testfile
上级
d6825bf3
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
561 addition
and
4 deletion
+561
-4
src/io.cpp
src/io.cpp
+4
-4
src/operators/kernel/arm/prior_box_kernel.cpp
src/operators/kernel/arm/prior_box_kernel.cpp
+152
-0
src/operators/kernel/prior_box_kernel.h
src/operators/kernel/prior_box_kernel.h
+61
-0
src/operators/op_param.h
src/operators/op_param.h
+76
-0
src/operators/prior_box_op.cpp
src/operators/prior_box_op.cpp
+51
-0
src/operators/prior_box_op.h
src/operators/prior_box_op.h
+56
-0
test/CMakeLists.txt
test/CMakeLists.txt
+4
-0
test/operators/test_prior_box_op.cpp
test/operators/test_prior_box_op.cpp
+157
-0
未找到文件。
src/io.cpp
浏览文件 @
12ad8311
...
@@ -25,7 +25,7 @@ SOFTWARE.
...
@@ -25,7 +25,7 @@ SOFTWARE.
#include "framework/program_desc.h"
#include "framework/program_desc.h"
#include "framework/scope.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/tensor.h"
#define PADDLE_MOBILE_DEBUG 1
namespace
paddle_mobile
{
namespace
paddle_mobile
{
void
ReadBinaryFile
(
const
std
::
string
&
filename
,
std
::
string
*
contents
)
{
void
ReadBinaryFile
(
const
std
::
string
&
filename
,
std
::
string
*
contents
)
{
...
@@ -165,9 +165,9 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
...
@@ -165,9 +165,9 @@ const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
for
(
const
auto
&
block
:
program_desc_proto
.
blocks
())
{
for
(
const
auto
&
block
:
program_desc_proto
.
blocks
())
{
LOG
(
kLOG_DEBUG
)
<<
"block: "
<<
block
.
idx
();
LOG
(
kLOG_DEBUG
)
<<
"block: "
<<
block
.
idx
();
for
(
int
j
=
0
;
j
<
block
.
ops
().
size
();
++
j
)
{
for
(
int
j
=
0
;
j
<
block
.
ops
().
size
();
++
j
)
{
if
(
j
==
2
)
{
//
if (j == 2) {
break
;
//
break;
}
//
}
framework
::
proto
::
OpDesc
op
=
block
.
ops
()[
j
];
framework
::
proto
::
OpDesc
op
=
block
.
ops
()[
j
];
LOG
(
kLOG_DEBUG1
)
<<
"op: "
<<
op
.
type
();
LOG
(
kLOG_DEBUG1
)
<<
"op: "
<<
op
.
type
();
for
(
int
m
=
0
;
m
<
op
.
inputs_size
();
++
m
)
{
for
(
int
m
=
0
;
m
<
op
.
inputs_size
();
++
m
)
{
...
...
src/operators/kernel/arm/prior_box_kernel.cpp
0 → 100644
浏览文件 @
12ad8311
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "operators/kernel/prior_box_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ClipFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
std
::
min
<
T
>
(
std
::
max
<
T
>
(
in
,
0.
),
1.
);
}
};
template
<
>
void
PriorBoxKernel
<
CPU
,
float
>::
Compute
(
const
PriorBoxParam
&
param
)
const
{
const
auto
*
input_
=
param
.
Input
();
const
auto
&
input_dims
=
input_
->
dims
();
const
auto
*
input_image
=
param
.
InputImage
();
const
auto
&
input_image_dims
=
input_image
->
dims
();
const
auto
&
min_sizes
=
param
.
MinSizes
();
const
auto
&
max_sizes
=
param
.
MaxSizes
();
const
auto
&
variances
=
param
.
Variances
();
const
auto
&
input_aspect_ratio
=
param
.
AspectRatios
();
const
bool
&
flip
=
param
.
Flip
();
const
bool
&
clip
=
param
.
Clip
();
const
float
&
step_w
=
param
.
StepW
();
const
float
&
step_h
=
param
.
StepH
();
const
float
&
offset
=
param
.
Offset
();
Tensor
*
output_boxes
=
param
.
OutputBoxes
();
auto
output_boxes_dataptr
=
output_boxes
->
mutable_data
<
float
>
();
Tensor
*
output_variances
=
param
.
OutputVariances
();
auto
output_variances_dataptr
=
output_variances
->
mutable_data
<
float
>
();
std
::
vector
<
float
>
aspect_ratios
;
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
&
aspect_ratios
);
auto
img_width
=
input_image_dims
[
3
];
auto
img_height
=
input_image_dims
[
2
];
auto
feature_width
=
input_dims
[
3
];
auto
feature_height
=
input_dims
[
2
];
auto
stride0
=
output_boxes
->
dims
()[
1
]
*
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride1
=
output_boxes
->
dims
()[
2
]
*
output_boxes
->
dims
()[
3
];
auto
stride2
=
output_boxes
->
dims
()[
3
];
float
step_width
,
step_height
;
/// 300 / 19
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
!
max_sizes
.
empty
())
{
num_priors
+=
max_sizes
.
size
();
}
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
/// map origin image
float
center_x
=
(
w
+
offset
)
*
step_width
;
float
center_y
=
(
h
+
offset
)
*
step_height
;
float
box_width
,
box_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
auto
min_size
=
min_sizes
[
s
];
// priors with different aspect ratios
for
(
float
ar
:
aspect_ratios
)
{
box_width
=
min_size
*
sqrt
(
ar
)
/
2.
;
box_height
=
min_size
/
sqrt
(
ar
)
/
2.
;
/// box_width/2 , / img_width 为了得到feature map 相对于
/// 原图的归一化位置的比例。
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
(
center_x
-
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
(
center_y
-
box_height
)
/
img_height
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
(
center_x
+
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
}
if
(
!
max_sizes
.
empty
())
{
auto
max_size
=
max_sizes
[
s
];
// square prior with size sqrt(minSize * maxSize)
box_width
=
box_height
=
sqrt
(
min_size
*
max_size
)
/
2.
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
0
]
=
(
center_x
-
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
1
]
=
(
center_y
-
box_height
)
/
img_height
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
2
]
=
(
center_x
+
box_width
)
/
img_width
;
output_boxes_dataptr
[
h
*
stride0
+
w
*
stride1
+
idx
*
stride2
+
3
]
=
(
center_y
+
box_height
)
/
img_height
;
idx
++
;
}
}
}
}
if
(
clip
)
{
math
::
Transform
trans
;
ClipFunctor
<
float
>
clip_func
;
trans
(
output_boxes_dataptr
,
output_boxes_dataptr
+
output_boxes
->
numel
(),
output_boxes_dataptr
,
clip_func
);
}
Tensor
var_t
;
var_t
.
mutable_data
<
float
>
(
make_ddim
({
1
,
static_cast
<
int
>
(
variances
.
size
())}));
int
box_num
=
feature_height
*
feature_width
*
num_priors
;
// auto var_dim = output_variances->dims();
// output_variances->Resize({box_num, static_cast<int>(variances.size())});
for
(
int
i
=
0
;
i
<
box_num
;
i
++
)
{
output_variances_dataptr
[
4
*
i
]
=
variances
[
0
];
output_variances_dataptr
[
4
*
i
+
1
]
=
variances
[
1
];
output_variances_dataptr
[
4
*
i
+
2
]
=
variances
[
2
];
output_variances_dataptr
[
4
*
i
+
3
]
=
variances
[
3
];
}
// output_variances->Resize(var_dim);
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/prior_box_kernel.h
0 → 100644
浏览文件 @
12ad8311
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include <vector>
#include "framework/operator.h"
#include "operators/math/transform.h"
#include "operators/op_param.h"
#pragma once;
namespace
paddle_mobile
{
namespace
operators
{
inline
void
ExpandAspectRatios
(
const
std
::
vector
<
float
>&
input_aspect_ratior
,
bool
flip
,
std
::
vector
<
float
>*
output_aspect_ratior
)
{
constexpr
float
epsilon
=
1e-6
;
output_aspect_ratior
->
clear
();
output_aspect_ratior
->
push_back
(
1.0
f
);
for
(
size_t
i
=
0
;
i
<
input_aspect_ratior
.
size
();
++
i
)
{
float
ar
=
input_aspect_ratior
[
i
];
bool
already_exist
=
false
;
for
(
size_t
j
=
0
;
j
<
output_aspect_ratior
->
size
();
++
j
)
{
if
(
fabs
(
ar
-
output_aspect_ratior
->
at
(
j
))
<
epsilon
)
{
already_exist
=
true
;
break
;
}
}
if
(
!
already_exist
)
{
output_aspect_ratior
->
push_back
(
ar
);
if
(
flip
)
{
output_aspect_ratior
->
push_back
(
1.0
f
/
ar
);
}
}
}
}
template
<
typename
DeviceType
,
typename
T
>
class
PriorBoxKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
PriorBoxParam
>
{
public:
void
Compute
(
const
PriorBoxParam
&
param
)
const
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
12ad8311
...
@@ -65,6 +65,10 @@ class OpParam : PaddleMobileObject {
...
@@ -65,6 +65,10 @@ class OpParam : PaddleMobileObject {
static
T
*
InputScaleFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
static
T
*
InputScaleFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Scale"
,
inputs
,
scope
);
return
GetVarValue
<
T
>
(
"Scale"
,
inputs
,
scope
);
}
}
template
<
typename
T
>
static
T
*
InputImageFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Image"
,
inputs
,
scope
);
}
template
<
typename
T
>
template
<
typename
T
>
static
std
::
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
static
std
::
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
...
@@ -87,6 +91,18 @@ class OpParam : PaddleMobileObject {
...
@@ -87,6 +91,18 @@ class OpParam : PaddleMobileObject {
return
GetVarValue
<
T
>
(
"Y"
,
outputs
,
scope
);
return
GetVarValue
<
T
>
(
"Y"
,
outputs
,
scope
);
}
}
template
<
typename
T
>
static
T
*
OutputBoxesFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Boxes"
,
outputs
,
scope
);
}
template
<
typename
T
>
static
T
*
OutputVariancesFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Variances"
,
outputs
,
scope
);
}
template
<
typename
T
>
template
<
typename
T
>
static
T
*
MidOutFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
static
T
*
MidOutFrom
(
const
VariableNameMap
&
outputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"MidOut"
,
outputs
,
scope
);
return
GetVarValue
<
T
>
(
"MidOut"
,
outputs
,
scope
);
...
@@ -382,5 +398,65 @@ class PoolParam : public OpParam {
...
@@ -382,5 +398,65 @@ class PoolParam : public OpParam {
bool
gloabal_pooling_
=
false
;
bool
gloabal_pooling_
=
false
;
};
};
class
PriorBoxParam
:
public
OpParam
{
public:
PriorBoxParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
,
const
framework
::
Scope
&
scope
)
{
input_
=
InputFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
input_image_
=
InputImageFrom
<
framework
::
Tensor
>
(
inputs
,
scope
);
output_boxes_
=
OutputBoxesFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
output_variances_
=
OutputVariancesFrom
<
framework
::
Tensor
>
(
outputs
,
scope
);
min_sizes_
=
GetAttr
<
std
::
vector
<
float
>>
(
"min_sizes"
,
attrs
);
max_sizes_
=
GetAttr
<
std
::
vector
<
float
>>
(
"max_sizes"
,
attrs
);
aspect_ratios_
=
GetAttr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
,
attrs
);
variances_
=
GetAttr
<
std
::
vector
<
float
>>
(
"variances"
,
attrs
);
flip_
=
GetAttr
<
bool
>
(
"flip"
,
attrs
);
clip_
=
GetAttr
<
bool
>
(
"clip"
,
attrs
);
step_w_
=
GetAttr
<
float
>
(
"step_w"
,
attrs
);
step_h_
=
GetAttr
<
float
>
(
"step_h"
,
attrs
);
offset_
=
GetAttr
<
float
>
(
"offset"
,
attrs
);
}
const
Tensor
*
Input
()
const
{
return
input_
;
}
const
Tensor
*
InputImage
()
const
{
return
input_image_
;
}
Tensor
*
OutputBoxes
()
const
{
return
output_boxes_
;
}
Tensor
*
OutputVariances
()
const
{
return
output_variances_
;
}
const
std
::
vector
<
float
>
&
MinSizes
()
const
{
return
min_sizes_
;
}
const
std
::
vector
<
float
>
&
MaxSizes
()
const
{
return
max_sizes_
;
}
const
std
::
vector
<
float
>
&
AspectRatios
()
const
{
return
aspect_ratios_
;
}
const
std
::
vector
<
float
>
&
Variances
()
const
{
return
variances_
;
}
const
bool
&
Flip
()
const
{
return
flip_
;
}
const
bool
&
Clip
()
const
{
return
clip_
;
}
const
float
&
StepW
()
const
{
return
step_w_
;
}
const
float
&
StepH
()
const
{
return
step_h_
;
}
const
float
&
Offset
()
const
{
return
offset_
;
}
private:
Tensor
*
input_
;
Tensor
*
input_image_
;
Tensor
*
output_boxes_
;
Tensor
*
output_variances_
;
std
::
vector
<
float
>
min_sizes_
;
std
::
vector
<
float
>
max_sizes_
;
std
::
vector
<
float
>
aspect_ratios_
;
std
::
vector
<
float
>
variances_
;
bool
flip_
;
bool
clip_
;
float
step_w_
;
float
step_h_
;
float
offset_
;
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle_mobile
}
// namespace paddle_mobile
src/operators/prior_box_op.cpp
0 → 100644
浏览文件 @
12ad8311
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#include "operators/prior_box_op.h"
#include <vector>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
PriorBoxOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
input_dims
=
param_
.
Input
()
->
dims
();
auto
input_image_dims
=
param_
.
InputImage
()
->
dims
();
auto
min_sizes
=
param_
.
MinSizes
();
auto
max_sizes
=
param_
.
MaxSizes
();
auto
variances
=
param_
.
Variances
();
auto
aspect_ratios
=
param_
.
AspectRatios
();
bool
flip
=
param_
.
Flip
();
std
::
vector
<
float
>
aspect_ratios_vec
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
&
aspect_ratios_vec
);
size_t
num_priors
=
aspect_ratios_vec
.
size
()
*
min_sizes
.
size
();
if
(
!
max_sizes
.
empty
())
{
num_priors
+=
max_sizes
.
size
();
}
std
::
vector
<
int64_t
>
dim_vec
(
4
);
dim_vec
[
0
]
=
input_dims
[
2
];
dim_vec
[
1
]
=
input_dims
[
3
];
dim_vec
[
2
]
=
num_priors
;
dim_vec
[
3
]
=
4
;
param_
.
OutputBoxes
()
->
Resize
(
framework
::
make_ddim
(
dim_vec
));
param_
.
OutputVariances
()
->
Resize
(
framework
::
make_ddim
(
dim_vec
));
}
template
class
PriorBoxOp
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
src/operators/prior_box_op.h
0 → 100644
浏览文件 @
12ad8311
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/prior_box_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
paddle_mobile
::
framework
::
Tensor
;
template
<
typename
DeviceType
,
typename
T
>
class
PriorBoxOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
>
{
public:
PriorBoxOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
void
Run
()
const
{
operators
::
PriorBoxKernel
<
DeviceType
,
T
>
kernel
;
kernel
.
Compute
(
param_
);
}
using
framework
::
OperatorWithKernel
<
DeviceType
>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
PriorBoxParam
param_
;
};
}
// namespace operators
}
// namespace paddle_mobile
test/CMakeLists.txt
浏览文件 @
12ad8311
...
@@ -23,6 +23,10 @@ target_link_libraries(test-lrn-op paddle-mobile)
...
@@ -23,6 +23,10 @@ target_link_libraries(test-lrn-op paddle-mobile)
ADD_EXECUTABLE
(
test-batchnorm-op operators/test_batchnorm_op.cpp test_helper.h test_include.h
)
ADD_EXECUTABLE
(
test-batchnorm-op operators/test_batchnorm_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-batchnorm-op paddle-mobile
)
target_link_libraries
(
test-batchnorm-op paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-priorbox-op operators/test_prior_box_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-priorbox-op paddle-mobile
)
# gen test log
# gen test log
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
target_link_libraries
(
test-log paddle-mobile
)
target_link_libraries
(
test-log paddle-mobile
)
...
...
test/operators/test_prior_box_op.cpp
0 → 100644
浏览文件 @
12ad8311
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
==============================================================================*/
#pragma once
#include "../test_include.h"
#include "operators/prior_box_op.h"
namespace
paddle_mobile
{
namespace
framework
{
template
<
typename
Dtype
>
class
TestPriorBoxOp
{
public:
explicit
TestPriorBoxOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
// DLOG << " **block size " << blocks.size();
for
(
auto
block_desc
:
blocks
)
{
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
// DLOG << " ops " << ops.size();
for
(
auto
op
:
ops
)
{
if
(
op
->
Type
()
==
"prior_box"
&&
op
->
Input
(
"Input"
)[
0
]
==
"batch_norm_26.tmp_3"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" inputs size: "
<<
op
->
GetInputs
().
size
();
DLOG
<<
" outputs size: "
<<
op
->
GetOutputs
().
size
();
DLOG
<<
" Input is : "
<<
op
->
Input
(
"Input"
)[
0
];
DLOG
<<
" Image is : "
<<
op
->
Input
(
"Image"
)[
0
];
DLOG
<<
" Output Boxes is : "
<<
op
->
Output
(
"Boxes"
)[
0
];
DLOG
<<
" Output Variances is : "
<<
op
->
Output
(
"Variances"
)[
0
];
DLOG
<<
" offset : "
<<
op
->
GetAttrMap
().
at
(
"offset"
).
Get
<
float
>
();
DLOG
<<
" step_h : "
<<
op
->
GetAttrMap
().
at
(
"step_h"
).
Get
<
float
>
();
DLOG
<<
" step_w : "
<<
op
->
GetAttrMap
().
at
(
"step_w"
).
Get
<
float
>
();
DLOG
<<
" flip : "
<<
op
->
GetAttrMap
().
at
(
"flip"
).
Get
<
bool
>
();
DLOG
<<
" clip : "
<<
op
->
GetAttrMap
().
at
(
"clip"
).
Get
<
bool
>
();
// DLOG << " variances : " <<
// op->GetAttrMap().at("variances").Get<std::vector<float>>();
// DLOG << " aspect_ratios : " <<
// op->GetAttrMap().at("aspect_ratios").Get<std::vector<float>>();
// DLOG << " min_sizes : " <<
// op->GetAttrMap().at("min_sizes").Get<std::vector<float>>();
// DLOG << " max_sizes : " <<
// op->GetAttrMap().at("max_sizes").Get<std::vector<float>>();
std
::
shared_ptr
<
operators
::
PriorBoxOp
<
Dtype
,
float
>>
priorbox
=
std
::
make_shared
<
operators
::
PriorBoxOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
priorbox
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict_priorbox
(
const
Tensor
&
t1
,
const
Tensor
&
t2
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x1_feed_value
=
scope
->
Var
(
"image"
);
auto
tensor_x1
=
x1_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x1
->
ShareDataWith
(
t1
);
Variable
*
x2_feed_value
=
scope
->
Var
(
"batch_norm_26.tmp_3"
);
auto
tensor_x2
=
x2_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x2
->
ShareDataWith
(
t2
);
Variable
*
boxes_output
=
scope
->
Var
(
"prior_box_1.tmp_0"
);
auto
*
boxes_output_tensor
=
boxes_output
->
GetMutable
<
Tensor
>
();
boxes_output_tensor
->
mutable_data
<
float
>
({
10
,
10
,
6
,
4
});
Variable
*
variances_output
=
scope
->
Var
(
"prior_box_1.tmp_1"
);
auto
*
variances_output_tesnor
=
variances_output
->
GetMutable
<
Tensor
>
();
variances_output_tesnor
->
mutable_data
<
float
>
({
10
,
10
,
6
,
4
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std
::
shared_ptr
<
Tensor
>
outboxes_tensor
=
std
::
make_shared
<
LoDTensor
>
();
outboxes_tensor
.
reset
(
boxes_output_tensor
);
std
::
shared_ptr
<
Tensor
>
outvars_tensor
=
std
::
make_shared
<
LoDTensor
>
();
outvars_tensor
.
reset
(
variances_output_tesnor
);
predict_priorbox
(
t1
,
t2
,
0
);
return
outboxes_tensor
;
// return outvars_tensor;
}
private:
const
framework
::
Program
<
Dtype
>
program_
;
std
::
shared_ptr
<
ProgramDesc
>
to_predict_program_
;
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict_priorbox
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
DLOG
<<
"op -> run()"
;
op
->
Run
();
}
}
};
template
class
TestPriorBoxOp
<
CPU
>;
}
// namespace framework
}
// namespace paddle_mobile
int
main
()
{
DLOG
<<
"----------**********----------"
;
DLOG
<<
"begin to run PriorBoxOp Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../test/models/mobilenet+ssd"
));
/// input x (1,3,300,300)
paddle_mobile
::
framework
::
Tensor
input_image
;
SetupTensor
<
float
>
(
&
input_image
,
{
1
,
3
,
300
,
300
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
input_image_ptr
=
input_image
.
data
<
float
>
();
paddle_mobile
::
framework
::
Tensor
inputx1
;
SetupTensor
<
float
>
(
&
inputx1
,
{
1
,
1024
,
10
,
10
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx1_ptr
=
inputx1
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestPriorBoxOp
<
paddle_mobile
::
CPU
>
testPriorBoxOp
(
program
);
auto
output_priorbox
=
testPriorBoxOp
.
predict_priorbox
(
input_image
,
inputx1
);
auto
*
output_priorbox_ptr
=
output_priorbox
->
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_priorbox
->
numel
();
i
++
)
{
DLOG
<<
output_priorbox_ptr
[
i
];
}
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录