op_param.h 66.4 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
80 81 82 83 84
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

85 86 87 88 89 90 91 92 93
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

121 122 123 124
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
125 126 127 128 129 130

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

131 132 133 134 135
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
136 137 138 139 140
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

141 142 143 144 145
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
146 147 148 149
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
150 151 152 153 154 155 156 157 158 159 160 161
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
162 163 164 165
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
182

E
eclipsess 已提交
183 184 185 186 187 188 189 190 191 192
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
193 194 195 196
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
197

198
  template <typename T>
W
wangliu 已提交
199 200
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
201 202 203
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
248 249 250 251 252 253
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
254 255 256 257 258
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

265 266 267 268 269 270 271 272 273 274 275
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
276
  static const T GetAttr(const string &key, const AttributeMap &map) {
277 278 279
    return ((Attribute)map.at(key)).Get<T>();
  }

280 281 282 283
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

284
  template <typename T>
W
wangliu 已提交
285
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
286
                        const Scope &scope) {
W
wangliu 已提交
287 288
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
289 290 291 292 293 294
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
295
    }
296
  }
朔-望's avatar
朔-望 已提交
297

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

318
  template <typename T>
W
wangliu 已提交
319 320 321
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
322 323
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
324
    vector<T *> var_res;
325 326 327
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
328
    }
329 330
    return var_res;
  }
朔-望's avatar
朔-望 已提交
331 332
};

L
liuruilong 已提交
333
#ifdef CONV_OP
N
nhzlx 已提交
334
template <typename Dtype>
朔-望's avatar
朔-望 已提交
335
class ConvParam : OpParam {
N
nhzlx 已提交
336 337 338
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
339
 public:
340
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
341
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
342 343 344
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
345 346 347
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
348 349
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
350

N
nhzlx 已提交
351
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
352

N
nhzlx 已提交
353
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
354

N
nhzlx 已提交
355
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
356

W
wangliu 已提交
357
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
358

W
wangliu 已提交
359
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
360

W
wangliu 已提交
361
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
362

363
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
364

朔-望's avatar
朔-望 已提交
365
 private:
N
nhzlx 已提交
366 367 368
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
369 370 371
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
372
  int groups;
朔-望's avatar
朔-望 已提交
373
};
N
nhzlx 已提交
374 375
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
376
#endif
朔-望's avatar
朔-望 已提交
377

N
nhzlx 已提交
378
template <typename Dtype>
朔-望's avatar
朔-望 已提交
379
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
380 381 382
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
383
 public:
384
  ElementwiseAddParam(const VariableNameMap &inputs,
385 386
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
387 388 389
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
390 391 392
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
393
  const GType *InputX() const { return input_x_; }
394

xiebaiyuan's avatar
xiebaiyuan 已提交
395
  const GType *InputY() const { return input_y_; }
396

xiebaiyuan's avatar
xiebaiyuan 已提交
397
  GType *Out() const { return out_; }
398 399 400

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
401
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
402 403 404
  GType *input_x_;
  GType *input_y_;
  GType *out_;
405
  int axis_;
Z
zhangyang 已提交
406 407 408
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
409
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
410 411

 public:
H
hanbuhe 已提交
412 413
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
414
#endif
朔-望's avatar
朔-望 已提交
415 416
};

417
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
418 419
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
420 421 422
#endif

#ifdef MUL_OP
N
nhzlx 已提交
423
template <typename Dtype>
朔-望's avatar
朔-望 已提交
424
class MulParam : OpParam {
N
nhzlx 已提交
425 426 427
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
428
 public:
429
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
430
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
431 432 433
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
434 435 436
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
437

xiebaiyuan's avatar
xiebaiyuan 已提交
438
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
439

xiebaiyuan's avatar
xiebaiyuan 已提交
440
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
441

xiebaiyuan's avatar
xiebaiyuan 已提交
442
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
443

444
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
445

446
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
447

朔-望's avatar
朔-望 已提交
448
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
449 450 451
  GType *input_x_;
  GType *input_y_;
  GType *out_;
452 453
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
454
};
L
liuruilong 已提交
455
#endif
朔-望's avatar
朔-望 已提交
456

L
liuruilong 已提交
457
#ifdef CONCAT_OP
N
nhzlx 已提交
458
template <typename Dtype>
朔-望's avatar
朔-望 已提交
459
class ConcatParam : public OpParam {
N
nhzlx 已提交
460 461 462
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
463
 public:
464
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
465
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
466 467
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
468 469
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
470

N
nhzlx 已提交
471
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
472

xiebaiyuan's avatar
xiebaiyuan 已提交
473
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
474

475
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
476

朔-望's avatar
朔-望 已提交
477
 private:
N
nhzlx 已提交
478
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
479
  GType *out_;
480
  int axis_;
朔-望's avatar
朔-望 已提交
481
};
L
liuruilong 已提交
482
#endif
朔-望's avatar
朔-望 已提交
483

L
liuruilong 已提交
484
#ifdef LRN_OP
N
nhzlx 已提交
485
template <typename Dtype>
E
eclipsess 已提交
486
class LrnParam : public OpParam {
N
nhzlx 已提交
487 488 489
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
490
 public:
491
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
492
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
493 494 495
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
496 497 498 499
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
500
    data_format_ = GetAttr<string>("data_format", attrs);
501
  }
E
eclipsess 已提交
502

N
nhzlx 已提交
503
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
504

N
nhzlx 已提交
505
  RType *Out() const { return out_; }
E
eclipsess 已提交
506

N
nhzlx 已提交
507
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
508

509
  const int &N() const { return n_; }
E
eclipsess 已提交
510

511
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
512

513
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
514

515
  const float &K() const { return k_; }
E
eclipsess 已提交
516

W
wangliu 已提交
517
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
518

朔-望's avatar
朔-望 已提交
519
 private:
N
nhzlx 已提交
520 521 522
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
523 524 525 526
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
527
  string data_format_;
E
eclipsess 已提交
528
};
L
liuruilong 已提交
529 530 531
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
532
template <typename Dtype>
E
eclipsess 已提交
533
class BatchNormParam : OpParam {
N
nhzlx 已提交
534 535 536
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
537
 public:
538
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
539
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
540 541 542 543 544 545
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
546 547
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
548
    //    is_test_ = GetAttr<bool>("is_test", attrs);
549
  }
E
eclipsess 已提交
550

N
nhzlx 已提交
551
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
552

N
nhzlx 已提交
553
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
554

N
nhzlx 已提交
555
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
556

N
nhzlx 已提交
557
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
558

N
nhzlx 已提交
559
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
560

N
nhzlx 已提交
561
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
562

563
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
564

565
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
566

567
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
568

W
wangliu 已提交
569
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
570

朔-望's avatar
朔-望 已提交
571
 private:
N
nhzlx 已提交
572 573 574 575 576 577
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
578 579 580
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
581
  string data_format_;
E
eclipsess 已提交
582
};
L
liuruilong 已提交
583 584 585
#endif

#ifdef POOL_OP
N
nhzlx 已提交
586
template <typename Dtype>
587
class PoolParam : public OpParam {
N
nhzlx 已提交
588 589 590
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
591
 public:
592
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
593
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
594
    input_ = InputXFrom<GType>(inputs, scope);
595

N
nhzlx 已提交
596
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
597 598 599 600
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
601
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
602
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
603
  }
604

N
nhzlx 已提交
605
  const RType *Input() const { return input_; }
606

N
nhzlx 已提交
607
  RType *Output() const { return output_; }
608

W
wangliu 已提交
609
  const string &PoolingType() const { return pooling_type_; }
610

W
wangliu 已提交
611
  const vector<int> &Ksize() const { return ksize_; }
612

W
wangliu 已提交
613
  const vector<int> &Strides() const { return strides_; }
614

W
wangliu 已提交
615
  const vector<int> &Paddings() const { return paddings_; }
616

617
  bool isCeilMode() const { return ceil_mode_; }
618

Z
zhangyang 已提交
619
  bool isGlobalPooling() const { return global_pooling_; }
620

朔-望's avatar
朔-望 已提交
621
 private:
N
nhzlx 已提交
622 623
  RType *input_;
  RType *output_;
W
wangliu 已提交
624 625 626 627
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
628
  bool ceil_mode_;
629
  bool global_pooling_ = false;
Z
zhangyang 已提交
630
#ifdef PADDLE_MOBILE_FPGA
631 632

 private:
H
hanbuhe 已提交
633
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
634 635

 public:
H
hanbuhe 已提交
636 637
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
638
#endif
639
};
L
liuruilong 已提交
640 641 642
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
643
template <typename Dtype>
E
eclipsess 已提交
644
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
645 646 647
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
648 649
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
650
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
651 652 653 654
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
655 656 657 658
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
659 660 661 662 663 664
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
665
  const RType *Input() const { return input_; }
E
eclipsess 已提交
666

N
nhzlx 已提交
667
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
668

N
nhzlx 已提交
669
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
670

N
nhzlx 已提交
671
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
672

W
wangliu 已提交
673
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
674

W
wangliu 已提交
675
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
676

W
wangliu 已提交
677
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
678

W
wangliu 已提交
679
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
680 681 682 683 684 685 686 687 688 689 690 691

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
692 693 694 695
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
696 697 698 699
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
700 701 702 703 704 705
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
706
#endif
E
eclipsess 已提交
707

L
liuruilong 已提交
708
#ifdef BOXCODER_OP
N
nhzlx 已提交
709
template <typename Dtype>
E
eclipsess 已提交
710
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
711 712 713
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
714 715
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
716
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
717 718 719 720
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
721 722
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
723
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
724

N
nhzlx 已提交
725
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
726

N
nhzlx 已提交
727
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
728

N
nhzlx 已提交
729
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
730 731 732 733

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
734 735 736 737
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
738 739
  std::string code_type_;
};
L
liuruilong 已提交
740
#endif
W
wangliu 已提交
741

L
liuruilong 已提交
742
#ifdef SOFTMAX_OP
N
nhzlx 已提交
743
template <typename Dtype>
W
wangliu 已提交
744
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
745 746 747
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
748 749
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
750
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
751 752
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
753
  }
N
nhzlx 已提交
754 755
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
756 757

 private:
N
nhzlx 已提交
758 759
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
760 761 762 763

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
764
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
765 766 767
  fpga::BypassArgs fpga_bypass_args;

 public:
N
nhzlx 已提交
768
  RType *FloatInput() {
H
hanbuhe 已提交
769 770 771 772 773 774
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
775
};
L
liuruilong 已提交
776
#endif
W
wangliu 已提交
777

L
liuruilong 已提交
778
#ifdef SIGMOID_OP
N
nhzlx 已提交
779
template <typename Dtype>
W
wangliu 已提交
780
class SigmoidParam : public OpParam {
N
nhzlx 已提交
781 782 783
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
784 785
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
786
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
787 788
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
789
  }
N
nhzlx 已提交
790 791
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
792 793

 private:
N
nhzlx 已提交
794 795
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
796
};
L
liuruilong 已提交
797 798 799
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
800
template <typename Dtype>
E
eclipsess 已提交
801
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
802 803 804
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
805 806 807 808
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
809 810 811
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
812 813 814 815 816 817 818 819
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
820
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
821

N
nhzlx 已提交
822
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
823

N
nhzlx 已提交
824
  RType *Out() const { return out_; }
E
eclipsess 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
839 840 841
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
842 843 844 845 846 847 848
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
849
#endif
W
wangliu 已提交
850

N
nhzlx 已提交
851
template <typename Dtype>
L
liuruilong 已提交
852
class FeedParam : public OpParam {
N
nhzlx 已提交
853 854 855
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
856 857
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
858
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
859 860
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
861
    auto var = scope->Var("batch_size");
W
wangliu 已提交
862
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
863
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
864 865
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
866
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
867

L
liuruilong 已提交
868
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
869 870
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
871
  int batch_size;
L
liuruilong 已提交
872 873
};

N
nhzlx 已提交
874
template <typename Dtype>
L
liuruilong 已提交
875
class FetchParam : public OpParam {
N
nhzlx 已提交
876 877 878
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
879 880
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
881
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
882 883
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
884
  }
N
nhzlx 已提交
885 886
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
887

L
liuruilong 已提交
888
 private:
N
nhzlx 已提交
889 890
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
891 892
};

L
liuruilong 已提交
893
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
894
template <typename Dtype>
E
eclipsess 已提交
895
class TransposeParam : public OpParam {
N
nhzlx 已提交
896 897 898
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
899 900 901
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
902 903
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
904 905 906
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
907
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
908

N
nhzlx 已提交
909
  RType *Out() const { return out_; }
E
eclipsess 已提交
910 911 912 913

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
914 915
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
916 917
  vector<int> axis_;
};
L
liuruilong 已提交
918
#endif
E
eclipsess 已提交
919

xiebaiyuan's avatar
xiebaiyuan 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
986
#ifdef RESHAPE_OP
N
nhzlx 已提交
987
template <typename Dtype>
E
eclipsess 已提交
988
class ReshapeParam : public OpParam {
N
nhzlx 已提交
989 990 991
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
992 993 994
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
995 996 997
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
998
    shape_ = GetAttr<vector<int>>("shape", attrs);
999 1000 1001 1002 1003 1004 1005

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1006 1007
  }

N
nhzlx 已提交
1008
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1009

N
nhzlx 已提交
1010
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1011

N
nhzlx 已提交
1012
  RType *Out() const { return out_; }
E
eclipsess 已提交
1013 1014 1015 1016 1017 1018

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1019 1020 1021
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1022 1023 1024
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1025
#endif
E
eclipsess 已提交
1026

T
Tian 已提交
1027
#ifdef SCALE_OP
N
nhzlx 已提交
1028
template <typename Dtype>
I
itminner 已提交
1029
class ScaleParam : public OpParam {
N
nhzlx 已提交
1030 1031 1032
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1033 1034 1035
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1036 1037 1038
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1039 1040 1041 1042 1043 1044
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1045
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1046

N
nhzlx 已提交
1047
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1048

N
nhzlx 已提交
1049
  RType *Out() const { return out_; }
I
itminner 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1060 1061 1062
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1063 1064 1065 1066 1067
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1068 1069 1070
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1071
template <typename Dtype>
I
itminner 已提交
1072
class SliceParam : public OpParam {
N
nhzlx 已提交
1073 1074 1075
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1076 1077 1078
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1079 1080 1081
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1082 1083 1084 1085 1086
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1087
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1088

N
nhzlx 已提交
1089
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1090

N
nhzlx 已提交
1091
  RType *Out() const { return out_; }
I
itminner 已提交
1092 1093 1094 1095 1096 1097 1098 1099

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1100 1101 1102
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1103 1104 1105 1106
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1107 1108 1109
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1110
template <typename Dtype>
T
Tian 已提交
1111
class ResizeParam : public OpParam {
N
nhzlx 已提交
1112 1113 1114
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1115 1116 1117
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1118 1119 1120
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1121 1122 1123 1124 1125 1126
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1127

N
nhzlx 已提交
1128
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1129

N
nhzlx 已提交
1130
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1131

N
nhzlx 已提交
1132
  RType *Out() const { return out_; }
T
Tian 已提交
1133

I
itminner 已提交
1134
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1135

I
itminner 已提交
1136
  const int &Height() const { return height_; }
T
Tian 已提交
1137

I
itminner 已提交
1138
  const int &Width() const { return width_; }
T
Tian 已提交
1139

I
itminner 已提交
1140
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1141

I
itminner 已提交
1142
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1143

I
itminner 已提交
1144
 private:
N
nhzlx 已提交
1145 1146 1147
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1148 1149 1150 1151 1152
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1153 1154 1155
};
#endif

L
liuruilong 已提交
1156
#ifdef RELU_OP
L
liuruilong 已提交
1157 1158 1159
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1160
template <typename Dtype>
E
eclipsess 已提交
1161
class ReluParam : public OpParam {
N
nhzlx 已提交
1162 1163 1164
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1165 1166 1167
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1168 1169
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1170 1171
  }

N
nhzlx 已提交
1172
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1173

N
nhzlx 已提交
1174
  RType *Out() const { return out_; }
E
eclipsess 已提交
1175 1176

 private:
N
nhzlx 已提交
1177 1178
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1179
};
L
liuruilong 已提交
1180
#endif
E
eclipsess 已提交
1181

T
Tian 已提交
1182
#ifdef PRELU_OP
N
nhzlx 已提交
1183
template <typename Dtype>
T
Tian 已提交
1184
class PReluParam : public OpParam {
N
nhzlx 已提交
1185 1186 1187
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1188 1189 1190
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1191
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1192
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1193
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1194
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1195
    out_ = OutFrom<GType>(outputs, scope);
1196 1197
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1198
  }
N
nhzlx 已提交
1199
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1200
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1201
  RType *Out() const { return out_; }
1202
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1203

I
itminner 已提交
1204
 private:
N
nhzlx 已提交
1205 1206
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1207
  RType *alpha_;
1208
  std::string mode_;
T
Tian 已提交
1209 1210 1211
};
#endif

N
nhzlx 已提交
1212
template <typename Dtype>
L
liuruilong 已提交
1213
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1214 1215 1216
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1217
 public:
L
liuruilong 已提交
1218
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1219
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1220 1221 1222 1223
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1224 1225 1226 1227
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1228
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1229

1230
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1231
  RType *InputY() const { return input_y_; }
1232
#else
N
nhzlx 已提交
1233
  const RType *InputY() const { return input_y_; }
1234
#endif
E
eclipsess 已提交
1235

N
nhzlx 已提交
1236
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1237

xiebaiyuan's avatar
xiebaiyuan 已提交
1238
  GType *Out() const { return out_; }
E
eclipsess 已提交
1239 1240 1241 1242 1243 1244 1245 1246

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1247
  GType *input_x_;
N
nhzlx 已提交
1248 1249
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1250
  GType *out_;
E
eclipsess 已提交
1251 1252 1253
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1254 1255 1256
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1257
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1258 1259

 public:
H
hanbuhe 已提交
1260 1261
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1262
#endif
E
eclipsess 已提交
1263
};
1264 1265

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1266 1267
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1268
#endif
E
eclipsess 已提交
1269

N
nhzlx 已提交
1270
template <typename Dtype>
L
liuruilong 已提交
1271
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1272 1273 1274
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1275
 public:
L
liuruilong 已提交
1276
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1277 1278
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1279
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1280
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1281 1282 1283
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1284 1285 1286 1287 1288
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1289
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1290 1291 1292

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1293
  const RType *Input() const { return input_; }
W
wangliu 已提交
1294

1295
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1296
  RType *Filter() const { return filter_; }
1297
#else
N
nhzlx 已提交
1298
  const RType *Filter() const { return filter_; }
1299
#endif
W
wangliu 已提交
1300

N
nhzlx 已提交
1301
  RType *Output() const { return output_; }
W
wangliu 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1311
 protected:
N
nhzlx 已提交
1312
  RType *bias_;
W
wangliu 已提交
1313
  int axis_;
N
nhzlx 已提交
1314 1315 1316
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1317 1318 1319 1320
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1321 1322 1323
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1324
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1325 1326

 public:
H
hanbuhe 已提交
1327 1328
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1329
#endif
W
wangliu 已提交
1330 1331
};

N
nhzlx 已提交
1332 1333
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1334

Z
zhangyang 已提交
1335
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1336 1337
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1338
 public:
L
liuruilong 已提交
1339
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1340 1341
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1342
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1343 1344 1345
};
#endif

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
#ifdef FUSION_CONVADDPRELU_OP
template <typename DeviceType>
class FusionConvAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
template <typename DeviceType>
class FusionConvAddAddPReluParam : public OpParam {
  typedef typename DtypeTensorTrait<DeviceType>::gtype GType;
  typedef typename DtypeTensorTrait<DeviceType>::rtype RType;

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
                             const AttributeMap &attrs, const Scope &scope) {
    bias1_ = InputYFrom1<GType>(inputs, scope);
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
    mode_ = GetAttr<std::string>("mode", attrs);
    framework::DDim dims = alpha_->dims();
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    keyOutput_ = getkey("addOut", inputs, 0);
    keyX1_ = getkey("addX", inputs, 1);
    keyY1_ = getkey("Y", inputs, 1);
    if (keyX1_ == keyOutput_) {
      bias1_ = InputYFrom1<GType>(inputs, scope);
    } else if (keyY1_ == keyOutput_) {
      bias1_ = InputXFrom1<GType>(inputs, scope);
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

E
eclipsess 已提交
1503
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1504
template <typename Dtype>
E
eclipsess 已提交
1505
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1506 1507 1508
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1509 1510 1511 1512
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1513
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1514
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1515 1516 1517
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1518 1519 1520 1521
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1522 1523 1524 1525
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1526 1527
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1528
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1529
  }
N
nhzlx 已提交
1530
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1531 1532 1533

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1534
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1535

1536
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1537
  RType *Filter() const { return filter_; }
1538
#else
N
nhzlx 已提交
1539
  const RType *Filter() const { return filter_; }
1540
#endif
E
eclipsess 已提交
1541

N
nhzlx 已提交
1542
  RType *Output() const { return output_; }
E
eclipsess 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1552
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1553

N
nhzlx 已提交
1554
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1555

N
nhzlx 已提交
1556
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1557

N
nhzlx 已提交
1558
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1559 1560 1561 1562 1563 1564 1565

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1566
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1567

N
nhzlx 已提交
1568
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1569

N
nhzlx 已提交
1570
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1571

N
nhzlx 已提交
1572
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1573 1574

 protected:
N
nhzlx 已提交
1575
  RType *bias_;
E
eclipsess 已提交
1576
  int axis_;
N
nhzlx 已提交
1577 1578 1579
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1580 1581 1582 1583
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1584 1585 1586 1587
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1588 1589 1590
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1591 1592
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1593 1594 1595
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1596
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1597 1598

 public:
H
hanbuhe 已提交
1599
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
class FusionConvBNAddReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<GType>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    keyBNY_ = getkey("BNY", inputs, 0);
    keyX_ = getkey("X", inputs, 0);
    keyY_ = getkey("Y", inputs, 0);
    if (keyX_ == keyBNY_) {
      bias_ = InputYFrom<GType>(inputs, scope);
    } else if (keyY_ == keyBNY_) {
      bias_ = InputXFrom<GType>(inputs, scope);
    }
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const RType *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  RType *Filter() const { return filter_; }
#else
  const RType *Filter() const { return filter_; }
#endif

  RType *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *input_;
  RType *output_;
  RType *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
H
hanbuhe 已提交
1713
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1714
#endif
E
eclipsess 已提交
1715
};
1716
#endif
E
eclipsess 已提交
1717

Z
zhangyang 已提交
1718
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1719
template <typename Dtype>
Z
zhangyang 已提交
1720
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1721 1722 1723
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1724 1725 1726 1727
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
N
nhzlx 已提交
1728 1729 1730
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
1731 1732 1733 1734
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1735 1736 1737 1738
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
Z
zhangyang 已提交
1739 1740 1741 1742 1743
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1744
  const RType *Input() const { return input_; }
Z
zhangyang 已提交
1745 1746

#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1747
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1748
#else
N
nhzlx 已提交
1749
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1750
#endif
N
nhzlx 已提交
1751
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1752 1753 1754 1755 1756 1757 1758 1759 1760

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1761
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1762

N
nhzlx 已提交
1763
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1764

N
nhzlx 已提交
1765
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1766

N
nhzlx 已提交
1767
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1768 1769 1770 1771 1772 1773 1774

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1775
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1776

N
nhzlx 已提交
1777
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1778

N
nhzlx 已提交
1779
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1780

N
nhzlx 已提交
1781
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1782 1783

 protected:
N
nhzlx 已提交
1784 1785 1786
  RType *input_;
  RType *output_y_;
  RType *filter_;
Z
zhangyang 已提交
1787 1788 1789 1790
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1791 1792 1793 1794
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1795 1796 1797
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1798 1799
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

1812
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1813
template <typename Dtype>
1814
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1815 1816 1817
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1818 1819 1820 1821
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1822
    bias_ = InputYFrom<GType>(inputs, scope);
1823
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1824 1825 1826
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1827 1828 1829 1830
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1831 1832 1833 1834
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1835 1836 1837 1838
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1839
  RType *Bias() const { return bias_; }
1840 1841 1842

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1843
  const RType *Input() const { return input_; }
1844

1845
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1846
  RType *Filter() const { return filter_; }
1847
#else
N
nhzlx 已提交
1848
  const RType *Filter() const { return filter_; }
1849
#endif
N
nhzlx 已提交
1850
  RType *Output() const { return output_y_; }
1851 1852 1853 1854 1855 1856 1857 1858 1859

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1860
  const RType *InputBias() const { return input_bias_; }
1861

N
nhzlx 已提交
1862
  const RType *InputMean() const { return input_mean_; }
1863

N
nhzlx 已提交
1864
  const RType *InputScale() const { return input_scale_; }
1865

N
nhzlx 已提交
1866
  const RType *InputVariance() const { return input_variance_; }
1867 1868 1869 1870 1871 1872 1873

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1874
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1875

N
nhzlx 已提交
1876
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1877

N
nhzlx 已提交
1878
  const RType *NewScale() const { return new_scale_; }
1879

N
nhzlx 已提交
1880
  const RType *NewBias() const { return new_bias_; }
1881 1882

 protected:
N
nhzlx 已提交
1883
  RType *bias_;
1884
  int axis_;
N
nhzlx 已提交
1885 1886 1887
  RType *input_;
  RType *output_y_;
  RType *filter_;
1888 1889 1890 1891
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1892 1893 1894 1895
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1896 1897 1898
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1899 1900
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1901 1902 1903
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1904
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1905 1906

 public:
H
hanbuhe 已提交
1907 1908
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1909
#endif
1910
};
E
eclipsess 已提交
1911
#endif
Y
Yao,kun 已提交
1912

E
eclipsess 已提交
1913
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1914
template <typename Dtype>
E
eclipsess 已提交
1915
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1916 1917 1918
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1919 1920 1921 1922
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1923 1924 1925
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1926 1927 1928 1929
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1930 1931 1932 1933
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1934 1935
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1936
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1937 1938
  }

N
nhzlx 已提交
1939
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1940

N
nhzlx 已提交
1941
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1942

N
nhzlx 已提交
1943
  RType *Output() const { return output_; }
E
eclipsess 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1953
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1954

N
nhzlx 已提交
1955
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1956

N
nhzlx 已提交
1957
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1958

N
nhzlx 已提交
1959
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1960 1961 1962 1963 1964 1965 1966

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1967
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1968

N
nhzlx 已提交
1969
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1970

N
nhzlx 已提交
1971
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1972

N
nhzlx 已提交
1973
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1974 1975

 protected:
N
nhzlx 已提交
1976 1977 1978
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1979 1980 1981 1982
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1983 1984 1985 1986
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1987 1988 1989
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1990 1991
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1992 1993 1994 1995
};

#endif

1996
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1997
template <typename Dtype>
1998
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
1999 2000 2001
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2002 2003 2004 2005
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2006 2007 2008
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
2009 2010 2011 2012 2013

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
2014 2015 2016 2017
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
2018 2019 2020 2021 2022
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
2023
  const RType *Input() const { return input_; }
2024

Z
zhangyang 已提交
2025
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
2026
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
2027
#else
N
nhzlx 已提交
2028
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
2029
#endif
2030

N
nhzlx 已提交
2031
  RType *Output() const { return output_; }
2032 2033 2034 2035 2036 2037 2038 2039 2040

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
2041
  const RType *InputBias() const { return input_bias_; }
2042

N
nhzlx 已提交
2043
  const RType *InputMean() const { return input_mean_; }
2044

N
nhzlx 已提交
2045
  const RType *InputScale() const { return input_scale_; }
2046

N
nhzlx 已提交
2047
  const RType *InputVariance() const { return input_variance_; }
2048 2049 2050 2051 2052 2053 2054

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2055
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2056

N
nhzlx 已提交
2057
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2058

N
nhzlx 已提交
2059
  const RType *NewScale() const { return new_scale_; }
2060

N
nhzlx 已提交
2061
  const RType *NewBias() const { return new_bias_; }
2062 2063

 protected:
N
nhzlx 已提交
2064 2065 2066
  RType *input_;
  RType *output_;
  RType *filter_;
2067 2068 2069 2070
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
2071 2072 2073 2074
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2075 2076 2077
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2078 2079
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2080 2081 2082 2083 2084 2085 2086 2087 2088
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
2089 2090 2091
};
#endif

Y
Yao,kun 已提交
2092
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2093
template <typename Dtype>
Y
Yao,kun 已提交
2094
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2095 2096 2097
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2098 2099 2100 2101
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2102 2103
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2104 2105 2106 2107 2108
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
2109
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2110

N
nhzlx 已提交
2111
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
2112 2113 2114 2115 2116 2117 2118 2119

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
2120 2121
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2122 2123 2124 2125
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2126
#endif
Y
Yao,kun 已提交
2127

2128
#ifdef DROPOUT_OP
N
nhzlx 已提交
2129
template <typename Dtype>
Y
Yao,kun 已提交
2130
class DropoutParam : public OpParam {
N
nhzlx 已提交
2131 2132 2133
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2134 2135 2136
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2137 2138
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2139 2140
  }

N
nhzlx 已提交
2141
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2142

N
nhzlx 已提交
2143
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2144 2145

 private:
N
nhzlx 已提交
2146 2147
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
2148
};
2149
#endif
Y
Yao,kun 已提交
2150

L
liuruilong 已提交
2151
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
2152
template <typename Dtype>
L
liuruilong 已提交
2153
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2154 2155 2156
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2157 2158 2159 2160
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2161 2162 2163
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2164 2165 2166 2167 2168 2169
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2170
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2171

N
nhzlx 已提交
2172
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2173

N
nhzlx 已提交
2174
  RType *Output() const { return output_; }
L
liuruilong 已提交
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2185 2186 2187
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2188 2189 2190 2191 2192 2193 2194
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

朔-望's avatar
朔-望 已提交
2255 2256
}  // namespace operators
}  // namespace paddle_mobile