Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
c3d3bd36
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c3d3bd36
编写于
5月 25, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add multiclass nms op and test
上级
2004af04
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
606 addition
and
0 deletion
+606
-0
src/operators/kernel/arm/multiclass_nms_kernel.cpp
src/operators/kernel/arm/multiclass_nms_kernel.cpp
+275
-0
src/operators/kernel/multiclass_nms_kernel.h
src/operators/kernel/multiclass_nms_kernel.h
+30
-0
src/operators/multiclass_nms_op.cpp
src/operators/multiclass_nms_op.cpp
+37
-0
src/operators/multiclass_nms_op.h
src/operators/multiclass_nms_op.h
+52
-0
src/operators/op_param.h
src/operators/op_param.h
+55
-0
test/CMakeLists.txt
test/CMakeLists.txt
+4
-0
test/operators/test_multiclass_nms_op.cpp
test/operators/test_multiclass_nms_op.cpp
+153
-0
未找到文件。
src/operators/kernel/arm/multiclass_nms_kernel.cpp
0 → 100644
浏览文件 @
c3d3bd36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "operators/kernel/multiclass_nms_kernel.h"
namespace
paddle_mobile
{
namespace
operators
{
constexpr
int
kOutputDim
=
6
;
constexpr
int
kBBoxSize
=
4
;
template
<
class
T
>
bool
SortScorePairDescend
(
const
std
::
pair
<
float
,
T
>&
pair1
,
const
std
::
pair
<
float
,
T
>&
pair2
)
{
return
pair1
.
first
>
pair2
.
first
;
}
template
<
class
T
>
static
inline
void
GetMaxScoreIndex
(
const
std
::
vector
<
T
>&
scores
,
const
T
threshold
,
int
top_k
,
std
::
vector
<
std
::
pair
<
T
,
int
>>*
sorted_indices
)
{
for
(
size_t
i
=
0
;
i
<
scores
.
size
();
++
i
)
{
if
(
scores
[
i
]
>
threshold
)
{
sorted_indices
->
push_back
(
std
::
make_pair
(
scores
[
i
],
i
));
}
}
// Sort the score pair according to the scores in descending order
std
::
stable_sort
(
sorted_indices
->
begin
(),
sorted_indices
->
end
(),
SortScorePairDescend
<
int
>
);
// Keep top_k scores if needed.
if
(
top_k
>
-
1
&&
top_k
<
static_cast
<
int
>
(
sorted_indices
->
size
()))
{
sorted_indices
->
resize
(
top_k
);
}
}
template
<
class
T
>
static
inline
T
BBoxArea
(
const
T
*
box
,
const
bool
normalized
)
{
if
(
box
[
2
]
<
box
[
0
]
||
box
[
3
]
<
box
[
1
])
{
// If coordinate values are is invalid
// (e.g. xmax < xmin or ymax < ymin), return 0.
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
w
=
box
[
2
]
-
box
[
0
];
const
T
h
=
box
[
3
]
-
box
[
1
];
if
(
normalized
)
{
return
w
*
h
;
}
else
{
// If coordinate values are not within range [0, 1].
return
(
w
+
1
)
*
(
h
+
1
);
}
}
}
template
<
class
T
>
static
inline
T
JaccardOverlap
(
const
T
*
box1
,
const
T
*
box2
,
const
bool
normalized
)
{
if
(
box2
[
0
]
>
box1
[
2
]
||
box2
[
2
]
<
box1
[
0
]
||
box2
[
1
]
>
box1
[
3
]
||
box2
[
3
]
<
box1
[
1
])
{
return
static_cast
<
T
>
(
0.
);
}
else
{
const
T
inter_xmin
=
std
::
max
(
box1
[
0
],
box2
[
0
]);
const
T
inter_ymin
=
std
::
max
(
box1
[
1
],
box2
[
1
]);
const
T
inter_xmax
=
std
::
min
(
box1
[
2
],
box2
[
2
]);
const
T
inter_ymax
=
std
::
min
(
box1
[
3
],
box2
[
3
]);
const
T
inter_w
=
inter_xmax
-
inter_xmin
;
const
T
inter_h
=
inter_ymax
-
inter_ymin
;
const
T
inter_area
=
inter_w
*
inter_h
;
const
T
bbox1_area
=
BBoxArea
<
T
>
(
box1
,
normalized
);
const
T
bbox2_area
=
BBoxArea
<
T
>
(
box2
,
normalized
);
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
typename
T
>
static
inline
void
NMSFast
(
const
Tensor
&
bbox
,
const
Tensor
&
scores
,
const
T
score_threshold
,
const
T
nms_threshold
,
const
T
eta
,
const
int64_t
top_k
,
std
::
vector
<
int
>*
selected_indices
)
{
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
std
::
copy_n
(
scores
.
data
<
T
>
(),
num_boxes
,
scores_data
.
begin
());
std
::
vector
<
std
::
pair
<
T
,
int
>>
sorted_indices
;
GetMaxScoreIndex
(
scores_data
,
score_threshold
,
top_k
,
&
sorted_indices
);
selected_indices
->
clear
();
T
adaptive_threshold
=
nms_threshold
;
const
T
*
bbox_data
=
bbox
.
data
<
T
>
();
while
(
sorted_indices
.
size
()
!=
0
)
{
const
int
idx
=
sorted_indices
.
front
().
second
;
bool
keep
=
true
;
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
}
}
if
(
keep
)
{
selected_indices
->
push_back
(
idx
);
}
sorted_indices
.
erase
(
sorted_indices
.
begin
());
if
(
keep
&&
eta
<
1
&&
adaptive_threshold
>
0.5
)
{
adaptive_threshold
*=
eta
;
}
}
}
template
<
typename
T
>
void
MultiClassNMS
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
,
const
int
&
background_label
,
const
int
&
nms_top_k
,
const
int
&
keep_top_k
,
const
T
&
nms_threshold
,
const
T
&
nms_eta
,
const
T
&
score_threshold
)
{
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int
num_det
=
0
;
for
(
int64_t
c
=
0
;
c
<
class_num
;
++
c
)
{
if
(
c
==
background_label
)
continue
;
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
/// [c] is key
NMSFast
<
float
>
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]));
num_det
+=
(
*
indices
)[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
const
T
*
scores_data
=
scores
.
data
<
T
>
();
if
(
keep_top_k
>
-
1
&&
num_det
>
keep_top_k
)
{
std
::
vector
<
std
::
pair
<
float
,
std
::
pair
<
int
,
int
>>>
score_index_pairs
;
for
(
const
auto
&
it
:
*
indices
)
{
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
label_indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
label_indices
.
size
();
++
j
)
{
int
idx
=
label_indices
[
j
];
// PADDLE_ENFORCE_LT(idx, predict_dim);
score_index_pairs
.
push_back
(
std
::
make_pair
(
sdata
[
idx
],
std
::
make_pair
(
label
,
idx
)));
}
}
// Keep top k results per image.
std
::
stable_sort
(
score_index_pairs
.
begin
(),
score_index_pairs
.
end
(),
SortScorePairDescend
<
std
::
pair
<
int
,
int
>>
);
score_index_pairs
.
resize
(
keep_top_k
);
// Store the new indices.
std
::
map
<
int
,
std
::
vector
<
int
>>
new_indices
;
for
(
size_t
j
=
0
;
j
<
score_index_pairs
.
size
();
++
j
)
{
int
label
=
score_index_pairs
[
j
].
second
.
first
;
int
idx
=
score_index_pairs
[
j
].
second
.
second
;
new_indices
[
label
].
push_back
(
idx
);
}
new_indices
.
swap
(
*
indices
);
*
num_nmsed_out
=
keep_top_k
;
}
}
template
<
typename
T
>
void
MultiClassOutput
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
Tensor
*
outs
)
{
int
predict_dim
=
scores
.
dims
()[
1
];
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
int
count
=
0
;
for
(
const
auto
&
it
:
selected_indices
)
{
/// one batch
int
label
=
it
.
first
;
const
T
*
sdata
=
scores_data
+
label
*
predict_dim
;
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
kBBoxSize
;
odata
[
count
*
kOutputDim
]
=
label
;
// label
odata
[
count
*
kOutputDim
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
std
::
memcpy
(
odata
+
count
*
kOutputDim
+
2
,
bdata
,
4
*
sizeof
(
T
));
count
++
;
}
}
}
template
<
>
void
MultiClassNMSKernel
<
CPU
,
float
>::
Compute
(
const
MultiClassNMSParam
&
param
)
const
{
const
auto
*
input_bboxes
=
param
.
InputBBoxes
();
const
auto
&
input_bboxes_dims
=
input_bboxes
->
dims
();
const
auto
*
input_scores
=
param
.
InputScores
();
const
auto
&
input_scores_dims
=
input_scores
->
dims
();
auto
*
outs
=
param
.
Out
();
auto
background_label
=
param
.
BackGroundLabel
();
auto
nms_top_k
=
param
.
NMSTopK
();
auto
keep_top_k
=
param
.
KeepTopK
();
auto
nms_threshold
=
param
.
NMSThreshold
();
auto
nms_eta
=
param
.
NMSEta
();
auto
score_threshold
=
param
.
ScoreThreshold
();
int64_t
batch_size
=
input_scores_dims
[
0
];
int64_t
class_num
=
input_scores_dims
[
1
];
int64_t
predict_dim
=
input_scores_dims
[
2
];
int64_t
box_dim
=
input_bboxes_dims
[
2
];
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
<
float
>
(
ins_score
,
ins_boxes
,
&
indices
,
&
num_nmsed_out
,
background_label
,
nms_top_k
,
keep_top_k
,
nms_threshold
,
nms_eta
,
score_threshold
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
int
num_kept
=
batch_starts
.
back
();
if
(
num_kept
==
0
)
{
float
*
od
=
outs
->
mutable_data
<
float
>
({
1
});
od
[
0
]
=
-
1
;
}
else
{
outs
->
mutable_data
<
float
>
({
num_kept
,
kOutputDim
});
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
input_scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
input_bboxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
<
float
>
(
ins_score
,
ins_boxes
,
all_indices
[
i
],
&
out
);
}
}
}
// framework::LoD lod;
// lod.emplace_back(batch_starts);
//
// outs->set_lod(lod);
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/multiclass_nms_kernel.h
0 → 100644
浏览文件 @
c3d3bd36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "framework/operator.h"
#include "operators/op_param.h"
#pragma once;
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
class
MultiClassNMSKernel
:
public
framework
::
OpKernelBase
<
DeviceType
,
MultiClassNMSParam
>
{
public:
void
Compute
(
const
MultiClassNMSParam
&
param
)
const
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/multiclass_nms_op.cpp
0 → 100644
浏览文件 @
c3d3bd36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "operators/multiclass_nms_op.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
Dtype
,
typename
T
>
void
MultiClassNMSOp
<
Dtype
,
T
>::
InferShape
()
const
{
auto
input_bboxes_dims
=
param_
.
InputBBoxes
()
->
dims
();
auto
input_scores_dims
=
param_
.
InputScores
()
->
dims
();
if
(
input_scores_dims
.
size
()
!=
3
)
{
LOG
(
kLOG_ERROR
)
<<
"Input Scores size must be 3"
;
}
if
(
input_bboxes_dims
[
2
]
!=
4
)
{
LOG
(
kLOG_ERROR
)
<<
"Input BBoxes 2nd dimension must be 4"
;
}
if
(
input_bboxes_dims
[
1
]
!=
input_scores_dims
[
2
])
{
LOG
(
kLOG_ERROR
)
<<
"Predict bboxes must be equal"
;
}
// pre size, will change in Compute.
param_
.
Out
()
->
Resize
(
framework
::
make_ddim
({
input_bboxes_dims
[
1
],
6
}));
}
template
class
MultiClassNMSOp
<
CPU
,
float
>;
}
// namespace operators
}
// namespace paddle_mobile
src/operators/multiclass_nms_op.h
0 → 100644
浏览文件 @
c3d3bd36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "framework/operator.h"
#include "operators/kernel/multiclass_nms_kernel.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
using
paddle_mobile
::
framework
::
Tensor
;
template
<
typename
DeviceType
,
typename
T
>
class
MultiClassNMSOp
:
public
framework
::
OperatorWithKernel
<
DeviceType
>
{
public:
MultiClassNMSOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
attrs
,
std
::
shared_ptr
<
framework
::
Scope
>
scope
)
:
framework
::
OperatorWithKernel
<
DeviceType
>
(
type
,
inputs
,
outputs
,
attrs
,
scope
),
param_
(
inputs
,
outputs
,
attrs
,
*
scope
)
{}
void
Run
()
const
{
operators
::
MultiClassNMSKernel
<
DeviceType
,
T
>
kernel
;
kernel
.
Compute
(
param_
);
}
using
framework
::
OperatorWithKernel
<
DeviceType
>::
OperatorWithKernel
;
void
InferShape
()
const
override
;
protected:
MultiClassNMSParam
param_
;
};
}
// namespace operators
}
// namespace paddle_mobile
src/operators/op_param.h
浏览文件 @
c3d3bd36
...
...
@@ -89,6 +89,16 @@ class OpParam : PaddleMobileObject {
return
GetVarValue
<
T
>
(
"TargetBox"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputBBoxesFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"BBoxes"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
T
*
InputScoresFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
return
GetVarValue
<
T
>
(
"Scores"
,
inputs
,
scope
);
}
template
<
typename
T
>
static
vector
<
T
*>
InputMultiFrom
(
const
VariableNameMap
&
inputs
,
const
Scope
&
scope
)
{
...
...
@@ -527,6 +537,51 @@ class SoftmaxParam : public OpParam {
Tensor
*
input_x_
;
Tensor
*
out_
;
};
class
MultiClassNMSParam
:
public
OpParam
{
public:
MultiClassNMSParam
(
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
,
const
Scope
&
scope
)
{
input_bboxes_
=
InputBBoxesFrom
<
Tensor
>
(
inputs
,
scope
);
input_scores_
=
InputScoresFrom
<
Tensor
>
(
inputs
,
scope
);
out_
=
OutFrom
<
Tensor
>
(
outputs
,
scope
);
background_label_
=
GetAttr
<
int
>
(
"background_label"
,
attrs
);
nms_top_k_
=
GetAttr
<
int
>
(
"nms_top_k"
,
attrs
);
keep_top_k_
=
GetAttr
<
int
>
(
"keep_top_k"
,
attrs
);
nms_threshold_
=
GetAttr
<
float
>
(
"nms_threshold"
,
attrs
);
nms_eta_
=
GetAttr
<
float
>
(
"nms_eta"
,
attrs
);
score_threshold_
=
GetAttr
<
float
>
(
"score_threshold"
,
attrs
);
}
const
Tensor
*
InputBBoxes
()
const
{
return
input_bboxes_
;
}
const
Tensor
*
InputScores
()
const
{
return
input_scores_
;
}
Tensor
*
Out
()
const
{
return
out_
;
}
const
int
&
BackGroundLabel
()
const
{
return
background_label_
;
}
const
int
&
NMSTopK
()
const
{
return
nms_top_k_
;
}
const
int
&
KeepTopK
()
const
{
return
keep_top_k_
;
}
const
float
&
NMSThreshold
()
const
{
return
nms_threshold_
;
}
const
float
&
NMSEta
()
const
{
return
nms_eta_
;
}
const
float
&
ScoreThreshold
()
const
{
return
score_threshold_
;
}
private:
Tensor
*
input_bboxes_
;
Tensor
*
input_scores_
;
Tensor
*
out_
;
int
background_label_
;
int
nms_top_k_
;
int
keep_top_k_
;
float
nms_threshold_
;
float
nms_eta_
;
float
score_threshold_
;
};
}
// namespace operators
}
// namespace paddle_mobile
test/CMakeLists.txt
浏览文件 @
c3d3bd36
...
...
@@ -34,6 +34,10 @@ target_link_libraries(test-priorbox-op paddle-mobile)
ADD_EXECUTABLE
(
test-boxcoder-op operators/test_box_coder_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-boxcoder-op paddle-mobile
)
# gen test
ADD_EXECUTABLE
(
test-multiclassnms-op operators/test_multiclass_nms_op.cpp test_helper.h test_include.h
)
target_link_libraries
(
test-multiclassnms-op paddle-mobile
)
# gen test log
ADD_EXECUTABLE
(
test-log common/test_log.cpp
)
target_link_libraries
(
test-log paddle-mobile
)
...
...
test/operators/test_multiclass_nms_op.cpp
0 → 100644
浏览文件 @
c3d3bd36
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "../test_include.h"
#include "operators/multiclass_nms_op.h"
namespace
paddle_mobile
{
namespace
framework
{
template
<
typename
Dtype
>
class
TestMultiClassNMSOp
{
public:
explicit
TestMultiClassNMSOp
(
const
Program
<
Dtype
>
p
)
:
program_
(
p
)
{
if
(
use_optimize_
)
{
to_predict_program_
=
program_
.
optimizeProgram
;
}
else
{
to_predict_program_
=
program_
.
originProgram
;
}
const
std
::
vector
<
std
::
shared_ptr
<
BlockDesc
>>
blocks
=
to_predict_program_
->
Blocks
();
// DLOG << " **block size " << blocks.size();
for
(
auto
block_desc
:
blocks
)
{
std
::
vector
<
std
::
shared_ptr
<
OpDesc
>>
ops
=
block_desc
->
Ops
();
// DLOG << " ops " << ops.size();
for
(
auto
op
:
ops
)
{
if
(
op
->
Type
()
==
"multiclass_nms"
&&
op
->
Input
(
"BBoxes"
)[
0
]
==
"box_coder_0.tmp_0"
)
{
DLOG
<<
" mul attr size: "
<<
op
->
GetAttrMap
().
size
();
DLOG
<<
" inputs size: "
<<
op
->
GetInputs
().
size
();
DLOG
<<
" outputs size: "
<<
op
->
GetOutputs
().
size
();
DLOG
<<
" BBoxes is : "
<<
op
->
Input
(
"BBoxes"
)[
0
];
DLOG
<<
" Scores is : "
<<
op
->
Input
(
"Scores"
)[
0
];
DLOG
<<
" Out is : "
<<
op
->
Output
(
"Out"
)[
0
];
DLOG
<<
" keep_top_k : "
<<
op
->
GetAttrMap
().
at
(
"keep_top_k"
).
Get
<
int
>
();
DLOG
<<
" background_label : "
<<
op
->
GetAttrMap
().
at
(
"background_label"
).
Get
<
int
>
();
DLOG
<<
" nms_eta : "
<<
op
->
GetAttrMap
().
at
(
"nms_eta"
).
Get
<
float
>
();
DLOG
<<
" nms_threshold : "
<<
op
->
GetAttrMap
().
at
(
"nms_threshold"
).
Get
<
float
>
();
DLOG
<<
" nms_top_k : "
<<
op
->
GetAttrMap
().
at
(
"nms_top_k"
).
Get
<
int
>
();
DLOG
<<
" score_threshold : "
<<
op
->
GetAttrMap
().
at
(
"score_threshold"
).
Get
<
float
>
();
// DLOG << " variances : " <<
// op->GetAttrMap().at("variances").Get<std::vector<float>>();
// DLOG << " aspect_ratios : " <<
// op->GetAttrMap().at("aspect_ratios").Get<std::vector<float>>();
// DLOG << " min_sizes : " <<
// op->GetAttrMap().at("min_sizes").Get<std::vector<float>>();
// DLOG << " max_sizes : " <<
// op->GetAttrMap().at("max_sizes").Get<std::vector<float>>();
std
::
shared_ptr
<
operators
::
MultiClassNMSOp
<
Dtype
,
float
>>
priorbox
=
std
::
make_shared
<
operators
::
MultiClassNMSOp
<
Dtype
,
float
>>
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
ops_of_block_
[
*
block_desc
.
get
()].
push_back
(
priorbox
);
}
}
}
}
std
::
shared_ptr
<
Tensor
>
predict
(
const
Tensor
&
t1
,
const
Tensor
&
t2
)
{
// feed
auto
scope
=
program_
.
scope
;
Variable
*
x1_feed_value
=
scope
->
Var
(
"box_coder_0.tmp_0"
);
auto
tensor_x1
=
x1_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x1
->
ShareDataWith
(
t1
);
Variable
*
x2_feed_value
=
scope
->
Var
(
"transpose_12.tmp_0"
);
auto
tensor_x2
=
x2_feed_value
->
GetMutable
<
Tensor
>
();
tensor_x2
->
ShareDataWith
(
t2
);
Variable
*
output
=
scope
->
Var
(
"detection_output_0.tmp_0"
);
auto
*
output_tensor
=
output
->
GetMutable
<
Tensor
>
();
output_tensor
->
mutable_data
<
float
>
({
1917
,
6
});
// DLOG << typeid(output_tensor).name();
// DLOG << "output_tensor dims: " << output_tensor->dims();
std
::
shared_ptr
<
Tensor
>
out_tensor
=
std
::
make_shared
<
LoDTensor
>
();
out_tensor
.
reset
(
output_tensor
);
predict
(
t1
,
t2
,
0
);
return
out_tensor
;
// return outvars_tensor;
}
private:
const
framework
::
Program
<
Dtype
>
program_
;
std
::
shared_ptr
<
ProgramDesc
>
to_predict_program_
;
std
::
map
<
framework
::
BlockDesc
,
std
::
vector
<
std
::
shared_ptr
<
OperatorBase
<
Dtype
>>>>
ops_of_block_
;
bool
use_optimize_
=
false
;
void
predict
(
const
Tensor
&
t1
,
const
Tensor
&
t2
,
int
block_id
)
{
std
::
shared_ptr
<
BlockDesc
>
to_predict_block
=
to_predict_program_
->
Block
(
block_id
);
for
(
int
j
=
0
;
j
<
ops_of_block_
[
*
to_predict_block
.
get
()].
size
();
++
j
)
{
auto
op
=
ops_of_block_
[
*
to_predict_block
.
get
()][
j
];
DLOG
<<
"op -> run()"
;
op
->
Run
();
}
}
};
template
class
TestMultiClassNMSOp
<
CPU
>;
}
// namespace framework
}
// namespace paddle_mobile
int
main
()
{
DLOG
<<
"----------**********----------"
;
DLOG
<<
"begin to run MulticlassNMS Test"
;
paddle_mobile
::
Loader
<
paddle_mobile
::
CPU
>
loader
;
auto
program
=
loader
.
Load
(
std
::
string
(
"../../test/models/mobilenet+ssd"
));
/// input x (1,3,300,300)
paddle_mobile
::
framework
::
Tensor
inputx1
;
SetupTensor
<
float
>
(
&
inputx1
,
{
10
,
1917
,
4
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx1_ptr
=
inputx1
.
data
<
float
>
();
paddle_mobile
::
framework
::
Tensor
inputx2
;
SetupTensor
<
float
>
(
&
inputx2
,
{
10
,
21
,
1917
},
static_cast
<
float
>
(
0
),
static_cast
<
float
>
(
1
));
auto
*
inputx2_ptr
=
inputx2
.
data
<
float
>
();
paddle_mobile
::
framework
::
TestMultiClassNMSOp
<
paddle_mobile
::
CPU
>
testMultiClassNMSOp
(
program
);
auto
output
=
testMultiClassNMSOp
.
predict
(
inputx1
,
inputx2
);
auto
*
output_ptr
=
output
->
data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
->
numel
();
i
++
)
{
DLOG
<<
output_ptr
[
i
];
}
return
0
;
}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录