op_param.h 66.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
50
class OpParam {
朔-望's avatar
朔-望 已提交
51
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
52 53 54 55
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
56 57 58 59 60
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

61 62 63 64 65 66 67 68 69
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
70 71 72 73 74
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

102 103 104 105
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
106 107 108 109 110 111

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

112 113 114 115 116
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
117 118 119 120 121
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

122 123 124 125 126
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
131 132 133 134 135 136 137 138 139 140 141 142
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
143 144 145 146
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
163

E
eclipsess 已提交
164 165 166 167 168 169 170 171 172 173
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
178

179
  template <typename T>
W
wangliu 已提交
180 181
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
182 183 184
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

214 215 216 217 218 219 220 221 222 223
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

230 231 232 233 234
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
235 236 237 238 239 240
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
241 242 243 244 245
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
246 247 248 249 250 251
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

252 253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
263
  static const T GetAttr(const string &key, const AttributeMap &map) {
264 265
    return ((Attribute)map.at(key)).Get<T>();
  }
266 267 268
  static const std::string GetStringAttr(const string &key, const AttributeMap &map) {
    return ((Attribute)map.at(key)).GetString();
  }
269

270 271 272 273
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

274
  template <typename T>
W
wangliu 已提交
275
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
276
                        const Scope &scope) {
W
wangliu 已提交
277 278
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
279 280 281 282 283 284
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
285
    }
286
  }
朔-望's avatar
朔-望 已提交
287

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

308
  template <typename T>
W
wangliu 已提交
309 310 311
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
312 313
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
314
    vector<T *> var_res;
315 316 317
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
318
    }
319 320
    return var_res;
  }
朔-望's avatar
朔-望 已提交
321 322
};

N
nhzlx 已提交
323
template <typename Dtype>
324
class ConvParam : public OpParam {
N
nhzlx 已提交
325 326 327
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
328
 public:
329
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
330
            const AttributeMap &attrs, const Scope &scope) {
331 332 333 334 335 336 337 338 339
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
340
  }
朔-望's avatar
朔-望 已提交
341

N
nhzlx 已提交
342
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
343

N
nhzlx 已提交
344
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
345

N
nhzlx 已提交
346
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
347

W
wangliu 已提交
348
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
349

W
wangliu 已提交
350
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
351

W
wangliu 已提交
352
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
353

354
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
355

朔-望's avatar
朔-望 已提交
356
 private:
N
nhzlx 已提交
357 358 359
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
360 361 362
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
363
  int groups;
朔-望's avatar
朔-望 已提交
364
};
N
nhzlx 已提交
365 366
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
367

N
nhzlx 已提交
368
template <typename Dtype>
朔-望's avatar
朔-望 已提交
369
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
370 371 372
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
373
 public:
374
  ElementwiseAddParam(const VariableNameMap &inputs,
375 376
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
377 378 379
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
380 381 382
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
383
  const GType *InputX() const { return input_x_; }
384

xiebaiyuan's avatar
xiebaiyuan 已提交
385
  const GType *InputY() const { return input_y_; }
386

xiebaiyuan's avatar
xiebaiyuan 已提交
387
  GType *Out() const { return out_; }
388 389 390

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
391
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
392 393 394
  GType *input_x_;
  GType *input_y_;
  GType *out_;
395
  int axis_;
Z
zhangyang 已提交
396 397 398
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
399
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
400 401

 public:
H
hanbuhe 已提交
402 403
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
404
#endif
朔-望's avatar
朔-望 已提交
405 406
};

407
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
408 409
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
410 411 412
#endif

#ifdef MUL_OP
N
nhzlx 已提交
413
template <typename Dtype>
朔-望's avatar
朔-望 已提交
414
class MulParam : OpParam {
N
nhzlx 已提交
415 416 417
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
418
 public:
419
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
420
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
421 422 423
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
424 425 426
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
427

xiebaiyuan's avatar
xiebaiyuan 已提交
428
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
429

xiebaiyuan's avatar
xiebaiyuan 已提交
430
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
431

xiebaiyuan's avatar
xiebaiyuan 已提交
432
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
433

434
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
435

436
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
437

朔-望's avatar
朔-望 已提交
438
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
439 440 441
  GType *input_x_;
  GType *input_y_;
  GType *out_;
442 443
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
444 445 446 447 448 449 450 451 452
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::WrapperConvArgs fpga_conv_args;

 public:
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
453
};
L
liuruilong 已提交
454
#endif
朔-望's avatar
朔-望 已提交
455

L
liuruilong 已提交
456
#ifdef CONCAT_OP
N
nhzlx 已提交
457
template <typename Dtype>
朔-望's avatar
朔-望 已提交
458
class ConcatParam : public OpParam {
N
nhzlx 已提交
459 460 461
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
462
 public:
463
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
464
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
465 466
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
467 468
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
469

N
nhzlx 已提交
470
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
471

xiebaiyuan's avatar
xiebaiyuan 已提交
472
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
473

474
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
475

朔-望's avatar
朔-望 已提交
476
 private:
N
nhzlx 已提交
477
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
478
  GType *out_;
479
  int axis_;
Z
zhangyang 已提交
480 481 482 483 484 485 486 487 488
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
489
};
L
liuruilong 已提交
490
#endif
朔-望's avatar
朔-望 已提交
491

L
liuruilong 已提交
492
#ifdef LRN_OP
N
nhzlx 已提交
493
template <typename Dtype>
E
eclipsess 已提交
494
class LrnParam : public OpParam {
N
nhzlx 已提交
495 496 497
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
498
 public:
499
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
500
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
501 502 503
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
504 505 506 507
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
508
    data_format_ = GetStringAttr("data_format", attrs);
509
  }
E
eclipsess 已提交
510

N
nhzlx 已提交
511
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
512

N
nhzlx 已提交
513
  RType *Out() const { return out_; }
E
eclipsess 已提交
514

N
nhzlx 已提交
515
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
516

517
  const int &N() const { return n_; }
E
eclipsess 已提交
518

519
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
520

521
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
522

523
  const float &K() const { return k_; }
E
eclipsess 已提交
524

W
wangliu 已提交
525
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
526

朔-望's avatar
朔-望 已提交
527
 private:
N
nhzlx 已提交
528 529 530
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
531 532 533 534
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
535
  string data_format_;
E
eclipsess 已提交
536
};
L
liuruilong 已提交
537 538 539
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
540
template <typename Dtype>
E
eclipsess 已提交
541
class BatchNormParam : OpParam {
N
nhzlx 已提交
542 543 544
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
545
 public:
546
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
547
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
548 549 550 551 552 553
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
554 555
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
556
    //    is_test_ = GetAttr<bool>("is_test", attrs);
557
  }
E
eclipsess 已提交
558

N
nhzlx 已提交
559
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
560

N
nhzlx 已提交
561
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
562

N
nhzlx 已提交
563
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
564

N
nhzlx 已提交
565
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
566

N
nhzlx 已提交
567
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
568

N
nhzlx 已提交
569
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
570

571
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
572

573
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
574

575
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
576

W
wangliu 已提交
577
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
578

朔-望's avatar
朔-望 已提交
579
 private:
N
nhzlx 已提交
580 581 582 583 584 585
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
586 587 588
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
589
  string data_format_;
E
eclipsess 已提交
590
};
L
liuruilong 已提交
591 592 593
#endif

#ifdef POOL_OP
N
nhzlx 已提交
594
template <typename Dtype>
595
class PoolParam : public OpParam {
N
nhzlx 已提交
596 597 598
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
599
 public:
600
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
601
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
602
    input_ = InputXFrom<GType>(inputs, scope);
603

N
nhzlx 已提交
604
    output_ = OutFrom<GType>(outputs, scope);
605
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
606 607 608
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
609
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
610
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
611
  }
612

N
nhzlx 已提交
613
  const RType *Input() const { return input_; }
614

N
nhzlx 已提交
615
  RType *Output() const { return output_; }
616

W
wangliu 已提交
617
  const string &PoolingType() const { return pooling_type_; }
618

W
wangliu 已提交
619
  const vector<int> &Ksize() const { return ksize_; }
620

W
wangliu 已提交
621
  const vector<int> &Strides() const { return strides_; }
622

W
wangliu 已提交
623
  const vector<int> &Paddings() const { return paddings_; }
624

625
  bool isCeilMode() const { return ceil_mode_; }
626

Z
zhangyang 已提交
627
  bool isGlobalPooling() const { return global_pooling_; }
628

朔-望's avatar
朔-望 已提交
629
 private:
N
nhzlx 已提交
630 631
  RType *input_;
  RType *output_;
W
wangliu 已提交
632 633 634 635
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
636
  bool ceil_mode_;
637
  bool global_pooling_ = false;
Z
zhangyang 已提交
638
#ifdef PADDLE_MOBILE_FPGA
639 640

 private:
H
hanbuhe 已提交
641
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
642 643

 public:
H
hanbuhe 已提交
644 645
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
646
#endif
647
};
L
liuruilong 已提交
648 649 650
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
651
template <typename Dtype>
E
eclipsess 已提交
652
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
653 654 655
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
656 657
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
658
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
659 660 661 662
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
663 664 665 666
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
667 668 669 670 671

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
672 673 674 675 676 677
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
678
  const RType *Input() const { return input_; }
E
eclipsess 已提交
679

N
nhzlx 已提交
680
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
681

N
nhzlx 已提交
682
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
683

N
nhzlx 已提交
684
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
685

W
wangliu 已提交
686
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
687

W
wangliu 已提交
688
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
689

W
wangliu 已提交
690
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
691

W
wangliu 已提交
692
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
693 694 695 696 697 698 699 700 701 702 703

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

704 705 706 707
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
708
 private:
N
nhzlx 已提交
709 710 711 712
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
713 714 715 716
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
717 718 719 720 721
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
722
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
723
};
L
liuruilong 已提交
724
#endif
E
eclipsess 已提交
725

L
liuruilong 已提交
726
#ifdef BOXCODER_OP
N
nhzlx 已提交
727
template <typename Dtype>
E
eclipsess 已提交
728
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
729 730 731
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
732 733
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
734
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
735 736 737 738
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
739
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
740
  }
N
nhzlx 已提交
741
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
742

N
nhzlx 已提交
743
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
744

N
nhzlx 已提交
745
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
746

N
nhzlx 已提交
747
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
748 749 750 751

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
752 753 754 755
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
756 757
  std::string code_type_;
};
L
liuruilong 已提交
758
#endif
W
wangliu 已提交
759

L
liuruilong 已提交
760
#ifdef SOFTMAX_OP
N
nhzlx 已提交
761
template <typename Dtype>
W
wangliu 已提交
762
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
763 764 765
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
766 767
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
768
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
769 770
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
771
  }
N
nhzlx 已提交
772 773
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
774 775

 private:
N
nhzlx 已提交
776 777
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
778 779 780 781

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
782
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
783 784 785
  fpga::BypassArgs fpga_bypass_args;

 public:
786
  RType *FloatInput() const {
H
hanbuhe 已提交
787 788 789 790 791 792
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
793
};
L
liuruilong 已提交
794
#endif
W
wangliu 已提交
795

L
liuruilong 已提交
796
#ifdef SIGMOID_OP
N
nhzlx 已提交
797
template <typename Dtype>
W
wangliu 已提交
798
class SigmoidParam : public OpParam {
N
nhzlx 已提交
799 800 801
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
802 803
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
804
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
805 806
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
807
  }
N
nhzlx 已提交
808 809
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
810 811

 private:
N
nhzlx 已提交
812 813
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
814
};
L
liuruilong 已提交
815 816 817
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
818
template <typename Dtype>
E
eclipsess 已提交
819
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
820 821 822
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
823 824 825 826
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
827 828 829
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
830 831 832 833 834 835 836 837
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
838
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
839

N
nhzlx 已提交
840
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
841

N
nhzlx 已提交
842
  RType *Out() const { return out_; }
E
eclipsess 已提交
843 844 845 846 847 848 849 850 851 852 853 854 855 856

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
857 858 859
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
860 861 862 863 864 865 866
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
867
#endif
W
wangliu 已提交
868

N
nhzlx 已提交
869
template <typename Dtype>
L
liuruilong 已提交
870
class FeedParam : public OpParam {
N
nhzlx 已提交
871 872 873
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
874 875
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
876
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
877 878
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
879
    auto var = scope->Var("batch_size");
W
wangliu 已提交
880
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
881
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
882 883
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
884
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
885

L
liuruilong 已提交
886
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
887 888
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
889
  int batch_size;
L
liuruilong 已提交
890 891
};

N
nhzlx 已提交
892
template <typename Dtype>
L
liuruilong 已提交
893
class FetchParam : public OpParam {
N
nhzlx 已提交
894 895 896
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
897 898
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
899
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
900 901
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
902
  }
N
nhzlx 已提交
903 904
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
905

L
liuruilong 已提交
906
 private:
N
nhzlx 已提交
907 908
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
909 910
};

L
liuruilong 已提交
911
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
912
template <typename Dtype>
E
eclipsess 已提交
913
class TransposeParam : public OpParam {
N
nhzlx 已提交
914 915 916
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
917 918 919
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
920 921
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
922 923 924
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
925
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
926

N
nhzlx 已提交
927
  RType *Out() const { return out_; }
E
eclipsess 已提交
928 929 930 931

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
932 933
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
934 935
  vector<int> axis_;
};
L
liuruilong 已提交
936
#endif
E
eclipsess 已提交
937

xiebaiyuan's avatar
xiebaiyuan 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1004
#ifdef RESHAPE_OP
N
nhzlx 已提交
1005
template <typename Dtype>
E
eclipsess 已提交
1006
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1007 1008 1009
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1010 1011 1012
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1013 1014 1015
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1016
    shape_ = GetAttr<vector<int>>("shape", attrs);
1017 1018 1019 1020 1021 1022 1023

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1024 1025
  }

N
nhzlx 已提交
1026
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1027

N
nhzlx 已提交
1028
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1029

N
nhzlx 已提交
1030
  RType *Out() const { return out_; }
E
eclipsess 已提交
1031 1032 1033 1034 1035 1036

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1037 1038 1039
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1040 1041 1042
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1043
#endif
E
eclipsess 已提交
1044

T
Tian 已提交
1045
#ifdef SCALE_OP
N
nhzlx 已提交
1046
template <typename Dtype>
I
itminner 已提交
1047
class ScaleParam : public OpParam {
N
nhzlx 已提交
1048 1049 1050
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1051 1052 1053
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1054 1055 1056
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1057 1058 1059 1060 1061 1062
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1063
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1064

N
nhzlx 已提交
1065
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1066

N
nhzlx 已提交
1067
  RType *Out() const { return out_; }
I
itminner 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1078 1079 1080
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1081 1082 1083 1084 1085
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1086 1087 1088
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1089
template <typename Dtype>
I
itminner 已提交
1090
class SliceParam : public OpParam {
N
nhzlx 已提交
1091 1092 1093
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1094 1095 1096
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1097 1098 1099
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1100 1101 1102 1103 1104
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1105
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1106

N
nhzlx 已提交
1107
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1108

N
nhzlx 已提交
1109
  RType *Out() const { return out_; }
I
itminner 已提交
1110 1111 1112 1113 1114 1115 1116 1117

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1118 1119 1120
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1121 1122 1123 1124
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1125 1126 1127
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1128
template <typename Dtype>
T
Tian 已提交
1129
class ResizeParam : public OpParam {
N
nhzlx 已提交
1130 1131 1132
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1133 1134 1135
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1136 1137 1138
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1139 1140 1141 1142 1143 1144
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1145

N
nhzlx 已提交
1146
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1147

N
nhzlx 已提交
1148
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1149

N
nhzlx 已提交
1150
  RType *Out() const { return out_; }
T
Tian 已提交
1151

I
itminner 已提交
1152
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1153

I
itminner 已提交
1154
  const int &Height() const { return height_; }
T
Tian 已提交
1155

I
itminner 已提交
1156
  const int &Width() const { return width_; }
T
Tian 已提交
1157

I
itminner 已提交
1158
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1159

I
itminner 已提交
1160
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1161

I
itminner 已提交
1162
 private:
N
nhzlx 已提交
1163 1164 1165
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1166 1167 1168 1169 1170
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1171 1172 1173
};
#endif

L
liuruilong 已提交
1174
#ifdef RELU_OP
L
liuruilong 已提交
1175 1176 1177
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1178
template <typename Dtype>
E
eclipsess 已提交
1179
class ReluParam : public OpParam {
N
nhzlx 已提交
1180 1181 1182
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1183 1184 1185
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1186 1187
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1188 1189
  }

N
nhzlx 已提交
1190
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1191

N
nhzlx 已提交
1192
  RType *Out() const { return out_; }
E
eclipsess 已提交
1193 1194

 private:
N
nhzlx 已提交
1195 1196
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1197
};
L
liuruilong 已提交
1198
#endif
E
eclipsess 已提交
1199

T
Tian 已提交
1200
#ifdef PRELU_OP
N
nhzlx 已提交
1201
template <typename Dtype>
T
Tian 已提交
1202
class PReluParam : public OpParam {
N
nhzlx 已提交
1203 1204 1205
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1206 1207 1208
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1209
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1210
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1211
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1212
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1213
    out_ = OutFrom<GType>(outputs, scope);
1214
    mode_ = GetStringAttr("mode", attrs);
1215
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1216
  }
N
nhzlx 已提交
1217
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1218
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1219
  RType *Out() const { return out_; }
1220
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1221

I
itminner 已提交
1222
 private:
N
nhzlx 已提交
1223 1224
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1225
  RType *alpha_;
1226
  std::string mode_;
T
Tian 已提交
1227 1228 1229
};
#endif

N
nhzlx 已提交
1230
template <typename Dtype>
L
liuruilong 已提交
1231
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1232 1233 1234
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1235
 public:
L
liuruilong 已提交
1236
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1237
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1238 1239 1240 1241
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1242 1243 1244 1245
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1246
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1247

N
nhzlx 已提交
1248
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1249

N
nhzlx 已提交
1250
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1251

xiebaiyuan's avatar
xiebaiyuan 已提交
1252
  GType *Out() const { return out_; }
E
eclipsess 已提交
1253 1254 1255 1256 1257 1258 1259 1260

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1261
  GType *input_x_;
N
nhzlx 已提交
1262 1263
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1264
  GType *out_;
E
eclipsess 已提交
1265 1266 1267
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1268 1269 1270
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1271
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1272 1273

 public:
Z
zhangyang 已提交
1274 1275
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1276
#endif
E
eclipsess 已提交
1277
};
1278 1279

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1280 1281
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1282
#endif
E
eclipsess 已提交
1283

N
nhzlx 已提交
1284
template <typename Dtype>
1285
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1286 1287 1288
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1289
 public:
L
liuruilong 已提交
1290
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1291
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1292 1293 1294 1295 1296
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1297
  }
N
nhzlx 已提交
1298
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1299 1300 1301

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1302
  RType *Output() const { return output_; }
W
wangliu 已提交
1303

L
liuruilong 已提交
1304
 protected:
N
nhzlx 已提交
1305
  RType *bias_;
W
wangliu 已提交
1306
  int axis_;
N
nhzlx 已提交
1307
  RType *output_;
Z
zhangyang 已提交
1308 1309 1310
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1311
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1312 1313

 public:
Z
zhangyang 已提交
1314 1315
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1316
#endif
W
wangliu 已提交
1317 1318
};

N
nhzlx 已提交
1319 1320
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1321

Z
zhangyang 已提交
1322
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1323 1324
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1325
 public:
L
liuruilong 已提交
1326
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1327 1328
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1329
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1330 1331 1332
};
#endif

1333
#ifdef FUSION_CONVADDPRELU_OP
1334 1335 1336 1337
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1338 1339 1340 1341

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1342 1343 1344
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1345
    mode_ = OpParam::GetStringAttr("mode", attrs);
1346
    framework::DDim dims = alpha_->dims();
1347 1348 1349
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1366
  fpga::WrapperConvArgs fpga_conv_args;
1367 1368

 public:
Z
zhangyang 已提交
1369 1370
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1371 1372 1373 1374 1375
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1376 1377 1378 1379
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1380 1381 1382 1383

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1384 1385 1386 1387
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1388
    mode_ = OpParam::GetStringAttr("mode", attrs);
1389
    framework::DDim dims = alpha_->dims();
1390 1391 1392 1393 1394 1395
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1396
    if (keyX1_ == keyOutput_) {
1397
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1398
    } else if (keyY1_ == keyOutput_) {
1399
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1424
  fpga::WrapperConvArgs fpga_conv_args;
1425 1426

 public:
Z
zhangyang 已提交
1427 1428
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1429 1430 1431 1432
#endif
};
#endif

E
eclipsess 已提交
1433
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1434
template <typename Dtype>
1435
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1436 1437 1438
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1439 1440 1441
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1454
  }
N
nhzlx 已提交
1455
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1456 1457 1458

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1459
  RType *Output() const { return output_; }
E
eclipsess 已提交
1460

N
nhzlx 已提交
1461
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1462

N
nhzlx 已提交
1463
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1464

N
nhzlx 已提交
1465
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1466

N
nhzlx 已提交
1467
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1468 1469 1470 1471 1472 1473 1474

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1475
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1476

N
nhzlx 已提交
1477
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1478

N
nhzlx 已提交
1479
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1480

N
nhzlx 已提交
1481
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1482 1483

 protected:
N
nhzlx 已提交
1484
  RType *bias_;
E
eclipsess 已提交
1485
  int axis_;
N
nhzlx 已提交
1486 1487 1488 1489 1490
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1491 1492 1493
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1494 1495
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1496 1497 1498
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1499
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1500 1501

 public:
Z
zhangyang 已提交
1502 1503
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1504 1505 1506 1507 1508 1509
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1510
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1511 1512 1513 1514 1515 1516
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1531
    if (keyX_ == keyBNY_) {
1532
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1533
    } else if (keyY_ == keyBNY_) {
1534
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1535
    }
1536
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1585
  fpga::WrapperConvArgs fpga_conv_args;
1586 1587

 public:
Z
zhangyang 已提交
1588 1589
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1590
#endif
E
eclipsess 已提交
1591
};
1592
#endif
E
eclipsess 已提交
1593

Z
zhangyang 已提交
1594
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1595
template <typename Dtype>
1596
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1597 1598 1599
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1600 1601 1602
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1613
  }
N
nhzlx 已提交
1614
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1615

N
nhzlx 已提交
1616
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1617

N
nhzlx 已提交
1618
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1619

N
nhzlx 已提交
1620
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1621

N
nhzlx 已提交
1622
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1623 1624 1625 1626 1627 1628 1629

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1630
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1631

N
nhzlx 已提交
1632
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1633

N
nhzlx 已提交
1634
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1635

N
nhzlx 已提交
1636
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1637 1638

 protected:
N
nhzlx 已提交
1639 1640 1641 1642 1643
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1644 1645 1646
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1647 1648
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1649 1650 1651
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1652
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1653 1654

 public:
Z
zhangyang 已提交
1655 1656
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1657 1658 1659 1660
#endif
};
#endif

1661
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1662
template <typename Dtype>
1663
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1664 1665 1666
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1667 1668 1669
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1682
  }
N
nhzlx 已提交
1683
  RType *Bias() const { return bias_; }
1684 1685 1686

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1687
  RType *Output() const { return output_y_; }
1688

N
nhzlx 已提交
1689
  const RType *InputBias() const { return input_bias_; }
1690

N
nhzlx 已提交
1691
  const RType *InputMean() const { return input_mean_; }
1692

N
nhzlx 已提交
1693
  const RType *InputScale() const { return input_scale_; }
1694

N
nhzlx 已提交
1695
  const RType *InputVariance() const { return input_variance_; }
1696 1697 1698 1699 1700 1701 1702

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1703
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1704

N
nhzlx 已提交
1705
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1706

N
nhzlx 已提交
1707
  const RType *NewScale() const { return new_scale_; }
1708

N
nhzlx 已提交
1709
  const RType *NewBias() const { return new_bias_; }
1710 1711

 protected:
N
nhzlx 已提交
1712
  RType *bias_;
1713
  int axis_;
N
nhzlx 已提交
1714 1715 1716 1717 1718
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1719 1720 1721
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1722 1723
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1724 1725 1726
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1727
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1728 1729

 public:
Z
zhangyang 已提交
1730 1731
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1732
#endif
1733
};
E
eclipsess 已提交
1734
#endif
Y
Yao,kun 已提交
1735

E
eclipsess 已提交
1736
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1737
template <typename Dtype>
1738
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1739 1740 1741
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1742 1743 1744
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1755
  }
N
nhzlx 已提交
1756
  RType *Output() const { return output_; }
E
eclipsess 已提交
1757

N
nhzlx 已提交
1758
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1759

N
nhzlx 已提交
1760
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1761

N
nhzlx 已提交
1762
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1763

N
nhzlx 已提交
1764
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1765 1766 1767 1768 1769 1770 1771

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1772
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1773

N
nhzlx 已提交
1774
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1775

N
nhzlx 已提交
1776
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1777

N
nhzlx 已提交
1778
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1779 1780

 protected:
N
nhzlx 已提交
1781 1782 1783 1784 1785
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1786 1787 1788
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1789 1790
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1791 1792 1793 1794
};

#endif

1795
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1796
template <typename Dtype>
1797
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1798 1799 1800
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1801 1802 1803
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1814
  }
N
nhzlx 已提交
1815
  RType *Output() const { return output_; }
1816

N
nhzlx 已提交
1817
  const RType *InputBias() const { return input_bias_; }
1818

N
nhzlx 已提交
1819
  const RType *InputMean() const { return input_mean_; }
1820

N
nhzlx 已提交
1821
  const RType *InputScale() const { return input_scale_; }
1822

N
nhzlx 已提交
1823
  const RType *InputVariance() const { return input_variance_; }
1824 1825 1826 1827 1828 1829 1830

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1831
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1832

N
nhzlx 已提交
1833
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1834

N
nhzlx 已提交
1835
  const RType *NewScale() const { return new_scale_; }
1836

N
nhzlx 已提交
1837
  const RType *NewBias() const { return new_bias_; }
1838 1839

 protected:
N
nhzlx 已提交
1840 1841 1842 1843 1844
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1845 1846 1847
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1848 1849
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1850 1851 1852
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1853
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1854 1855

 public:
Z
zhangyang 已提交
1856 1857
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1858
#endif
1859 1860 1861
};
#endif

Y
Yao,kun 已提交
1862
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1863
template <typename Dtype>
Y
Yao,kun 已提交
1864
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1865 1866 1867
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1868 1869 1870 1871
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1872 1873
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1874 1875 1876 1877 1878
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1879
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1880

N
nhzlx 已提交
1881
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1882 1883 1884 1885 1886 1887 1888 1889

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1890 1891
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1892 1893 1894 1895
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1896
#endif
Y
Yao,kun 已提交
1897

1898
#ifdef DROPOUT_OP
N
nhzlx 已提交
1899
template <typename Dtype>
Y
Yao,kun 已提交
1900
class DropoutParam : public OpParam {
N
nhzlx 已提交
1901 1902 1903
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1904 1905 1906
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1907 1908
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1909 1910

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1911 1912
  }

N
nhzlx 已提交
1913
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1914

N
nhzlx 已提交
1915
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1916

Y
yangfei 已提交
1917 1918
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1919
 private:
N
nhzlx 已提交
1920 1921
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1922
  float dropout_prob_;
Y
Yao,kun 已提交
1923
};
1924
#endif
Y
Yao,kun 已提交
1925

H
hjchen2 已提交
1926
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
1927
template <typename Dtype>
L
liuruilong 已提交
1928
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1929 1930 1931
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1932 1933 1934 1935
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1936 1937 1938
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1939 1940 1941 1942 1943 1944
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1945
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1946

N
nhzlx 已提交
1947
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1948

N
nhzlx 已提交
1949
  RType *Output() const { return output_; }
L
liuruilong 已提交
1950 1951 1952 1953 1954 1955 1956 1957 1958 1959

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1960 1961 1962
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1963 1964 1965 1966 1967 1968 1969
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
1995 1996
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2041
    axis = GetAttr<int>("axis", attrs);
2042 2043 2044
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2045
  const int &Axis() const { return axis; }
2046 2047 2048 2049

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2050
  int axis;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2064
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2065
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2066 2067 2068 2069 2070 2071
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2072 2073
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2074 2075 2076 2077 2078
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2079 2080 2081

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2082
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2083
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2084 2085 2086
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2103 2104
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2105 2106
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2107
  const RType *InputOutPutSize() const { return input_outsize_; }
2108
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2109 2110
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2111 2112 2113 2114 2115

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2116 2117
  int out_h_;
  int out_w_;
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2133
  const RType *Input() const { return input_; }
2134 2135 2136 2137 2138 2139 2140 2141
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2142
template <typename Dtype>
2143 2144 2145 2146 2147
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2148 2149
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    if (HasAttr("is_static", attrs)) {
      is_static_ = GetAttr<bool>("is_static", attrs);
    }
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
  RoundType round_type_ = ROUND_NEAREST_TO_EVEN;
};

2184
template <typename Dtype>
2185 2186 2187 2188 2189
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2190 2191
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};

朔-望's avatar
朔-望 已提交
2212 2213
}  // namespace operators
}  // namespace paddle_mobile