op_param.h 75.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36 37 38
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
39
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

N
nhzlx 已提交
408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

N
nhzlx 已提交
410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

418
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
419

420 421 422 423 424 425 426
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
427
 private:
N
nhzlx 已提交
428 429 430
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
431 432 433
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
434
  int groups;
435 436 437 438

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
朔-望's avatar
朔-望 已提交
439
};
N
nhzlx 已提交
440 441
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
442

N
nhzlx 已提交
443
template <typename Dtype>
朔-望's avatar
朔-望 已提交
444
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
445 446 447
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
448
 public:
449
  ElementwiseAddParam(const VariableNameMap &inputs,
450 451
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
452 453 454
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
455 456 457
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
458
  const GType *InputX() const { return input_x_; }
459

xiebaiyuan's avatar
xiebaiyuan 已提交
460
  const GType *InputY() const { return input_y_; }
461

xiebaiyuan's avatar
xiebaiyuan 已提交
462
  GType *Out() const { return out_; }
463 464 465

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
466
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
467 468 469
  GType *input_x_;
  GType *input_y_;
  GType *out_;
470
  int axis_;
Z
zhangyang 已提交
471 472 473
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
474
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
475 476

 public:
H
hanbuhe 已提交
477 478
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
479
#endif
朔-望's avatar
朔-望 已提交
480 481
};

E
eclipsess 已提交
482
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
512
#endif
E
eclipsess 已提交
513

514
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
515 516
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
517 518
#endif

519
#ifdef ELEMENTWISESUB_OP
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
549
#endif
550

L
liuruilong 已提交
551
#ifdef MUL_OP
N
nhzlx 已提交
552
template <typename Dtype>
朔-望's avatar
朔-望 已提交
553
class MulParam : OpParam {
N
nhzlx 已提交
554 555 556
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
557
 public:
558
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
559
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
560 561 562
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
563 564 565
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
566

xiebaiyuan's avatar
xiebaiyuan 已提交
567
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
568

xiebaiyuan's avatar
xiebaiyuan 已提交
569
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
570

xiebaiyuan's avatar
xiebaiyuan 已提交
571
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
572

573
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
574

575
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
576

朔-望's avatar
朔-望 已提交
577
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
578 579 580
  GType *input_x_;
  GType *input_y_;
  GType *out_;
581 582
  int x_num_col_dims_;
  int y_num_col_dims_;
Z
zhangyang 已提交
583 584 585
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
586
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
587 588

 public:
Z
zhangyang 已提交
589 590
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
591
#endif
朔-望's avatar
朔-望 已提交
592
};
L
liuruilong 已提交
593
#endif
朔-望's avatar
朔-望 已提交
594

L
liuruilong 已提交
595
#ifdef CONCAT_OP
N
nhzlx 已提交
596
template <typename Dtype>
朔-望's avatar
朔-望 已提交
597
class ConcatParam : public OpParam {
N
nhzlx 已提交
598 599 600
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
601
 public:
602
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
603
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
604 605
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
606 607
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
608

N
nhzlx 已提交
609
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
610

xiebaiyuan's avatar
xiebaiyuan 已提交
611
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
612

613
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
614

朔-望's avatar
朔-望 已提交
615
 private:
N
nhzlx 已提交
616
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
617
  GType *out_;
618
  int axis_;
Z
zhangyang 已提交
619 620 621 622 623 624 625 626 627
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
628
};
L
liuruilong 已提交
629
#endif
朔-望's avatar
朔-望 已提交
630

E
eclipsess 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
662
#ifdef LRN_OP
N
nhzlx 已提交
663
template <typename Dtype>
E
eclipsess 已提交
664
class LrnParam : public OpParam {
N
nhzlx 已提交
665 666 667
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
668
 public:
669
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
670
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
671 672 673
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
674 675 676 677
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
678
    data_format_ = GetStringAttr("data_format", attrs);
679
  }
E
eclipsess 已提交
680

N
nhzlx 已提交
681
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
682

N
nhzlx 已提交
683
  RType *Out() const { return out_; }
E
eclipsess 已提交
684

N
nhzlx 已提交
685
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
686

687
  const int &N() const { return n_; }
E
eclipsess 已提交
688

689
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
690

691
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
692

693
  const float &K() const { return k_; }
E
eclipsess 已提交
694

W
wangliu 已提交
695
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
696

朔-望's avatar
朔-望 已提交
697
 private:
N
nhzlx 已提交
698 699 700
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
701 702 703 704
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
705
  string data_format_;
E
eclipsess 已提交
706
};
L
liuruilong 已提交
707 708 709
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
710
template <typename Dtype>
E
eclipsess 已提交
711
class BatchNormParam : OpParam {
N
nhzlx 已提交
712 713 714
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
715
 public:
716
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
717
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
718 719 720 721 722 723
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
724 725
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
726
    //    is_test_ = GetAttr<bool>("is_test", attrs);
727
  }
E
eclipsess 已提交
728

N
nhzlx 已提交
729
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
730

N
nhzlx 已提交
731
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
732

N
nhzlx 已提交
733
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
734

N
nhzlx 已提交
735
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
736

N
nhzlx 已提交
737
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
738

N
nhzlx 已提交
739
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
740

741
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
742

743
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
744

745
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
746

W
wangliu 已提交
747
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
748

749 750 751 752 753 754 755 756
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
757
 private:
N
nhzlx 已提交
758 759 760 761 762 763
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
764 765 766
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
767
  string data_format_;
768 769
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
770
};
L
liuruilong 已提交
771 772 773
#endif

#ifdef POOL_OP
N
nhzlx 已提交
774
template <typename Dtype>
775
class PoolParam : public OpParam {
N
nhzlx 已提交
776 777 778
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
779
 public:
780
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
781
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
782
    input_ = InputXFrom<GType>(inputs, scope);
783

N
nhzlx 已提交
784
    output_ = OutFrom<GType>(outputs, scope);
785
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
786 787 788
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
789
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
790
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
791
  }
792

N
nhzlx 已提交
793
  const RType *Input() const { return input_; }
794

N
nhzlx 已提交
795
  RType *Output() const { return output_; }
796

W
wangliu 已提交
797
  const string &PoolingType() const { return pooling_type_; }
798

W
wangliu 已提交
799
  const vector<int> &Ksize() const { return ksize_; }
800

W
wangliu 已提交
801
  const vector<int> &Strides() const { return strides_; }
802

W
wangliu 已提交
803
  const vector<int> &Paddings() const { return paddings_; }
804

805
  bool isCeilMode() const { return ceil_mode_; }
806

Z
zhangyang 已提交
807
  bool isGlobalPooling() const { return global_pooling_; }
808

朔-望's avatar
朔-望 已提交
809
 private:
N
nhzlx 已提交
810 811
  RType *input_;
  RType *output_;
W
wangliu 已提交
812 813 814 815
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
816
  bool ceil_mode_;
817
  bool global_pooling_ = false;
Z
zhangyang 已提交
818
#ifdef PADDLE_MOBILE_FPGA
819 820

 private:
H
hanbuhe 已提交
821
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
822 823

 public:
H
hanbuhe 已提交
824 825
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
826
#endif
827
};
L
liuruilong 已提交
828 829 830
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
831
template <typename Dtype>
E
eclipsess 已提交
832
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
833 834 835
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
836 837
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
838
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
839 840 841 842
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
843 844 845 846
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
847 848 849 850 851

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
852 853 854 855 856 857
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
858
  const RType *Input() const { return input_; }
E
eclipsess 已提交
859

N
nhzlx 已提交
860
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
861

N
nhzlx 已提交
862
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
863

N
nhzlx 已提交
864
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
865

W
wangliu 已提交
866
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
867

W
wangliu 已提交
868
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
869

W
wangliu 已提交
870
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
871

W
wangliu 已提交
872
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
873 874 875 876 877 878 879 880 881 882 883

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

884 885 886 887
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
888
 private:
N
nhzlx 已提交
889 890 891 892
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
893 894 895 896
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
897 898 899 900 901
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
902
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
903
};
L
liuruilong 已提交
904
#endif
E
eclipsess 已提交
905

L
liuruilong 已提交
906
#ifdef BOXCODER_OP
N
nhzlx 已提交
907
template <typename Dtype>
E
eclipsess 已提交
908
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
909 910 911
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
912 913
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
914
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
915 916 917 918
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
919
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
920
  }
N
nhzlx 已提交
921
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
922

N
nhzlx 已提交
923
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
924

N
nhzlx 已提交
925
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
926

N
nhzlx 已提交
927
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
928 929 930 931

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
932 933 934 935
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
936 937
  std::string code_type_;
};
L
liuruilong 已提交
938
#endif
W
wangliu 已提交
939

L
liuruilong 已提交
940
#ifdef SOFTMAX_OP
N
nhzlx 已提交
941
template <typename Dtype>
W
wangliu 已提交
942
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
943 944 945
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
946 947
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
948
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
949 950
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
951
  }
N
nhzlx 已提交
952 953
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
954 955

 private:
N
nhzlx 已提交
956 957
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
958 959 960 961

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
962
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
963 964 965
  fpga::BypassArgs fpga_bypass_args;

 public:
966
  RType *FloatInput() const {
H
hanbuhe 已提交
967 968 969 970 971 972
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
973
};
L
liuruilong 已提交
974
#endif
W
wangliu 已提交
975

L
liuruilong 已提交
976
#ifdef SIGMOID_OP
N
nhzlx 已提交
977
template <typename Dtype>
W
wangliu 已提交
978
class SigmoidParam : public OpParam {
N
nhzlx 已提交
979 980 981
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
982 983
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
984
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
985 986
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
987
  }
N
nhzlx 已提交
988 989
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
990 991

 private:
N
nhzlx 已提交
992 993
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
994
};
L
liuruilong 已提交
995 996 997
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
998
template <typename Dtype>
E
eclipsess 已提交
999
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1000 1001 1002
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1003 1004 1005 1006
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1007 1008 1009
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1010 1011 1012 1013 1014 1015 1016 1017
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
1018
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1019

N
nhzlx 已提交
1020
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1021

N
nhzlx 已提交
1022
  RType *Out() const { return out_; }
E
eclipsess 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1037 1038 1039
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1040 1041 1042 1043 1044 1045 1046
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1047
#endif
W
wangliu 已提交
1048

L
lijiancheng0614 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1071
template <typename Dtype>
L
liuruilong 已提交
1072
class FeedParam : public OpParam {
N
nhzlx 已提交
1073 1074 1075
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1076 1077
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1078 1079 1080 1081
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1082
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1083
  }
Y
yangfei 已提交
1084
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1085
  GType *Out() const { return out_; }
W
wangliu 已提交
1086
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1087

L
liuruilong 已提交
1088
 private:
Y
yangfei 已提交
1089
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1090
  GType *out_;
W
wangliu 已提交
1091
  int batch_size;
L
liuruilong 已提交
1092 1093
};

N
nhzlx 已提交
1094
template <typename Dtype>
L
liuruilong 已提交
1095
class FetchParam : public OpParam {
N
nhzlx 已提交
1096 1097 1098
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1099 1100
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1101
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1102
    input_x_ = InputXFrom<GType>(inputs, scope);
1103
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1104
  }
L
liuruilong 已提交
1105

N
nhzlx 已提交
1106
  const RType *InputX() const { return input_x_; }
1107 1108 1109
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1110
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1111
  }
L
liuruilong 已提交
1112

L
liuruilong 已提交
1113
 private:
N
nhzlx 已提交
1114
  RType *input_x_;
Y
yangfei 已提交
1115
  Tensor *out_;
L
liuruilong 已提交
1116 1117
};

L
lijiancheng0614 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1154
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1155
template <typename Dtype>
E
eclipsess 已提交
1156
class TransposeParam : public OpParam {
N
nhzlx 已提交
1157 1158 1159
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1160 1161 1162
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1163 1164
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1165 1166 1167
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1168
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1169

N
nhzlx 已提交
1170
  RType *Out() const { return out_; }
E
eclipsess 已提交
1171 1172 1173 1174

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1175 1176
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1177 1178
  vector<int> axis_;
};
L
liuruilong 已提交
1179
#endif
E
eclipsess 已提交
1180

L
lijiancheng0614 已提交
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1278
#ifdef RESHAPE_OP
N
nhzlx 已提交
1279
template <typename Dtype>
E
eclipsess 已提交
1280
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1281 1282 1283
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1284 1285 1286
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1287 1288 1289
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1290
    shape_ = GetAttr<vector<int>>("shape", attrs);
1291 1292 1293 1294 1295 1296 1297

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1298 1299
  }

N
nhzlx 已提交
1300
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1301

N
nhzlx 已提交
1302
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1303

N
nhzlx 已提交
1304
  RType *Out() const { return out_; }
E
eclipsess 已提交
1305 1306 1307 1308 1309 1310

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1311 1312 1313
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1314 1315 1316
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1317
#endif
E
eclipsess 已提交
1318

L
lijiancheng0614 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

  const RType *InputX() const { return input_x_; }

  const RType *InputShape() const { return input_shape_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
  RType *output_xshape_;
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1362
#ifdef SCALE_OP
N
nhzlx 已提交
1363
template <typename Dtype>
I
itminner 已提交
1364
class ScaleParam : public OpParam {
N
nhzlx 已提交
1365 1366 1367
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1368 1369 1370
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1371 1372 1373
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1374 1375 1376 1377 1378 1379
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1380
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1381

N
nhzlx 已提交
1382
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1383

N
nhzlx 已提交
1384
  RType *Out() const { return out_; }
I
itminner 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1395 1396 1397
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1398 1399 1400 1401 1402
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1403 1404 1405
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1406
template <typename Dtype>
I
itminner 已提交
1407
class SliceParam : public OpParam {
N
nhzlx 已提交
1408 1409 1410
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1411 1412 1413
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1414 1415 1416
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1417 1418 1419 1420 1421
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1422
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1423

N
nhzlx 已提交
1424
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1425

N
nhzlx 已提交
1426
  RType *Out() const { return out_; }
I
itminner 已提交
1427 1428 1429 1430 1431 1432 1433 1434

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1435 1436 1437
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1438 1439 1440 1441
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1442 1443 1444
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1445
template <typename Dtype>
T
Tian 已提交
1446
class ResizeParam : public OpParam {
N
nhzlx 已提交
1447 1448 1449
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1450 1451 1452
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1453 1454 1455
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1456 1457 1458 1459 1460 1461
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1462

N
nhzlx 已提交
1463
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1464

N
nhzlx 已提交
1465
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1466

N
nhzlx 已提交
1467
  RType *Out() const { return out_; }
T
Tian 已提交
1468

I
itminner 已提交
1469
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1470

I
itminner 已提交
1471
  const int &Height() const { return height_; }
T
Tian 已提交
1472

I
itminner 已提交
1473
  const int &Width() const { return width_; }
T
Tian 已提交
1474

I
itminner 已提交
1475
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1476

I
itminner 已提交
1477
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1478

I
itminner 已提交
1479
 private:
N
nhzlx 已提交
1480 1481 1482
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1483 1484 1485 1486 1487
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1488 1489 1490
};
#endif

L
liuruilong 已提交
1491
#ifdef RELU_OP
L
liuruilong 已提交
1492 1493 1494
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1495
template <typename Dtype>
D
relu  
dolphin8 已提交
1496
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1497 1498 1499
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1500
 public:
D
relu  
dolphin8 已提交
1501
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1502
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1503 1504
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1505 1506
  }

N
nhzlx 已提交
1507
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1508

N
nhzlx 已提交
1509
  RType *Out() const { return out_; }
E
eclipsess 已提交
1510 1511

 private:
N
nhzlx 已提交
1512 1513
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1514
};
D
relu  
dolphin8 已提交
1515 1516 1517

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1518
 public:
D
relu  
dolphin8 已提交
1519 1520 1521
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1522
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1523 1524
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1525
 public:
D
relu  
dolphin8 已提交
1526
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1527 1528 1529
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1530 1531
  framework::CLImage midImage;
};
Y
yangfei 已提交
1532
#endif
D
relu  
dolphin8 已提交
1533

L
liuruilong 已提交
1534
#endif
E
eclipsess 已提交
1535

T
Tian 已提交
1536
#ifdef PRELU_OP
N
nhzlx 已提交
1537
template <typename Dtype>
T
Tian 已提交
1538
class PReluParam : public OpParam {
N
nhzlx 已提交
1539 1540 1541
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1542 1543 1544
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1545
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1546
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1547
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1548
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1549
    out_ = OutFrom<GType>(outputs, scope);
1550
    mode_ = GetStringAttr("mode", attrs);
1551
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1552
  }
N
nhzlx 已提交
1553
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1554
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1555
  RType *Out() const { return out_; }
1556
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1557

I
itminner 已提交
1558
 private:
N
nhzlx 已提交
1559 1560
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1561
  RType *alpha_;
1562
  std::string mode_;
T
Tian 已提交
1563 1564 1565
};
#endif

N
nhzlx 已提交
1566
template <typename Dtype>
L
liuruilong 已提交
1567
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1568 1569 1570
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1571
 public:
L
liuruilong 已提交
1572
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1573
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1574 1575 1576 1577
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1578 1579 1580 1581
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1582
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1583

N
nhzlx 已提交
1584
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1585

N
nhzlx 已提交
1586
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1587

xiebaiyuan's avatar
xiebaiyuan 已提交
1588
  GType *Out() const { return out_; }
E
eclipsess 已提交
1589 1590 1591 1592 1593 1594 1595 1596

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1597
  GType *input_x_;
N
nhzlx 已提交
1598 1599
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1600
  GType *out_;
E
eclipsess 已提交
1601 1602 1603
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1604 1605 1606
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1607
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1608 1609

 public:
Z
zhangyang 已提交
1610 1611
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1612
#endif
E
eclipsess 已提交
1613
};
1614 1615

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1616 1617
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1618
#endif
E
eclipsess 已提交
1619

N
nhzlx 已提交
1620
template <typename Dtype>
1621
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1622 1623 1624
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1625
 public:
L
liuruilong 已提交
1626
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1627
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1628 1629 1630 1631 1632
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1633
  }
N
nhzlx 已提交
1634
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1635 1636 1637

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1638
  RType *Output() const { return output_; }
W
wangliu 已提交
1639

L
liuruilong 已提交
1640
 protected:
N
nhzlx 已提交
1641
  RType *bias_;
W
wangliu 已提交
1642
  int axis_;
N
nhzlx 已提交
1643
  RType *output_;
Z
zhangyang 已提交
1644 1645 1646
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1647
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1648 1649

 public:
Z
zhangyang 已提交
1650 1651
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1652
#endif
W
wangliu 已提交
1653 1654
};

N
nhzlx 已提交
1655 1656
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1657

Z
zhangyang 已提交
1658
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1659 1660
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1661
 public:
L
liuruilong 已提交
1662
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1663 1664
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1665
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1666 1667 1668
};
#endif

1669
#ifdef FUSION_CONVADDPRELU_OP
1670 1671 1672 1673
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1674 1675 1676 1677

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1678 1679 1680
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1681
    mode_ = OpParam::GetStringAttr("mode", attrs);
1682
    framework::DDim dims = alpha_->dims();
1683 1684 1685
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1702
  fpga::SplitConvArgs fpga_conv_args;
1703 1704

 public:
Z
zhangyang 已提交
1705 1706
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1707 1708 1709 1710 1711
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1712 1713 1714 1715
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1716 1717 1718 1719

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1720 1721 1722 1723
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1724
    mode_ = OpParam::GetStringAttr("mode", attrs);
1725
    framework::DDim dims = alpha_->dims();
1726 1727 1728 1729 1730 1731
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1732
    if (keyX1_ == keyOutput_) {
1733
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1734
    } else if (keyY1_ == keyOutput_) {
1735
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1760
  fpga::SplitConvArgs fpga_conv_args;
1761 1762

 public:
Z
zhangyang 已提交
1763 1764
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1765 1766 1767 1768
#endif
};
#endif

E
eclipsess 已提交
1769
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1770
template <typename Dtype>
1771
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1772 1773 1774
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1775 1776 1777
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1790
  }
N
nhzlx 已提交
1791
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1792 1793 1794

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1795
  RType *Output() const { return output_; }
E
eclipsess 已提交
1796

N
nhzlx 已提交
1797
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1798

N
nhzlx 已提交
1799
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1800

N
nhzlx 已提交
1801
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1802

N
nhzlx 已提交
1803
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1804 1805 1806 1807 1808 1809 1810

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1811
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1812

N
nhzlx 已提交
1813
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1814

N
nhzlx 已提交
1815
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1816

N
nhzlx 已提交
1817
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1818 1819

 protected:
N
nhzlx 已提交
1820
  RType *bias_;
E
eclipsess 已提交
1821
  int axis_;
N
nhzlx 已提交
1822 1823 1824 1825 1826
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1827 1828 1829
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1830 1831
  RType *new_bias_;
  RType *new_scale_;
1832

Z
zhangyang 已提交
1833 1834 1835
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1836
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1837 1838

 public:
Z
zhangyang 已提交
1839 1840
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
1841 1842 1843 1844 1845 1846
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1847
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1848 1849 1850 1851 1852 1853
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1868
    if (keyX_ == keyBNY_) {
1869
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1870
    } else if (keyY_ == keyBNY_) {
1871
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1872
    }
1873
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1922
  fpga::SplitConvArgs fpga_conv_args;
1923 1924

 public:
Z
zhangyang 已提交
1925 1926
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1927
#endif
E
eclipsess 已提交
1928
};
1929
#endif
E
eclipsess 已提交
1930

Z
zhangyang 已提交
1931
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1932
template <typename Dtype>
1933
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1934 1935 1936
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1937 1938 1939
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1950
  }
N
nhzlx 已提交
1951
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1952

N
nhzlx 已提交
1953
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1954

N
nhzlx 已提交
1955
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1956

N
nhzlx 已提交
1957
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1958

N
nhzlx 已提交
1959
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1960 1961 1962 1963 1964 1965 1966

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1967
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1968

N
nhzlx 已提交
1969
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1970

N
nhzlx 已提交
1971
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1972

N
nhzlx 已提交
1973
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1974 1975

 protected:
N
nhzlx 已提交
1976 1977 1978 1979 1980
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1981 1982 1983
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1984 1985
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1986 1987 1988
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1989
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1990 1991

 public:
Z
zhangyang 已提交
1992 1993
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1994 1995 1996 1997
#endif
};
#endif

1998
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1999
template <typename Dtype>
2000
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2001 2002 2003
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2004 2005 2006
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2019
  }
N
nhzlx 已提交
2020
  RType *Bias() const { return bias_; }
2021 2022 2023

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2024
  RType *Output() const { return output_y_; }
2025

N
nhzlx 已提交
2026
  const RType *InputBias() const { return input_bias_; }
2027

N
nhzlx 已提交
2028
  const RType *InputMean() const { return input_mean_; }
2029

N
nhzlx 已提交
2030
  const RType *InputScale() const { return input_scale_; }
2031

N
nhzlx 已提交
2032
  const RType *InputVariance() const { return input_variance_; }
2033 2034 2035 2036 2037 2038 2039

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2040
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2041

N
nhzlx 已提交
2042
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2043

N
nhzlx 已提交
2044
  const RType *NewScale() const { return new_scale_; }
2045

N
nhzlx 已提交
2046
  const RType *NewBias() const { return new_bias_; }
2047 2048

 protected:
N
nhzlx 已提交
2049
  RType *bias_;
2050
  int axis_;
N
nhzlx 已提交
2051 2052 2053 2054 2055
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2056 2057 2058
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2059 2060
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2061 2062 2063
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2064
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2065 2066

 public:
Z
zhangyang 已提交
2067 2068
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2069
#endif
2070
};
E
eclipsess 已提交
2071
#endif
Y
Yao,kun 已提交
2072

E
eclipsess 已提交
2073
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2074
template <typename Dtype>
2075
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2076 2077 2078
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2079 2080 2081
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2092
  }
N
nhzlx 已提交
2093
  RType *Output() const { return output_; }
E
eclipsess 已提交
2094

N
nhzlx 已提交
2095
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2096

N
nhzlx 已提交
2097
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2098

N
nhzlx 已提交
2099
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2100

N
nhzlx 已提交
2101
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2102 2103 2104 2105 2106 2107 2108

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2109
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2110

N
nhzlx 已提交
2111
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2112

N
nhzlx 已提交
2113
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2114

N
nhzlx 已提交
2115
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2116 2117

 protected:
N
nhzlx 已提交
2118 2119 2120 2121 2122
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2123 2124 2125
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2126 2127
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2128 2129 2130 2131
};

#endif

2132
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2133
template <typename Dtype>
2134
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2135 2136 2137
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2138 2139 2140
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2151
  }
N
nhzlx 已提交
2152
  RType *Output() const { return output_; }
2153

N
nhzlx 已提交
2154
  const RType *InputBias() const { return input_bias_; }
2155

N
nhzlx 已提交
2156
  const RType *InputMean() const { return input_mean_; }
2157

N
nhzlx 已提交
2158
  const RType *InputScale() const { return input_scale_; }
2159

N
nhzlx 已提交
2160
  const RType *InputVariance() const { return input_variance_; }
2161 2162 2163 2164 2165 2166 2167

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2168
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2169

N
nhzlx 已提交
2170
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2171

N
nhzlx 已提交
2172
  const RType *NewScale() const { return new_scale_; }
2173

N
nhzlx 已提交
2174
  const RType *NewBias() const { return new_bias_; }
2175 2176

 protected:
N
nhzlx 已提交
2177 2178 2179 2180 2181
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2182 2183 2184
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2185 2186
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2187 2188 2189
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
2190
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
2191 2192

 public:
Z
zhangyang 已提交
2193 2194
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
2195
#endif
2196 2197 2198
};
#endif

Y
Yao,kun 已提交
2199
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2200
template <typename Dtype>
Y
Yao,kun 已提交
2201
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2202 2203 2204
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2205 2206 2207 2208
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2209 2210
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2211 2212 2213 2214 2215
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2216
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2217

E
eclipsess 已提交
2218
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2219 2220 2221 2222 2223 2224 2225 2226

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2227 2228
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2229 2230 2231 2232
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2233
#endif
Y
Yao,kun 已提交
2234

2235
#ifdef DROPOUT_OP
N
nhzlx 已提交
2236
template <typename Dtype>
Y
Yao,kun 已提交
2237
class DropoutParam : public OpParam {
N
nhzlx 已提交
2238 2239 2240
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2241 2242 2243
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2244 2245
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2246 2247

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2248 2249
  }

N
nhzlx 已提交
2250
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2251

N
nhzlx 已提交
2252
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2253

Y
yangfei 已提交
2254 2255
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2256
 private:
N
nhzlx 已提交
2257 2258
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2259
  float dropout_prob_;
Y
Yao,kun 已提交
2260
};
2261
#endif
Y
Yao,kun 已提交
2262

H
hjchen2 已提交
2263
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2264
template <typename Dtype>
L
liuruilong 已提交
2265
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2266 2267 2268
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2269 2270 2271 2272
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2273 2274 2275
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2276 2277 2278 2279 2280 2281
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2282
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2283

N
nhzlx 已提交
2284
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2285

N
nhzlx 已提交
2286
  RType *Output() const { return output_; }
L
liuruilong 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2297 2298 2299
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2300 2301 2302 2303 2304 2305 2306
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2332 2333
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2378
    axis = GetAttr<int>("axis", attrs);
2379 2380 2381
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2382
  const int &Axis() const { return axis; }
2383 2384 2385 2386

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2387
  int axis;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2401
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2402
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2403 2404 2405 2406 2407 2408
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2409 2410
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2411 2412 2413 2414 2415
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2416 2417 2418

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2419
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2420
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2421 2422 2423
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2440 2441
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2442 2443
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2444
  const RType *InputOutPutSize() const { return input_outsize_; }
2445
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2446 2447
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2448 2449 2450 2451 2452

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2453 2454
  int out_h_;
  int out_w_;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2470
  const RType *Input() const { return input_; }
2471 2472 2473 2474 2475 2476 2477 2478
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2479
#ifdef QUANT_OP
2480
template <typename Dtype>
2481 2482 2483 2484 2485
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2486 2487
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2488 2489 2490 2491 2492 2493 2494
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2495
      is_static_ = true;
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2517
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2518
};
2519
#endif
2520

2521
#ifdef DEQUANT_OP
2522
template <typename Dtype>
2523 2524 2525 2526 2527
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2528 2529
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2549
#endif
2550

朔-望's avatar
朔-望 已提交
2551 2552
}  // namespace operators
}  // namespace paddle_mobile