op_param.h 73.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36 37 38
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
39
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

N
nhzlx 已提交
408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

N
nhzlx 已提交
410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

418
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
419

420 421 422 423 424 425 426
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
427
 private:
N
nhzlx 已提交
428 429 430
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
431 432 433
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
434
  int groups;
435 436 437 438

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
439 440 441 442 443 444 445 446 447 448

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
449
};
N
nhzlx 已提交
450 451
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
452

N
nhzlx 已提交
453
template <typename Dtype>
朔-望's avatar
朔-望 已提交
454
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
455 456 457
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
458
 public:
459
  ElementwiseAddParam(const VariableNameMap &inputs,
460 461
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
462 463 464
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
465 466 467
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
468
  const GType *InputX() const { return input_x_; }
469

xiebaiyuan's avatar
xiebaiyuan 已提交
470
  const GType *InputY() const { return input_y_; }
471

xiebaiyuan's avatar
xiebaiyuan 已提交
472
  GType *Out() const { return out_; }
473 474 475

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
476
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
477 478 479
  GType *input_x_;
  GType *input_y_;
  GType *out_;
480
  int axis_;
Z
zhangyang 已提交
481 482 483
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
484
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
485 486

 public:
H
hanbuhe 已提交
487 488
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
489
#endif
朔-望's avatar
朔-望 已提交
490 491
};

E
eclipsess 已提交
492
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
522
#endif
E
eclipsess 已提交
523

524
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
525 526
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
527 528
#endif

529
#ifdef ELEMENTWISESUB_OP
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
559
#endif
560

L
liuruilong 已提交
561
#ifdef MUL_OP
N
nhzlx 已提交
562
template <typename Dtype>
朔-望's avatar
朔-望 已提交
563
class MulParam : OpParam {
N
nhzlx 已提交
564 565 566
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
567
 public:
568
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
569
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
570 571 572
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
573 574 575
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
576

xiebaiyuan's avatar
xiebaiyuan 已提交
577
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
578

xiebaiyuan's avatar
xiebaiyuan 已提交
579
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
580

xiebaiyuan's avatar
xiebaiyuan 已提交
581
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
582

583
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
584

585
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
586

朔-望's avatar
朔-望 已提交
587
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
588 589 590
  GType *input_x_;
  GType *input_y_;
  GType *out_;
591 592
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
593
};
L
liuruilong 已提交
594
#endif
朔-望's avatar
朔-望 已提交
595

L
liuruilong 已提交
596
#ifdef CONCAT_OP
N
nhzlx 已提交
597
template <typename Dtype>
朔-望's avatar
朔-望 已提交
598
class ConcatParam : public OpParam {
N
nhzlx 已提交
599 600 601
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
602
 public:
603
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
604
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
605 606
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
607 608
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
609

N
nhzlx 已提交
610
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
611

xiebaiyuan's avatar
xiebaiyuan 已提交
612
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
613

614
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
615

朔-望's avatar
朔-望 已提交
616
 private:
N
nhzlx 已提交
617
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
618
  GType *out_;
619
  int axis_;
Z
zhangyang 已提交
620 621 622 623 624 625 626 627 628
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
629
};
L
liuruilong 已提交
630
#endif
朔-望's avatar
朔-望 已提交
631

E
eclipsess 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
663
#ifdef LRN_OP
N
nhzlx 已提交
664
template <typename Dtype>
E
eclipsess 已提交
665
class LrnParam : public OpParam {
N
nhzlx 已提交
666 667 668
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
669
 public:
670
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
671
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
672 673 674
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
675 676 677 678
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
679
    data_format_ = GetStringAttr("data_format", attrs);
680
  }
E
eclipsess 已提交
681

N
nhzlx 已提交
682
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
683

N
nhzlx 已提交
684
  RType *Out() const { return out_; }
E
eclipsess 已提交
685

N
nhzlx 已提交
686
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
687

688
  const int &N() const { return n_; }
E
eclipsess 已提交
689

690
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
691

692
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
693

694
  const float &K() const { return k_; }
E
eclipsess 已提交
695

W
wangliu 已提交
696
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
697

朔-望's avatar
朔-望 已提交
698
 private:
N
nhzlx 已提交
699 700 701
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
702 703 704 705
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
706
  string data_format_;
E
eclipsess 已提交
707
};
L
liuruilong 已提交
708 709 710
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
711
template <typename Dtype>
E
eclipsess 已提交
712
class BatchNormParam : OpParam {
N
nhzlx 已提交
713 714 715
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
716
 public:
717
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
718
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
719 720 721 722 723 724
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
725 726
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
727
    //    is_test_ = GetAttr<bool>("is_test", attrs);
728
  }
E
eclipsess 已提交
729

N
nhzlx 已提交
730
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
731

N
nhzlx 已提交
732
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
733

N
nhzlx 已提交
734
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
735

N
nhzlx 已提交
736
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
737

N
nhzlx 已提交
738
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
739

N
nhzlx 已提交
740
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
741

742
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
743

744
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
745

746
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
747

W
wangliu 已提交
748
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
749

750 751 752 753 754 755 756 757
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
758
 private:
N
nhzlx 已提交
759 760 761 762 763 764
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
765 766 767
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
768
  string data_format_;
769 770
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
771
};
L
liuruilong 已提交
772 773 774
#endif

#ifdef POOL_OP
N
nhzlx 已提交
775
template <typename Dtype>
776
class PoolParam : public OpParam {
N
nhzlx 已提交
777 778 779
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
780
 public:
781
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
782
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
783
    input_ = InputXFrom<GType>(inputs, scope);
784

N
nhzlx 已提交
785
    output_ = OutFrom<GType>(outputs, scope);
786
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
787 788 789
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
790
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
791
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
792
  }
793

N
nhzlx 已提交
794
  const RType *Input() const { return input_; }
795

N
nhzlx 已提交
796
  RType *Output() const { return output_; }
797

W
wangliu 已提交
798
  const string &PoolingType() const { return pooling_type_; }
799

W
wangliu 已提交
800
  const vector<int> &Ksize() const { return ksize_; }
801

W
wangliu 已提交
802
  const vector<int> &Strides() const { return strides_; }
803

W
wangliu 已提交
804
  const vector<int> &Paddings() const { return paddings_; }
805

806
  bool isCeilMode() const { return ceil_mode_; }
807

Z
zhangyang 已提交
808
  bool isGlobalPooling() const { return global_pooling_; }
809

朔-望's avatar
朔-望 已提交
810
 private:
N
nhzlx 已提交
811 812
  RType *input_;
  RType *output_;
W
wangliu 已提交
813 814 815 816
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
817
  bool ceil_mode_;
818
  bool global_pooling_ = false;
Z
zhangyang 已提交
819
#ifdef PADDLE_MOBILE_FPGA
820 821

 private:
H
hanbuhe 已提交
822
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
823 824

 public:
H
hanbuhe 已提交
825 826
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
827
#endif
828
};
L
liuruilong 已提交
829 830 831
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
832
template <typename Dtype>
E
eclipsess 已提交
833
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
834 835 836
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
837 838
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
839
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
840 841 842 843
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
844 845 846 847
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
848 849 850 851 852

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
    }
E
eclipsess 已提交
853 854 855 856 857 858
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
859
  const RType *Input() const { return input_; }
E
eclipsess 已提交
860

N
nhzlx 已提交
861
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
862

N
nhzlx 已提交
863
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
864

N
nhzlx 已提交
865
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
866

W
wangliu 已提交
867
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
868

W
wangliu 已提交
869
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
870

W
wangliu 已提交
871
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
872

W
wangliu 已提交
873
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
874 875 876 877 878 879 880 881 882 883 884

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

885 886 887 888
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
889
 private:
N
nhzlx 已提交
890 891 892 893
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
894 895 896 897
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
898 899 900 901 902
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
903
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
904
};
L
liuruilong 已提交
905
#endif
E
eclipsess 已提交
906

L
liuruilong 已提交
907
#ifdef BOXCODER_OP
N
nhzlx 已提交
908
template <typename Dtype>
E
eclipsess 已提交
909
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
910 911 912
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
913 914
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
915
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
916 917 918 919
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
920
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
921
  }
N
nhzlx 已提交
922
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
923

N
nhzlx 已提交
924
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
925

N
nhzlx 已提交
926
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
927

N
nhzlx 已提交
928
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
929 930 931 932

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
933 934 935 936
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
937 938
  std::string code_type_;
};
L
liuruilong 已提交
939
#endif
W
wangliu 已提交
940

L
liuruilong 已提交
941
#ifdef SOFTMAX_OP
N
nhzlx 已提交
942
template <typename Dtype>
W
wangliu 已提交
943
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
944 945 946
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
947 948
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
949
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
950 951
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
952
  }
N
nhzlx 已提交
953 954
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
955 956

 private:
N
nhzlx 已提交
957 958
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
959 960 961 962

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
963
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
964 965 966
  fpga::BypassArgs fpga_bypass_args;

 public:
967
  RType *FloatInput() const {
H
hanbuhe 已提交
968 969 970 971 972 973
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
974
};
L
liuruilong 已提交
975
#endif
W
wangliu 已提交
976

L
liuruilong 已提交
977
#ifdef SIGMOID_OP
N
nhzlx 已提交
978
template <typename Dtype>
W
wangliu 已提交
979
class SigmoidParam : public OpParam {
N
nhzlx 已提交
980 981 982
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
983 984
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
985
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
986 987
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
988
  }
N
nhzlx 已提交
989 990
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
991 992

 private:
N
nhzlx 已提交
993 994
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
995
};
L
liuruilong 已提交
996 997 998
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
999
template <typename Dtype>
E
eclipsess 已提交
1000
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1001 1002 1003
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1004 1005 1006 1007
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1008 1009 1010
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1011 1012 1013 1014 1015 1016 1017 1018
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
1019
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1020

N
nhzlx 已提交
1021
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1022

N
nhzlx 已提交
1023
  RType *Out() const { return out_; }
E
eclipsess 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1038 1039 1040
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1041 1042 1043 1044 1045 1046 1047
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1048
#endif
W
wangliu 已提交
1049

L
lijiancheng0614 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1072
template <typename Dtype>
L
liuruilong 已提交
1073
class FeedParam : public OpParam {
N
nhzlx 已提交
1074 1075 1076
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1077 1078
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1079 1080 1081 1082
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1083
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1084
  }
Y
yangfei 已提交
1085
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1086
  GType *Out() const { return out_; }
W
wangliu 已提交
1087
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1088

L
liuruilong 已提交
1089
 private:
Y
yangfei 已提交
1090
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1091
  GType *out_;
W
wangliu 已提交
1092
  int batch_size;
L
liuruilong 已提交
1093 1094
};

N
nhzlx 已提交
1095
template <typename Dtype>
L
liuruilong 已提交
1096
class FetchParam : public OpParam {
N
nhzlx 已提交
1097 1098 1099
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1100 1101
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1102
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1103
    input_x_ = InputXFrom<GType>(inputs, scope);
1104
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1105
  }
L
liuruilong 已提交
1106

N
nhzlx 已提交
1107
  const RType *InputX() const { return input_x_; }
1108 1109 1110
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1111
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1112
  }
L
liuruilong 已提交
1113

L
liuruilong 已提交
1114
 private:
N
nhzlx 已提交
1115
  RType *input_x_;
Y
yangfei 已提交
1116
  Tensor *out_;
L
liuruilong 已提交
1117 1118
};

L
lijiancheng0614 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1155
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1156
template <typename Dtype>
E
eclipsess 已提交
1157
class TransposeParam : public OpParam {
N
nhzlx 已提交
1158 1159 1160
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1161 1162 1163
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1164 1165
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1166 1167 1168
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1169
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1170

N
nhzlx 已提交
1171
  RType *Out() const { return out_; }
E
eclipsess 已提交
1172 1173 1174 1175

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1176 1177
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1178 1179
  vector<int> axis_;
};
L
liuruilong 已提交
1180
#endif
E
eclipsess 已提交
1181

L
lijiancheng0614 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1279
#ifdef RESHAPE_OP
N
nhzlx 已提交
1280
template <typename Dtype>
E
eclipsess 已提交
1281
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1282 1283 1284
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1285 1286 1287
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1288 1289 1290
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1291
    shape_ = GetAttr<vector<int>>("shape", attrs);
1292 1293 1294 1295 1296 1297 1298

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1299 1300
  }

N
nhzlx 已提交
1301
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1302

N
nhzlx 已提交
1303
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1304

N
nhzlx 已提交
1305
  RType *Out() const { return out_; }
E
eclipsess 已提交
1306 1307 1308 1309 1310 1311

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1312 1313 1314
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1315 1316 1317
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1318
#endif
E
eclipsess 已提交
1319

L
lijiancheng0614 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1341
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1342

E
eclipsess 已提交
1343
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1344

E
eclipsess 已提交
1345
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1346

E
eclipsess 已提交
1347
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1348 1349 1350 1351 1352 1353

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1354 1355 1356 1357
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1358 1359 1360 1361 1362
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1363
#ifdef SCALE_OP
N
nhzlx 已提交
1364
template <typename Dtype>
I
itminner 已提交
1365
class ScaleParam : public OpParam {
N
nhzlx 已提交
1366 1367 1368
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1369 1370 1371
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1372 1373 1374
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1375 1376 1377 1378 1379 1380
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1381
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1382

N
nhzlx 已提交
1383
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1384

N
nhzlx 已提交
1385
  RType *Out() const { return out_; }
I
itminner 已提交
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1396 1397 1398
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1399 1400 1401 1402 1403
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1404 1405 1406
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1407
template <typename Dtype>
I
itminner 已提交
1408
class SliceParam : public OpParam {
N
nhzlx 已提交
1409 1410 1411
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1412 1413 1414
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1415 1416 1417
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1418 1419 1420 1421 1422
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1423
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1424

N
nhzlx 已提交
1425
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1426

N
nhzlx 已提交
1427
  RType *Out() const { return out_; }
I
itminner 已提交
1428 1429 1430 1431 1432 1433 1434 1435

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1436 1437 1438
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1439 1440 1441 1442
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1443 1444 1445
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1446
template <typename Dtype>
T
Tian 已提交
1447
class ResizeParam : public OpParam {
N
nhzlx 已提交
1448 1449 1450
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1451 1452 1453
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1454 1455 1456
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1457 1458 1459 1460 1461 1462
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1463

N
nhzlx 已提交
1464
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1465

N
nhzlx 已提交
1466
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1467

N
nhzlx 已提交
1468
  RType *Out() const { return out_; }
T
Tian 已提交
1469

I
itminner 已提交
1470
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1471

I
itminner 已提交
1472
  const int &Height() const { return height_; }
T
Tian 已提交
1473

I
itminner 已提交
1474
  const int &Width() const { return width_; }
T
Tian 已提交
1475

I
itminner 已提交
1476
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1477

I
itminner 已提交
1478
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1479

I
itminner 已提交
1480
 private:
N
nhzlx 已提交
1481 1482 1483
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1484 1485 1486 1487 1488
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1489 1490 1491
};
#endif

L
liuruilong 已提交
1492
#ifdef RELU_OP
L
liuruilong 已提交
1493 1494 1495
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1496
template <typename Dtype>
D
relu  
dolphin8 已提交
1497
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1498 1499 1500
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1501
 public:
D
relu  
dolphin8 已提交
1502
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1503
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1504 1505
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1506 1507
  }

N
nhzlx 已提交
1508
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1509

N
nhzlx 已提交
1510
  RType *Out() const { return out_; }
E
eclipsess 已提交
1511 1512

 private:
N
nhzlx 已提交
1513 1514
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1515
};
D
relu  
dolphin8 已提交
1516 1517 1518

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1519
 public:
D
relu  
dolphin8 已提交
1520 1521 1522
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1523
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1524 1525
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1526
 public:
D
relu  
dolphin8 已提交
1527
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1528 1529 1530
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1531 1532
  framework::CLImage midImage;
};
Y
yangfei 已提交
1533
#endif
D
relu  
dolphin8 已提交
1534

L
liuruilong 已提交
1535
#endif
E
eclipsess 已提交
1536

T
Tian 已提交
1537
#ifdef PRELU_OP
N
nhzlx 已提交
1538
template <typename Dtype>
T
Tian 已提交
1539
class PReluParam : public OpParam {
N
nhzlx 已提交
1540 1541 1542
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1543 1544 1545
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1546
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1547
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1548
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1549
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1550
    out_ = OutFrom<GType>(outputs, scope);
1551
    mode_ = GetStringAttr("mode", attrs);
1552
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1553
  }
N
nhzlx 已提交
1554
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1555
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1556
  RType *Out() const { return out_; }
1557
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1558

I
itminner 已提交
1559
 private:
N
nhzlx 已提交
1560 1561
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1562
  RType *alpha_;
1563
  std::string mode_;
T
Tian 已提交
1564 1565 1566
};
#endif

N
nhzlx 已提交
1567
template <typename Dtype>
L
liuruilong 已提交
1568
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1569 1570 1571
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1572
 public:
L
liuruilong 已提交
1573
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1574
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1575 1576 1577 1578
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1579 1580 1581 1582
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1583
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1584

N
nhzlx 已提交
1585
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1586

N
nhzlx 已提交
1587
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1588

xiebaiyuan's avatar
xiebaiyuan 已提交
1589
  GType *Out() const { return out_; }
E
eclipsess 已提交
1590 1591 1592 1593 1594 1595 1596 1597

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1598
  GType *input_x_;
N
nhzlx 已提交
1599 1600
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1601
  GType *out_;
E
eclipsess 已提交
1602 1603 1604
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1605 1606 1607
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1608
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1609 1610

 public:
Z
zhangyang 已提交
1611 1612
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1613
#endif
E
eclipsess 已提交
1614
};
1615 1616

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1617 1618
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1619
#endif
E
eclipsess 已提交
1620

N
nhzlx 已提交
1621
template <typename Dtype>
1622
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1623 1624 1625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1626
 public:
L
liuruilong 已提交
1627
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1628
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1629 1630 1631 1632 1633
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1634
  }
N
nhzlx 已提交
1635
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1636 1637 1638

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1639
  RType *Output() const { return output_; }
W
wangliu 已提交
1640

L
liuruilong 已提交
1641
 protected:
N
nhzlx 已提交
1642
  RType *bias_;
W
wangliu 已提交
1643
  int axis_;
N
nhzlx 已提交
1644
  RType *output_;
W
wangliu 已提交
1645 1646
};

N
nhzlx 已提交
1647 1648
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1649

Z
zhangyang 已提交
1650
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1651 1652
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1653
 public:
L
liuruilong 已提交
1654
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1655 1656
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1657
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1658 1659 1660
};
#endif

1661
#ifdef FUSION_CONVADDPRELU_OP
1662 1663 1664 1665
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1666 1667 1668 1669

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1670 1671 1672
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1673
    mode_ = OpParam::GetStringAttr("mode", attrs);
1674
    framework::DDim dims = alpha_->dims();
1675 1676 1677
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1695 1696 1697 1698
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1699 1700 1701 1702

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1703 1704 1705 1706
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1707
    mode_ = OpParam::GetStringAttr("mode", attrs);
1708
    framework::DDim dims = alpha_->dims();
1709 1710 1711 1712 1713 1714
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1715
    if (keyX1_ == keyOutput_) {
1716
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1717
    } else if (keyY1_ == keyOutput_) {
1718
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1743
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1744
template <typename Dtype>
1745
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1746 1747 1748
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1749 1750 1751
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1764
  }
N
nhzlx 已提交
1765
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1766 1767 1768

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1769
  RType *Output() const { return output_; }
E
eclipsess 已提交
1770

N
nhzlx 已提交
1771
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1772

N
nhzlx 已提交
1773
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1774

N
nhzlx 已提交
1775
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1776

N
nhzlx 已提交
1777
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1778 1779 1780 1781 1782 1783 1784

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1785
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1786

N
nhzlx 已提交
1787
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1788

N
nhzlx 已提交
1789
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1790

N
nhzlx 已提交
1791
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1792 1793

 protected:
N
nhzlx 已提交
1794
  RType *bias_;
E
eclipsess 已提交
1795
  int axis_;
N
nhzlx 已提交
1796 1797 1798 1799 1800
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1801 1802 1803
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1804 1805
  RType *new_bias_;
  RType *new_scale_;
1806 1807 1808 1809 1810
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1811
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1812 1813 1814 1815 1816 1817
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1832
    if (keyX_ == keyBNY_) {
1833
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1834
    } else if (keyY_ == keyBNY_) {
1835
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1836
    }
1837
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1883
};
1884
#endif
E
eclipsess 已提交
1885

Z
zhangyang 已提交
1886
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1887
template <typename Dtype>
1888
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1889 1890 1891
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1892 1893 1894
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1905
  }
N
nhzlx 已提交
1906
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1907

N
nhzlx 已提交
1908
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1909

N
nhzlx 已提交
1910
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1911

N
nhzlx 已提交
1912
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1913

N
nhzlx 已提交
1914
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1915 1916 1917 1918 1919 1920 1921

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1922
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1923

N
nhzlx 已提交
1924
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1925

N
nhzlx 已提交
1926
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1927

N
nhzlx 已提交
1928
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1929 1930

 protected:
N
nhzlx 已提交
1931 1932 1933 1934 1935
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1936 1937 1938
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1939 1940
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1941 1942 1943
};
#endif

1944
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1945
template <typename Dtype>
1946
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1947 1948 1949
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1950 1951 1952
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1965
  }
N
nhzlx 已提交
1966
  RType *Bias() const { return bias_; }
1967 1968 1969

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1970
  RType *Output() const { return output_y_; }
1971

N
nhzlx 已提交
1972
  const RType *InputBias() const { return input_bias_; }
1973

N
nhzlx 已提交
1974
  const RType *InputMean() const { return input_mean_; }
1975

N
nhzlx 已提交
1976
  const RType *InputScale() const { return input_scale_; }
1977

N
nhzlx 已提交
1978
  const RType *InputVariance() const { return input_variance_; }
1979 1980 1981 1982 1983 1984 1985

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1986
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1987

N
nhzlx 已提交
1988
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1989

N
nhzlx 已提交
1990
  const RType *NewScale() const { return new_scale_; }
1991

N
nhzlx 已提交
1992
  const RType *NewBias() const { return new_bias_; }
1993 1994

 protected:
N
nhzlx 已提交
1995
  RType *bias_;
1996
  int axis_;
N
nhzlx 已提交
1997 1998 1999 2000 2001
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2002 2003 2004
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2005 2006
  RType *new_bias_;
  RType *new_scale_;
2007
};
E
eclipsess 已提交
2008
#endif
Y
Yao,kun 已提交
2009

E
eclipsess 已提交
2010
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2011
template <typename Dtype>
2012
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2013 2014 2015
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2016 2017 2018
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2029
  }
N
nhzlx 已提交
2030
  RType *Output() const { return output_; }
E
eclipsess 已提交
2031

N
nhzlx 已提交
2032
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2033

N
nhzlx 已提交
2034
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2035

N
nhzlx 已提交
2036
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2037

N
nhzlx 已提交
2038
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2039 2040 2041 2042 2043 2044 2045

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2046
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2047

N
nhzlx 已提交
2048
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2049

N
nhzlx 已提交
2050
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2051

N
nhzlx 已提交
2052
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2053 2054

 protected:
N
nhzlx 已提交
2055 2056 2057 2058 2059
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2060 2061 2062
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2063 2064
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2065 2066 2067 2068
};

#endif

2069
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2070
template <typename Dtype>
2071
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2072 2073 2074
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2075 2076 2077
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2088
  }
N
nhzlx 已提交
2089
  RType *Output() const { return output_; }
2090

N
nhzlx 已提交
2091
  const RType *InputBias() const { return input_bias_; }
2092

N
nhzlx 已提交
2093
  const RType *InputMean() const { return input_mean_; }
2094

N
nhzlx 已提交
2095
  const RType *InputScale() const { return input_scale_; }
2096

N
nhzlx 已提交
2097
  const RType *InputVariance() const { return input_variance_; }
2098 2099 2100 2101 2102 2103 2104

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2105
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2106

N
nhzlx 已提交
2107
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2108

N
nhzlx 已提交
2109
  const RType *NewScale() const { return new_scale_; }
2110

N
nhzlx 已提交
2111
  const RType *NewBias() const { return new_bias_; }
2112 2113

 protected:
N
nhzlx 已提交
2114 2115 2116 2117 2118
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2119 2120 2121
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2122 2123
  RType *new_bias_;
  RType *new_scale_;
2124 2125 2126
};
#endif

Y
Yao,kun 已提交
2127
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2128
template <typename Dtype>
Y
Yao,kun 已提交
2129
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2130 2131 2132
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2133 2134 2135 2136
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2137 2138
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2139 2140 2141 2142 2143
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2144
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2145

E
eclipsess 已提交
2146
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2147 2148 2149 2150 2151 2152 2153 2154

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2155 2156
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2157 2158 2159 2160
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2161
#endif
Y
Yao,kun 已提交
2162

2163
#ifdef DROPOUT_OP
N
nhzlx 已提交
2164
template <typename Dtype>
Y
Yao,kun 已提交
2165
class DropoutParam : public OpParam {
N
nhzlx 已提交
2166 2167 2168
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2169 2170 2171
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2172 2173
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2174 2175

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2176 2177
  }

N
nhzlx 已提交
2178
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2179

N
nhzlx 已提交
2180
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2181

Y
yangfei 已提交
2182 2183
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2184
 private:
N
nhzlx 已提交
2185 2186
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2187
  float dropout_prob_;
Y
Yao,kun 已提交
2188
};
2189
#endif
Y
Yao,kun 已提交
2190

H
hjchen2 已提交
2191
#ifdef CONV_TRANSPOSE_OP
N
nhzlx 已提交
2192
template <typename Dtype>
L
liuruilong 已提交
2193
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2194 2195 2196
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2197 2198 2199 2200
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2201 2202 2203
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
2204 2205 2206 2207 2208 2209
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2210
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2211

N
nhzlx 已提交
2212
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2213

N
nhzlx 已提交
2214
  RType *Output() const { return output_; }
L
liuruilong 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2225 2226 2227
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2228 2229 2230 2231 2232 2233 2234
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2260 2261
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2306
    axis = GetAttr<int>("axis", attrs);
2307 2308 2309
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2310
  const int &Axis() const { return axis; }
2311 2312 2313 2314

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2315
  int axis;
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2329
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2330
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2331 2332 2333 2334 2335 2336
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2337 2338
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2339 2340 2341 2342 2343
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2344 2345 2346

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2347
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2348
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2349 2350 2351
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2368 2369
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2370 2371
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2372
  const RType *InputOutPutSize() const { return input_outsize_; }
2373
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2374 2375
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2376 2377 2378 2379 2380

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2381 2382
  int out_h_;
  int out_w_;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2398
  const RType *Input() const { return input_; }
2399 2400 2401 2402 2403 2404 2405 2406
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2407
#ifdef QUANT_OP
2408
template <typename Dtype>
2409 2410 2411 2412 2413
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2414 2415
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2416 2417 2418 2419 2420 2421 2422
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    // online
    // scale = max(abs(x))
    online_scale_ = GetVarValue<GType>("OutScale", outputs, scope);
    // offline
    if (HasAttr("static_scale", attrs)) {
2423
      is_static_ = true;
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
      static_scale_ = GetAttr<float>("static_scale", attrs);
    }
    // x = round(scale * x)
    if (HasAttr("round_type", attrs)) {
      round_type_ = GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  //
  RType *online_scale_;
  // if static scale or not
  bool is_static_ = false;
  // quantize scale
  float static_scale_ = 1.0f;
  // round method type
  // nearest_zero and nearest_even is valid currently
2445
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
2446
};
2447
#endif
2448

2449
#ifdef DEQUANT_OP
2450
template <typename Dtype>
2451 2452 2453 2454 2455
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2456 2457
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
    input_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    activation_scale_ = GetVarValue<GType>("Scale", inputs, scope);
    // dequantization is performed as x = x / static_scale / online_scale
    if (HasAttr("weight_scale", attrs)) {
      weight_scale_ = GetAttr<float>("weight_scale", attrs);
    } else {
      weight_scale_ = GetAttr<float>("max_range", attrs);
    }
  }

 public:
  // op input
  RType *input_;
  // op output
  RType *out_;
  RType *activation_scale_;
  float weight_scale_;
};
2477
#endif
2478

朔-望's avatar
朔-望 已提交
2479 2480
}  // namespace operators
}  // namespace paddle_mobile