提交 bb6230ac 编写于 作者: Y yangfei

imp fusion_conv_bn_add_relu op in resnet

上级 80bb2a69
......@@ -26,6 +26,7 @@ const char *G_OP_TYPE_FUSION_CONV_ADD_RELU = "fusion_conv_add_relu";
const char *G_OP_TYPE_FUSION_CONV_ADD_PRELU = "fusion_conv_add_prelu";
const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU = "fusion_conv_add_add_prelu";
const char *G_OP_TYPE_FUSION_CONV_ADD_BN_RELU = "fusion_conv_add_bn_relu";
const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU = "fusion_conv_bn_add_relu";
const char *G_OP_TYPE_FUSION_DWCONV_BN_RELU = "fusion_dwconv_bn_relu";
const char *G_OP_TYPE_FUSION_CONV_BN_RELU = "fusion_conv_bn_relu";
const char *G_OP_TYPE_FC = "fusion_fc";
......@@ -79,6 +80,7 @@ std::unordered_map<
{G_OP_TYPE_BOX_CODER,
{{"PriorBox", "PriorBoxVar", "TargetBox"}, {"OutputBox"}}},
{G_OP_TYPE_FUSION_CONV_ADD_BN_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_FUSION_CONV_BN_ADD_RELU, {{"Input"}, {"Out"}}},
{G_OP_TYPE_PRIOR_BOX, {{"Image", "Input"}, {"Boxes", "Variances"}}},
{G_OP_TYPE_MULTICLASS_NMS, {{"BBoxes", "Scores"}, {"Out"}}},
{G_OP_TYPE_FC, {{"X", "Y", "Z"}, {"Out"}}},
......
......@@ -90,6 +90,7 @@ extern const char *G_OP_TYPE_FUSION_CONV_ADD_ADD_PRELU;
extern const char *G_OP_TYPE_FC;
extern const char *G_OP_TYPE_FUSION_CONV_ADD;
extern const char *G_OP_TYPE_FUSION_CONV_ADD_BN_RELU;
extern const char *G_OP_TYPE_FUSION_CONV_BN_ADD_RELU;
extern const char *G_OP_TYPE_FUSION_DWCONV_BN_RELU;
extern const char *G_OP_TYPE_FUSION_CONV_BN_RELU;
......
......@@ -18,34 +18,34 @@ limitations under the License. */
#include "operators/math/conv_func.h"
namespace paddle_mobile {
namespace operators {
template <typename Dtype, typename T>
void FusionConvBNAddReluOp<Dtype, T>::InferShape() const {
auto in_dims = this->param_.Input()->dims();
auto filter_dims = this->param_.Filter()->dims();
const std::vector<int> &strides = this->param_.Strides();
std::vector<int> paddings = this->param_.Paddings();
int groups = this->param_.Groups();
std::vector<int> dilations = this->param_.Dilations();
PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() &&
dilations.size() == paddings.size() &&
paddings.size() == strides.size()),
"ConvParam is not suitable");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(
math::ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i],
paddings[i], strides[i]));
}
framework::DDim ddim = framework::make_ddim(output_shape);
this->param_.Output()->Resize(ddim);
}
} // namespace operators
namespace operators {
template <typename Dtype, typename T>
void FusionConvBNAddReluOp<Dtype, T>::InferShape() const {
auto in_dims = this->param_.Input()->dims();
auto filter_dims = this->param_.Filter()->dims();
const std::vector<int> &strides = this->param_.Strides();
std::vector<int> paddings = this->param_.Paddings();
int groups = this->param_.Groups();
std::vector<int> dilations = this->param_.Dilations();
PADDLE_MOBILE_ENFORCE((in_dims.size() == filter_dims.size() &&
dilations.size() == paddings.size() &&
paddings.size() == strides.size()),
"ConvParam is not suitable");
std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
for (size_t i = 0; i < strides.size(); ++i) {
output_shape.push_back(
math::ConvOutputSize(in_dims[i + 2], filter_dims[i + 2], dilations[i],
paddings[i], strides[i]));
}
framework::DDim ddim = framework::make_ddim(output_shape);
this->param_.Output()->Resize(ddim);
}
} // namespace operators
} // namespace paddle_mobile
namespace ops = paddle_mobile::operators;
......
......@@ -24,67 +24,67 @@ limitations under the License. */
#include "operators/kernel/conv_bn_add_relu_kernel.h"
namespace paddle_mobile {
namespace operators {
using std::string;
using std::vector;
class FusionConvBNAddReluMatcher : public framework::FusionOpMatcher {
public:
FusionConvBNAddReluMatcher() {
node_ = framework::Node(G_OP_TYPE_CONV);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_BATCHNORM) >
std::make_shared<framework::Node>(G_OP_TYPE_ELEMENTWISE_ADD) >
std::make_shared<framework::Node>(G_OP_TYPE_RELU);
}
void FolderNodes(
framework::Node *node,
std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
node->Folder(node_.Depth(), Type(),
{{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"},{"X","X"}}},
{G_OP_TYPE_BATCHNORM,
{{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"},
{"Y","BNY"}}}},
removed_nodes);
}
std::string Type() { return G_OP_TYPE_FUSION_CONV_BN_ADD_RELU; }
std::vector<std::pair<int, std::string>> NeedCheck() {
DLOG << " conv bn add relu check add X ";
return {{2, "Y"}, {2, "X"}};
}
};
template <typename DeviceType, typename T>
class FusionConvBNAddReluOp
: public framework::OperatorWithKernel<
DeviceType, FusionConvBNAddReluParam<DeviceType>,
operators::ConvBNAddReluKernel<DeviceType, T>> {
public:
FusionConvBNAddReluOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, FusionConvBNAddReluParam<DeviceType>,
operators::ConvBNAddReluKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
using framework::OperatorWithKernel<
DeviceType, FusionConvBNAddReluParam<DeviceType>,
operators::ConvBNAddReluKernel<DeviceType, T>>::OperatorWithKernel;
void InferShape() const override;
protected:
};
namespace operators {
using std::string;
using std::vector;
class FusionConvBNAddReluMatcher : public framework::FusionOpMatcher {
public:
FusionConvBNAddReluMatcher() {
node_ = framework::Node(G_OP_TYPE_CONV);
node_ > std::make_shared<framework::Node>(G_OP_TYPE_BATCHNORM) >
std::make_shared<framework::Node>(G_OP_TYPE_ELEMENTWISE_ADD) >
std::make_shared<framework::Node>(G_OP_TYPE_RELU);
}
void FolderNodes(
framework::Node *node,
std::vector<std::shared_ptr<framework::Node>> *removed_nodes) {
node->Folder(node_.Depth(), Type(),
{{G_OP_TYPE_ELEMENTWISE_ADD, {{"Y", "Y"}, {"X", "X"}}},
{G_OP_TYPE_BATCHNORM,
{{"Scale", "Scale"},
{"Mean", "Mean"},
{"Bias", "Bias"},
{"Variance", "Variance"},
{"Y", "BNY"}}}},
removed_nodes);
}
std::string Type() { return G_OP_TYPE_FUSION_CONV_BN_ADD_RELU; }
std::vector<std::pair<int, std::string>> NeedCheck() {
DLOG << " conv bn add relu check add X ";
return {{2, "Y"}, {2, "X"}};
}
};
template <typename DeviceType, typename T>
class FusionConvBNAddReluOp
: public framework::OperatorWithKernel<
DeviceType, FusionConvBNAddReluParam<DeviceType>,
operators::ConvBNAddReluKernel<DeviceType, T>> {
public:
FusionConvBNAddReluOp(const string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs,
const framework::AttributeMap &attrs,
std::shared_ptr<framework::Scope> scope)
: framework::OperatorWithKernel<
DeviceType, FusionConvBNAddReluParam<DeviceType>,
operators::ConvBNAddReluKernel<DeviceType, T>>(
type, inputs, outputs, attrs, scope) {}
using framework::OperatorWithKernel<
DeviceType, FusionConvBNAddReluParam<DeviceType>,
operators::ConvBNAddReluKernel<DeviceType, T>>::OperatorWithKernel;
void InferShape() const override;
protected:
};
#ifdef PADDLE_MOBILE_CPU
#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER
static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar(
new FusionConvBNAddReluMatcher());
static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar(
new FusionConvBNAddReluMatcher());
#define FUSION_CONV_BN_ADD_RELU_REGISTER
#endif
......@@ -92,7 +92,7 @@ namespace paddle_mobile {
#ifdef PADDLE_MOBILE_MALI_GPU
#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER
#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER
static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar(
new FusionConvBNAddReluMatcher());
#define FUSION_CONV_BN_ADD_RELU_REGISTER
......@@ -102,7 +102,7 @@ static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar(
#ifdef PADDLE_MOBILE_FPGA
#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER
#ifndef FUSION_CONV_BN_ADD_RELU_REGISTER
static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar(
new FusionConvBNAddReluMatcher());
#define FUSION_CONV_BN_ADD_RELU_REGISTER
......@@ -110,7 +110,7 @@ static framework::FusionOpRegistrar fusion_conv_bn_add_relu_registrar(
#endif
} // namespace operators
} // namespace operators
} // namespace paddle_mobile
#ifdef PADDLE_MOBILE_CPU
......
......@@ -18,49 +18,49 @@ limitations under the License. */
#include "operators/kernel/central-arm-func/conv_bn_add_relu_arm_func.h"
namespace paddle_mobile {
namespace operators {
namespace operators {
template <>
bool ConvBNAddReluKernel<CPU, float>::Init(
FusionConvBNAddReluParam<CPU> *param) {
const Tensor *mean = param->InputMean();
const Tensor *variance = param->InputVariance();
const Tensor *scale = param->InputScale();
const Tensor *bias = param->InputBias();
const float epsilon = param->Epsilon();
template <>
bool ConvBNAddReluKernel<CPU, float>::Init(
FusionConvBNAddReluParam<CPU> *param) {
const Tensor *mean = param->InputMean();
const Tensor *variance = param->InputVariance();
const Tensor *scale = param->InputScale();
const Tensor *bias = param->InputBias();
const float epsilon = param->Epsilon();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
auto mean_ptr = mean->data<float>();
auto variance_ptr = variance->data<float>();
auto scale_ptr = scale->data<float>();
auto bias_ptr = bias->data<float>();
const int C = mean->numel();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({C});
auto new_bias_ptr = new_bias->mutable_data<float>({C});
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
return true;
}
const int C = mean->numel();
float inv_std_ptr[C];
for (int i = 0; i < C; i++) {
inv_std_ptr[i] =
1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
}
Tensor *new_scale = new Tensor();
Tensor *new_bias = new Tensor();
auto new_scale_ptr = new_scale->mutable_data<float>({C});
auto new_bias_ptr = new_bias->mutable_data<float>({C});
for (int i = 0; i < C; i++) {
new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
}
param->SetNewScale(new_scale);
param->SetNewBias(new_bias);
return true;
}
template <>
void ConvBNAddReluKernel<CPU, float>::Compute(
const FusionConvBNAddReluParam<CPU> &param) const {
ConvBNAddReluCompute<float>(param);
}
template class ConvBNAddReluKernel<CPU, float>;
template <>
void ConvBNAddReluKernel<CPU, float>::Compute(
const FusionConvBNAddReluParam<CPU> &param) const {
ConvBNAddReluCompute<float>(param);
}
template class ConvBNAddReluKernel<CPU, float>;
} // namespace operators
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -24,123 +24,124 @@ limitations under the License. */
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
void ConvBNAddReluBasic(const FusionConvBNAddReluParam<CPU> &param) {
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor new_bias = *param.NewBias();
Tensor new_scale = *param.NewScale();
Tensor *output = param.Output();
Tensor *bias1 = param.Bias();
int groups = param.Groups();
DLOG<<"yangfei2";
DLOG<<bias1->dims();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
col_shape_vec[0] = input->dims()[1] / groups;
for (size_t j = 0; j < data_dim; ++j) {
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
}
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand =
math::IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
Tensor bias_batch = bias1->Slice(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) {
col.ShareDataWith(in_slice);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
} else if (data_dim == 2U) {
// im2col
im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
}
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
Tensor bias_data = bias_batch.Slice(g * out_step, (g + 1) * out_step);
math::matmulWithBnAdd<float>(
filter_slice, false, col_matrix, false, static_cast<float>(1),
&out_slice, static_cast<float>(1), true, &new_scale, &new_bias, g,bias_data.data<float>());
}
}
}
template <typename P>
void ConvBNAddReluCompute(const FusionConvBNAddReluParam<CPU> &param) {
Tensor Bias;
Bias.mutable_data<float>({param.Groups()});
if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
math::DepthwiseConvAddBNRelu3x3s1p1(param.Input(), param.Filter(),
param.Output(), param.NewScale(),
param.NewBias(), true);
} else if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 2) {
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
math::DepthwiseConvAddBNRelu3x3s2p1v2(param.Input(), param.Filter(),
param.Output(), param.NewScale(),
param.NewBias(), true);
} else {
ConvBNAddReluBasic(param);
}
}
} // namespace operators
namespace operators {
void ConvBNAddReluBasic(const FusionConvBNAddReluParam<CPU> &param) {
const Tensor *input = param.Input();
Tensor filter = *param.Filter();
Tensor new_bias = *param.NewBias();
Tensor new_scale = *param.NewScale();
Tensor *output = param.Output();
Tensor *bias1 = param.Bias();
int groups = param.Groups();
DLOG << "yangfei2";
DLOG << bias1->dims();
std::vector<int> strides = param.Strides();
std::vector<int> paddings = param.Paddings();
std::vector<int> dilations = param.Dilations();
const int batch_size = static_cast<int>(input->dims()[0]);
std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
size_t data_dim = filter_shape_vec.size() - 2;
std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
col_shape_vec[0] = input->dims()[1] / groups;
for (size_t j = 0; j < data_dim; ++j) {
col_shape_vec[j + 1] = filter_shape_vec[j + 2];
col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
}
framework::DDim col_shape(framework::make_ddim(col_shape_vec));
framework::DDim col_matrix_shape =
framework::flatten_to_2d(col_shape, data_dim + 1);
bool is_expand =
math::IsExpand(filter_shape_vec, strides, paddings, dilations);
Tensor col;
Tensor col_matrix;
if (is_expand) {
col.mutable_data<float>(col_shape);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
}
framework::DDim input_shape = framework::slice_ddim(
input->dims(), 1, static_cast<int>(input->dims().size()));
framework::DDim filter_matrix_shape = {filter.dims()[0],
filter.numel() / filter.dims()[0]};
filter.Resize(filter_matrix_shape);
framework::DDim output_matrix_shape = {
output->dims()[1],
output->numel() / (output->dims()[0] * output->dims()[1])};
// convolution operator: im2col(or vol2col) + gemm
int in_step = static_cast<int>(input->dims()[1]) / groups;
int out_step = static_cast<int>(output->dims()[1]) / groups;
math::Vol2ColFunctor<CPU, float> vol2col;
math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;
for (int i = 0; i < batch_size; i++) {
Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
Tensor bias_batch = bias1->Slice(i, i + 1).Resize(output_matrix_shape);
for (int g = 0; g < groups; g++) {
Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
if (!is_expand) {
col.ShareDataWith(in_slice);
col_matrix.ShareDataWith(col);
col_matrix.Resize(col_matrix_shape);
} else if (data_dim == 2U) {
// im2col
im2col(in_slice, dilations, strides,
std::vector<int>{paddings[0], paddings[1], paddings[0],
paddings[1]},
&col);
} else if (data_dim == 3U) {
// vol2col
vol2col(in_slice, dilations, strides, paddings, &col);
}
// gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
Tensor bias_data = bias_batch.Slice(g * out_step, (g + 1) * out_step);
math::matmulWithBnAdd<float>(filter_slice, false, col_matrix, false,
static_cast<float>(1), &out_slice,
static_cast<float>(1), true, &new_scale,
&new_bias, g, bias_data.data<float>());
}
}
}
template <typename P>
void ConvBNAddReluCompute(const FusionConvBNAddReluParam<CPU> &param) {
Tensor Bias;
Bias.mutable_data<float>({param.Groups()});
if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
math::DepthwiseConvAddBNRelu3x3s1p1(param.Input(), param.Filter(),
param.Output(), param.NewScale(),
param.NewBias(), true);
} else if (param.Groups() == param.Input()->dims()[1] &&
param.Input()->dims()[1] == param.Output()->dims()[1] &&
param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
param.Filter()->dims()[2] == 3 && param.Strides()[0] == 2) {
// math::DepthwiseConvAddBNRelu3x3s2p1(param.Input(), param.Filter(),
// param.Output(), param.NewScale(),
// param.NewBias(), 1);
math::DepthwiseConvAddBNRelu3x3s2p1v2(param.Input(), param.Filter(),
param.Output(), param.NewScale(),
param.NewBias(), true);
} else {
ConvBNAddReluBasic(param);
}
}
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -26,20 +26,20 @@ limitations under the License. */
#include "operators/op_param.h"
namespace paddle_mobile {
namespace operators {
namespace operators {
using framework::DDim;
using framework::OpKernelBase;
using framework::DDim;
using framework::OpKernelBase;
template <typename DeviceType, typename T>
class ConvBNAddReluKernel
: public OpKernelBase<DeviceType, FusionConvBNAddReluParam<DeviceType>> {
public:
void Compute(const FusionConvBNAddReluParam<DeviceType> &param) const;
bool Init(FusionConvBNAddReluParam<DeviceType> *param);
};
template <typename DeviceType, typename T>
class ConvBNAddReluKernel
: public OpKernelBase<DeviceType, FusionConvBNAddReluParam<DeviceType>> {
public:
void Compute(const FusionConvBNAddReluParam<DeviceType> &param) const;
bool Init(FusionConvBNAddReluParam<DeviceType> *param);
};
} // namespace operators
} // namespace operators
} // namespace paddle_mobile
#endif
......@@ -716,6 +716,27 @@ void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
}
}
// 分块矩阵乘法
void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C,
int ldc, bool relu, float *new_scale, float *new_bias,
float *bias) {
#pragma omp parallel for
for (int j = 0; j < nc; j += NR) {
for (int i = 0; i < mc; i += MR) {
#if __aarch64__
// AddDot8x12(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x16(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
#else
// AddDot4x4(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
// AddDot4x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
AddDot6x8(KC, a + i * KC, b + j * KC, c + i * NC + j, NC);
#endif
}
}
WriteWithBnAddRelu(mc, nc, c, C, ldc, new_scale, new_bias, bias);
}
void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
float *c, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1) {
......@@ -1183,6 +1204,59 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
}
}
// C = A * B, batchnorm(C),C = C + bias; relu(C)
void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias, float *bias) {
int nc1 = nc / 4;
int _nc1 = nc % 4;
float *c_ptr, *C_ptr, *bias_ptr;
float32x4_t cv;
float32x4_t nbias;
float32x2_t scale;
float32x4_t biasv;
float32x4_t zero = vdupq_n_f32(0.0);
for (int i = 0; i < mc; ++i) {
c_ptr = c + i * NC;
C_ptr = C + i * ldc;
bias_ptr = bias + i * ldc;
nbias = vld1q_dup_f32(new_bias);
scale = vld1_dup_f32(new_scale);
new_bias++;
new_scale++;
float scale0 = vget_lane_f32(scale, 0);
for (int j = 0; j < nc1; ++j) {
cv = vld1q_f32(c_ptr);
biasv = vld1q_f32(bias_ptr);
cv = vmlaq_n_f32(nbias, cv, scale0);
cv = vaddq_f32(cv, biasv);
cv = vmaxq_f32(cv, zero);
vst1q_f32(C_ptr, cv);
c_ptr += 4;
C_ptr += 4;
bias_ptr += 4;
}
if (_nc1 != 0) {
cv = vld1q_f32(c_ptr);
biasv = vld1q_f32(bias_ptr);
cv = vmlaq_n_f32(nbias, cv, scale0);
cv = vaddq_f32(cv, biasv);
cv = vmaxq_f32(cv, zero);
if (_nc1 >= 1) {
vst1q_lane_f32(C_ptr, cv, 0);
C_ptr++;
}
if (_nc1 >= 2) {
vst1q_lane_f32(C_ptr, cv, 1);
C_ptr++;
}
if (_nc1 >= 3) {
vst1q_lane_f32(C_ptr, cv, 2);
}
}
}
}
#else
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc) {
......@@ -2426,6 +2500,59 @@ void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc, float *scale,
"q8", "q10", "q11", "q12", "q13", "q14");
}
// C = A * B, batchnorm(C),C = C + bias; relu(C)
void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias, float *bias) {
int nc1 = nc / 4;
int _nc1 = nc % 4;
float *c_ptr, *C_ptr, *bias_ptr;
float32x4_t cv;
float32x4_t nbias;
float32x2_t scale;
float32x4_t biasv;
float32x4_t zero = vdupq_n_f32(0.0);
for (int i = 0; i < mc; ++i) {
c_ptr = c + i * NC;
C_ptr = C + i * ldc;
bias_ptr = bias + i * ldc;
nbias = vld1q_dup_f32(new_bias);
scale = vld1_dup_f32(new_scale);
new_bias++;
new_scale++;
float scale0 = vget_lane_f32(scale, 0);
for (int j = 0; j < nc1; ++j) {
cv = vld1q_f32(c_ptr);
biasv = vld1q_f32(bias_ptr);
cv = vmlaq_n_f32(nbias, cv, scale0);
cv = vaddq_f32(cv, biasv);
cv = vmaxq_f32(cv, zero);
vst1q_f32(C_ptr, cv);
c_ptr += 4;
C_ptr += 4;
bias_ptr += 4;
}
if (_nc1 != 0) {
cv = vld1q_f32(c_ptr);
biasv = vld1q_f32(bias_ptr);
cv = vmlaq_n_f32(nbias, cv, scale0);
cv = vaddq_f32(cv, biasv);
cv = vmaxq_f32(cv, zero);
if (_nc1 >= 1) {
vst1q_lane_f32(C_ptr, cv, 0);
C_ptr++;
}
if (_nc1 >= 2) {
vst1q_lane_f32(C_ptr, cv, 1);
C_ptr++;
}
if (_nc1 >= 3) {
vst1q_lane_f32(C_ptr, cv, 2);
}
}
}
}
/*
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc) {
......@@ -2893,6 +3020,68 @@ void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile::memory::Free(zero);
}
void SgemmWithBnAdd(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias, float *bias) {
// L1 data cache is 32 kib (Per Contex-A57, Contex-A72, Contex-A73)
// L2 cache is 0.5~4 Mib (Contex-A72 cluster)
int L1 = 32 * 1024;
int L2 = 512 * 1024;
KC = k;
MC = L1 / (KC * sizeof(float));
NC = L2 / (KC * sizeof(float));
// make sure MC is multiple of MR, and NC is multiple of NR
int mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR - 1) / MR * MR;
// DLOG << "mblock_num = " << mblock_num << ", MC = " << MC << "\n";
int nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR - 1) / NR * NR;
// DLOG << "nblock_num = " << nblock_num << ", NC = " << NC << "\n";
packedA = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * MC * KC));
packedB = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * KC * NC));
packedC = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * MC * NC));
zero = static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * KC));
memset(static_cast<void *>(zero), 0, sizeof(float) * KC);
int mc, nc;
for (int j = 0; j < n; j += NC) {
nc = s_min(n - j, NC);
#if __aarch64__
// PackMatrixB_12c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
PackMatrixB_16c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
#else
PackMatrixB_8c(KC, nc, nc % NR, &B(0, j), ldb, packedB);
#endif
for (int i = 0; i < m; i += MC) {
mc = s_min(m - i, MC);
#if __aarch64__
PackMatrixA_6r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
// PackMatrixA_8r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
#else
PackMatrixA_6r(mc, KC, mc % MR, &A(i, 0), lda, packedA);
#endif
InnerKernelWithBnAdd(mc, nc, alpha, packedA, packedB, beta, packedC,
&C(i, j), ldc, relu, new_scale + i, new_bias + i,
bias + i * ldc + j);
}
}
paddle_mobile::memory::Free(packedA);
paddle_mobile::memory::Free(packedB);
paddle_mobile::memory::Free(packedC);
paddle_mobile::memory::Free(zero);
}
void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
const float *B, int ldb, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1) {
......@@ -3176,6 +3365,115 @@ void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A, int lda,
paddle_mobile::memory::Free(zero);
}
void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta, float *C,
int ldc, bool relu, float *new_scale, float *new_bias,
float *bias) {
#ifdef _OPENMP
int max_threads = omp_get_max_threads();
#else
int max_threads = 1;
#endif
int L1 = 64 / max_threads * 1024;
KC = k;
if (m > n) {
// 对 A 分块
MC = L1 / (KC * sizeof(float));
int mblock_num = (m + MC - 1) / MC;
MC = (m + mblock_num - 1) / mblock_num;
MC = (MC + MR - 1) / MR * MR;
// 补齐 B
NC = (n + NR - 1) / NR * NR;
#if __aarch64__
procPackA = PackMatrixA_6r;
procPackB = PackMatrixB_omp_16c;
procAddDot = AddDot6x16;
#else
procPackA = PackMatrixA_6r;
procPackB = PackMatrixB_omp_8c;
procAddDot = AddDot6x8;
#endif
packedB = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * KC * NC));
procPackB(KC, NC, NC % NR, B, ldb, packedB);
packedA = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * MC * KC * max_threads));
} else {
// 对 B 分块
NC = L1 / (KC * sizeof(float));
int nblock_num = (n + NC - 1) / NC;
NC = (n + nblock_num - 1) / nblock_num;
NC = (NC + NR - 1) / NR * NR;
// 补齐 A
MC = (m + MR - 1) / MR * MR;
#if __aarch64__
procPackA = PackMatrixA_omp_6r;
procPackB = PackMatrixB_16c;
procAddDot = AddDot6x16;
#else
procPackA = PackMatrixA_omp_6r;
procPackB = PackMatrixB_8c;
procAddDot = AddDot6x8;
#endif
packedA = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * MC * KC));
procPackA(MC, KC, MC % MR, A, lda, packedA);
packedB = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * KC * NC * max_threads));
}
zero = static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * KC));
memset(static_cast<void *>(zero), 0, sizeof(float) * KC);
packedC = static_cast<float *>(
paddle_mobile::memory::Alloc(sizeof(float) * MC * NC * max_threads));
if (m > n) {
#pragma omp parallel for
for (int i = 0; i < m; i += MC) {
#ifdef _OPENMP
int local_threads = omp_get_thread_num();
#else
int local_threads = 0;
#endif
int mc;
mc = s_min(m - i, MC);
float *local_A = packedA + MC * KC * local_threads;
float *local_C = packedC + MC * NC * local_threads;
procPackA(mc, KC, mc % MR, &A(i, 0), lda, local_A);
InnerKernelWithBnAdd(mc, n, alpha, local_A, packedB, beta, local_C,
&C(i, 0), ldc, relu, new_scale + i, new_bias + i,
bias + i * ldc);
}
} else {
#pragma omp parallel for
for (int j = 0; j < n; j += NC) {
#ifdef _OPENMP
int local_threads = omp_get_thread_num();
#else
int local_threads = 0;
#endif
int nc;
nc = s_min(n - j, NC);
float *local_B = packedB + KC * NC * local_threads;
float *local_C = packedC + MC * NC * local_threads;
procPackB(KC, nc, nc % NR, &B(0, j), ldb, local_B);
InnerKernelWithBnAdd(m, nc, alpha, packedA, local_B, beta, local_C,
&C(0, j), ldc, relu, new_scale, new_bias, bias + j);
}
}
paddle_mobile::memory::Free(packedA);
paddle_mobile::memory::Free(packedB);
paddle_mobile::memory::Free(packedC);
paddle_mobile::memory::Free(zero);
}
void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
const float *B, int ldb, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1) {
......
......@@ -81,6 +81,10 @@ void InnerKernelWithBias(int mc, int nc, float alpha, const float *a,
void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C, int ldc,
bool relu, float *new_scale, float *new_bias);
void InnerKernelWithBnAdd(int mc, int nc, float alpha, const float *a,
const float *b, float beta, float *c, float *C,
int ldc, bool relu, float *new_scale, float *new_bias,
float *bias);
void InnerKernelWithPRelu(int mc, int nc, const float *a, const float *b,
float *c, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1);
......@@ -125,7 +129,8 @@ void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale,
// C = A * B, batchnorm(C), relu(C)
void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias);
void WriteWithBnAddRelu(int mc, int nc, float *c, float *C, int ldc,
float *new_scale, float *new_bias, float *bias1);
/*
// 向量矩阵乘法结果回写
// C = A * B
......@@ -153,7 +158,9 @@ void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias);
void SgemmWithBnAdd(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias, float *bias);
void SgemmWithPRelu(int m, int n, int k, const float *A, int lda,
const float *B, int ldb, float *C, int ldc, float *p,
std::string mode, float *bias, float *bias1);
......@@ -167,6 +174,11 @@ void Sgemm_omp(int m, int n, int k, float alpha, const float *A, int lda,
void SgemmWithBn_omp(int m, int n, int k, float alpha, const float *A, int lda,
const float *B, int ldb, float beta, float *C, int ldc,
bool relu, float *new_scale, float *new_bias);
// 32位 float 矩阵乘法, 并对结果进行 batchnorm和add(openmp 多线程版本)
void SgemmWithBnAdd_omp(int m, int n, int k, float alpha, const float *A,
int lda, const float *B, int ldb, float beta, float *C,
int ldc, bool relu, float *new_scale, float *new_bias,
float *bias);
void SgemmWithPRelu_omp(int m, int n, int k, const float *A, int lda,
const float *B, int ldb, float *C, int ldc, float *p,
......
......@@ -87,6 +87,43 @@ void matmulWithBn<float>(const framework::Tensor &matrix_a, bool trans_a,
new_bias->data<float>() + group);
#endif
}
template <>
void matmulWithBnAdd<float>(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
float alpha, framework::Tensor *matrix_out,
float beta, bool relu, framework::Tensor *new_scale,
framework::Tensor *new_bias, int group,
float *bias) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
// PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 &&
// dim_out.size() ==
// 2,
// "The input and output of matmul be matrix");
//
// PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
// platform::is_cpu_place(matrix_b.place())
// &&
// platform::is_cpu_place(matrix_out->place()),
// "Matrix must all be in CPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (!trans_a) ? dim_a[1] : dim_a[0];
#ifdef _OPENMP
SgemmWithBnAdd_omp(M, N, K, alpha, matrix_a.data<float>(), K,
matrix_b.data<float>(), N, beta, matrix_out->data<float>(),
N, relu, new_scale->data<float>() + group,
new_bias->data<float>() + group, bias);
#else
SgemmWithBnAdd(M, N, K, alpha, matrix_a.data<float>(), K,
matrix_b.data<float>(), N, beta, matrix_out->data<float>(), N,
relu, new_scale->data<float>() + group,
new_bias->data<float>() + group, bias);
#endif
}
void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
framework::Tensor *matrix_out, float *p, std::string mode,
......
......@@ -33,6 +33,12 @@ void matmulWithBn(const framework::Tensor &matrix_a, bool trans_a,
framework::Tensor *matrix_out, T beta, bool relu,
framework::Tensor *new_scale, framework::Tensor *new_bias,
int group);
template <typename T>
void matmulWithBnAdd(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
float alpha, framework::Tensor *matrix_out, float beta,
bool relu, framework::Tensor *new_scale,
framework::Tensor *new_bias, int group, float *bias);
void matmulWithPRelu(const framework::Tensor &matrix_a, bool trans_a,
const framework::Tensor &matrix_b, bool trans_b,
......
......@@ -1472,6 +1472,119 @@ class FusionConvAddBNReluParam : public OpParam {
};
#endif
#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
class FusionConvBNAddReluParam : public OpParam {
typedef typename DtypeTensorTrait<Dtype>::gtype GType;
typedef typename DtypeTensorTrait<Dtype>::rtype RType;
public:
FusionConvBNAddReluParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
bias_ = InputYFrom<GType>(inputs, scope);
axis_ = GetAttr<int>("axis", attrs);
filter_ = FilterFrom<GType>(inputs, scope);
input_ = InputFrom<GType>(inputs, scope);
output_ = OutFrom<GType>(outputs, scope);
strides_ = GetAttr<vector<int>>("strides", attrs);
paddings_ = GetAttr<vector<int>>("paddings", attrs);
dilations_ = GetAttr<vector<int>>("dilations", attrs);
groups = GetAttr<int>("groups", attrs);
input_bias_ = InputBiasFrom<GType>(inputs, scope);
input_mean_ = InputMeanFrom<GType>(inputs, scope);
input_scale_ = InputScaleFrom<GType>(inputs, scope);
input_variance_ = InputVarianceFrom<GType>(inputs, scope);
epsilon_ = GetAttr<float>("epsilon", attrs);
momentum_ = GetAttr<float>("momentum", attrs);
keyBNY_ = getkey("BNY", inputs, 0);
keyX_ = getkey("X", inputs, 0);
keyY_ = getkey("Y", inputs, 0);
if (keyX_ == keyBNY_) {
bias_ = InputYFrom<GType>(inputs, scope);
} else if (keyY_ == keyBNY_) {
bias_ = InputXFrom<GType>(inputs, scope);
}
// is_test_ = GetAttr<bool>("is_test", attrs);
}
RType *Bias() const { return bias_; }
const int &Axis() const { return axis_; }
const RType *Input() const { return input_; }
#ifdef PADDLE_MOBILE_FPGA
RType *Filter() const { return filter_; }
#else
const RType *Filter() const { return filter_; }
#endif
RType *Output() const { return output_; }
const vector<int> &Strides() const { return strides_; }
const vector<int> &Paddings() const { return paddings_; }
const vector<int> &Dilations() const { return dilations_; }
const int &Groups() const { return groups; }
const RType *InputBias() const { return input_bias_; }
const RType *InputMean() const { return input_mean_; }
const RType *InputScale() const { return input_scale_; }
const RType *InputVariance() const { return input_variance_; }
const float &Epsilon() const { return epsilon_; }
const float &Momentum() const { return momentum_; }
const bool &IsTest() const { return is_test_; }
void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
const RType *NewScale() const { return new_scale_; }
const RType *NewBias() const { return new_bias_; }
protected:
RType *bias_;
int axis_;
RType *input_;
RType *output_;
RType *filter_;
vector<int> strides_;
vector<int> paddings_;
vector<int> dilations_;
int groups;
RType *input_bias_;
RType *input_mean_;
RType *input_scale_;
RType *input_variance_;
float epsilon_;
float momentum_;
bool is_test_;
RType *new_bias_;
RType *new_scale_;
std::string keyBNY_;
std::string keyX_;
std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA
private:
fpga::ConvArgs fpga_conv_args;
public:
const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif
#ifdef FUSION_CONVBN_OP
template <typename Dtype>
class FusionConvBNParam : public OpParam {
......
......@@ -87,6 +87,7 @@ if ("resnet" IN_LIST NET)
set(ELEMENTWISEADD_OP ON)
set(POOL_OP ON)
set(BATCHNORM_OP ON)
set(FUSION_CONVBNADDRELU_OP ON)
set(MUL_OP ON)
set(RESHAPE_OP ON)
set(SOFTMAX_OP ON)
......@@ -141,6 +142,7 @@ if(NOT FOUND_MATCH)
set(FUSION_CONVADDADDPRELU_OP ON)
set(FUSION_DWCONVBNRELU_OP ON)
set(FUSION_CONVBNRELU_OP ON)
set(FUSION_CONVBNADDRELU_OP ON)
set(PRELU_OP ON)
set(RESIZE_OP ON)
set(SCALE_OP ON)
......@@ -244,6 +246,10 @@ if (FUSION_CONVBNRELU_OP)
add_definitions(-DFUSION_CONVBNRELU_OP)
endif()
if (FUSION_CONVBNADDRELU_OP)
add_definitions(-DFUSION_CONVBNADDRELU_OP)
endif()
if (PRELU_OP)
add_definitions(-DPRELU_OP)
endif()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册