op_param.h 80.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
77 78 79 80 81
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

82 83 84 85 86 87 88 89 90
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
91 92 93 94 95
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

123 124 125 126
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
127 128 129 130 131 132

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

133 134 135 136 137
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
138 139 140 141 142
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
148 149 150 151
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
152 153 154 155 156 157 158 159 160 161 162 163
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
164 165 166 167
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
184

E
eclipsess 已提交
185 186 187 188 189 190 191 192 193 194
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
199

200
  template <typename T>
W
wangliu 已提交
201 202
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
203 204 205
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
206 207 208 209 210
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

240 241 242 243 244
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
245 246 247 248 249
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

250 251 252 253 254
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
255 256 257 258 259 260
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
266 267 268 269 270 271
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
272 273 274 275 276 277
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
278 279 280 281 282
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
283 284 285 286 287 288
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

289 290 291 292 293 294 295 296 297 298 299
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
300
  static const T GetAttr(const string &key, const AttributeMap &map) {
301 302
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
303 304
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
305 306
    return ((Attribute)map.at(key)).GetString();
  }
307

308 309 310 311
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

312
  template <typename T>
W
wangliu 已提交
313
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
314
                        const Scope &scope) {
W
wangliu 已提交
315 316
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
317 318 319 320 321 322
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
323
    }
324
  }
朔-望's avatar
朔-望 已提交
325

E
eclipsess 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

359
  template <typename T>
W
wangliu 已提交
360 361 362
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
363 364
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
365
    vector<T *> var_res;
366 367 368
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
369
    }
370 371
    return var_res;
  }
E
eclipsess 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
385 386
};

N
nhzlx 已提交
387
template <typename Dtype>
388
class ConvParam : public OpParam {
N
nhzlx 已提交
389 390 391
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
392
 public:
393
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
394
            const AttributeMap &attrs, const Scope &scope) {
395 396 397 398 399 400 401 402 403
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
404
  }
朔-望's avatar
朔-望 已提交
405

N
nhzlx 已提交
406
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
407

408
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
409

410
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
411

W
wangliu 已提交
412
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
413

W
wangliu 已提交
414
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
415

W
wangliu 已提交
416
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
417

H
hjchen2 已提交
418 419 420 421
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
422 423
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
424 425 426 427
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
    EXEC_GEMM_INT8,
H
hjchen2 已提交
428
    EXEC_DEPTHWISE3x3_INT8,
H
hjchen2 已提交
429 430 431 432
  };

  ExecMode &ExecMode() const { return exec_mode_; }

433
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
434

435 436 437 438 439 440 441
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

442
 protected:
N
nhzlx 已提交
443
  RType *input_;
444 445
  RType *output_;
  RType *filter_;
W
wangliu 已提交
446 447 448
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
449
  mutable enum ExecMode exec_mode_;
450
  int groups;
451 452 453 454

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
455 456 457 458 459 460 461 462 463 464

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
#endif
朔-望's avatar
朔-望 已提交
465
};
N
nhzlx 已提交
466 467
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
468

N
nhzlx 已提交
469
template <typename Dtype>
朔-望's avatar
朔-望 已提交
470
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
471 472 473
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
474
 public:
475
  ElementwiseAddParam(const VariableNameMap &inputs,
476 477
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
478 479 480
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
481 482 483
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
484
  const GType *InputX() const { return input_x_; }
485

xiebaiyuan's avatar
xiebaiyuan 已提交
486
  const GType *InputY() const { return input_y_; }
487

xiebaiyuan's avatar
xiebaiyuan 已提交
488
  GType *Out() const { return out_; }
489 490 491

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
492
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
493 494 495
  GType *input_x_;
  GType *input_y_;
  GType *out_;
496
  int axis_;
Z
zhangyang 已提交
497 498 499
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
500
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
501 502

 public:
H
hanbuhe 已提交
503 504
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
505
#endif
朔-望's avatar
朔-望 已提交
506 507
};

E
eclipsess 已提交
508
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
538
#endif
E
eclipsess 已提交
539

540
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
541 542
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
543 544
#endif

545
#ifdef ELEMENTWISESUB_OP
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
575
#endif
576

L
liuruilong 已提交
577
#ifdef MUL_OP
N
nhzlx 已提交
578
template <typename Dtype>
朔-望's avatar
朔-望 已提交
579
class MulParam : OpParam {
N
nhzlx 已提交
580 581 582
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
583
 public:
584
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
585
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
586 587 588
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
589 590 591
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
592

xiebaiyuan's avatar
xiebaiyuan 已提交
593
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
594

xiebaiyuan's avatar
xiebaiyuan 已提交
595
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
596

xiebaiyuan's avatar
xiebaiyuan 已提交
597
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
598

599
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
600

601
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
602

朔-望's avatar
朔-望 已提交
603
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
604 605 606
  GType *input_x_;
  GType *input_y_;
  GType *out_;
607 608
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
609
};
L
liuruilong 已提交
610
#endif
朔-望's avatar
朔-望 已提交
611

L
liuruilong 已提交
612
#ifdef CONCAT_OP
N
nhzlx 已提交
613
template <typename Dtype>
朔-望's avatar
朔-望 已提交
614
class ConcatParam : public OpParam {
N
nhzlx 已提交
615 616 617
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
618
 public:
619
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
620
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
621 622
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
623 624
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
625

N
nhzlx 已提交
626
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
627

xiebaiyuan's avatar
xiebaiyuan 已提交
628
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
629

630
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
631

朔-望's avatar
朔-望 已提交
632
 private:
N
nhzlx 已提交
633
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
634
  GType *out_;
635
  int axis_;
Z
zhangyang 已提交
636 637 638 639 640 641 642 643 644
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
645
};
L
liuruilong 已提交
646
#endif
朔-望's avatar
朔-望 已提交
647

E
eclipsess 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
679
#ifdef LRN_OP
N
nhzlx 已提交
680
template <typename Dtype>
E
eclipsess 已提交
681
class LrnParam : public OpParam {
N
nhzlx 已提交
682 683 684
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
685
 public:
686
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
687
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
688 689 690
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
691 692 693 694
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
695
    data_format_ = GetStringAttr("data_format", attrs);
696
  }
E
eclipsess 已提交
697

N
nhzlx 已提交
698
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
699

N
nhzlx 已提交
700
  RType *Out() const { return out_; }
E
eclipsess 已提交
701

N
nhzlx 已提交
702
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
703

704
  const int &N() const { return n_; }
E
eclipsess 已提交
705

706
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
707

708
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
709

710
  const float &K() const { return k_; }
E
eclipsess 已提交
711

W
wangliu 已提交
712
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
713

朔-望's avatar
朔-望 已提交
714
 private:
N
nhzlx 已提交
715 716 717
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
718 719 720 721
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
722
  string data_format_;
E
eclipsess 已提交
723
};
L
liuruilong 已提交
724 725 726
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
727
template <typename Dtype>
E
eclipsess 已提交
728
class BatchNormParam : OpParam {
N
nhzlx 已提交
729 730 731
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
732
 public:
733
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
734
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
735 736 737 738 739 740
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
741 742
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
743
    //    is_test_ = GetAttr<bool>("is_test", attrs);
744
  }
E
eclipsess 已提交
745

N
nhzlx 已提交
746
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
747

N
nhzlx 已提交
748
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
749

N
nhzlx 已提交
750
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
751

N
nhzlx 已提交
752
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
753

N
nhzlx 已提交
754
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
755

N
nhzlx 已提交
756
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
757

758
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
759

760
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
761

762
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
763

W
wangliu 已提交
764
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
765

766 767 768 769 770 771 772 773
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
774
 private:
N
nhzlx 已提交
775 776 777 778 779 780
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
781 782 783
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
784
  string data_format_;
785 786
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
787
};
L
liuruilong 已提交
788 789 790
#endif

#ifdef POOL_OP
N
nhzlx 已提交
791
template <typename Dtype>
792
class PoolParam : public OpParam {
N
nhzlx 已提交
793 794 795
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
796
 public:
797
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
798
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
799
    input_ = InputXFrom<GType>(inputs, scope);
800

N
nhzlx 已提交
801
    output_ = OutFrom<GType>(outputs, scope);
802
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
803 804 805
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
806
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
807
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
808
  }
809

N
nhzlx 已提交
810
  const RType *Input() const { return input_; }
811

N
nhzlx 已提交
812
  RType *Output() const { return output_; }
813

W
wangliu 已提交
814
  const string &PoolingType() const { return pooling_type_; }
815

W
wangliu 已提交
816
  const vector<int> &Ksize() const { return ksize_; }
817

W
wangliu 已提交
818
  const vector<int> &Strides() const { return strides_; }
819

W
wangliu 已提交
820
  const vector<int> &Paddings() const { return paddings_; }
821

822
  bool isCeilMode() const { return ceil_mode_; }
823

Z
zhangyang 已提交
824
  bool isGlobalPooling() const { return global_pooling_; }
825

朔-望's avatar
朔-望 已提交
826
 private:
N
nhzlx 已提交
827 828
  RType *input_;
  RType *output_;
W
wangliu 已提交
829 830 831 832
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
833
  bool ceil_mode_;
834
  bool global_pooling_ = false;
Z
zhangyang 已提交
835
#ifdef PADDLE_MOBILE_FPGA
836 837

 private:
H
hanbuhe 已提交
838
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
839 840

 public:
H
hanbuhe 已提交
841 842
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
843
#endif
844
};
L
liuruilong 已提交
845 846 847
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
848
template <typename Dtype>
E
eclipsess 已提交
849
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
850 851 852
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
853 854
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
855
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
856 857 858 859
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
860 861 862 863
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
864 865 866 867

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
868 869
    } else {
      min_max_aspect_ratios_order_ = false;
870
    }
E
eclipsess 已提交
871 872 873 874 875 876
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
877
  const RType *Input() const { return input_; }
E
eclipsess 已提交
878

N
nhzlx 已提交
879
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
880

N
nhzlx 已提交
881
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
882

N
nhzlx 已提交
883
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
884

W
wangliu 已提交
885
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
886

W
wangliu 已提交
887
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
888

W
wangliu 已提交
889
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
890

W
wangliu 已提交
891
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
892 893 894 895 896 897 898 899 900 901 902

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

903 904 905 906
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
907
 private:
N
nhzlx 已提交
908 909 910 911
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
912 913 914 915
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
916 917 918 919 920
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
921
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
922
};
L
liuruilong 已提交
923
#endif
E
eclipsess 已提交
924

L
liuruilong 已提交
925
#ifdef BOXCODER_OP
N
nhzlx 已提交
926
template <typename Dtype>
E
eclipsess 已提交
927
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
928 929 930
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
931 932
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
933
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
934 935 936 937
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
938
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
939
  }
N
nhzlx 已提交
940
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
941

N
nhzlx 已提交
942
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
943

N
nhzlx 已提交
944
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
945

N
nhzlx 已提交
946
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
947 948 949 950

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
951 952 953 954
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
955 956
  std::string code_type_;
};
L
liuruilong 已提交
957
#endif
W
wangliu 已提交
958

L
liuruilong 已提交
959
#ifdef SOFTMAX_OP
N
nhzlx 已提交
960
template <typename Dtype>
W
wangliu 已提交
961
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
962 963 964
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
965 966
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
967
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
968 969
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
970
  }
N
nhzlx 已提交
971 972
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
973 974

 private:
N
nhzlx 已提交
975 976
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
977 978 979 980

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
981
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
982 983 984
  fpga::BypassArgs fpga_bypass_args;

 public:
985
  RType *FloatInput() const {
H
hanbuhe 已提交
986 987 988 989 990 991
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
992
};
L
liuruilong 已提交
993
#endif
W
wangliu 已提交
994

L
liuruilong 已提交
995
#ifdef SIGMOID_OP
N
nhzlx 已提交
996
template <typename Dtype>
W
wangliu 已提交
997
class SigmoidParam : public OpParam {
N
nhzlx 已提交
998 999 1000
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1001 1002
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1003
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1004 1005
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1006
  }
N
nhzlx 已提交
1007 1008
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1009 1010

 private:
N
nhzlx 已提交
1011 1012
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
1013
};
L
liuruilong 已提交
1014 1015 1016
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1017
template <typename Dtype>
E
eclipsess 已提交
1018
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1019 1020 1021
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1022 1023 1024 1025
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1026 1027 1028
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1029 1030 1031 1032 1033 1034 1035 1036
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1037
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1038

Y
yangfei 已提交
1039
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1040

N
nhzlx 已提交
1041
  RType *Out() const { return out_; }
E
eclipsess 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1056 1057 1058
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1059 1060 1061 1062 1063 1064 1065
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1066
#endif
W
wangliu 已提交
1067

L
lijiancheng0614 已提交
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1090
template <typename Dtype>
L
liuruilong 已提交
1091
class FeedParam : public OpParam {
N
nhzlx 已提交
1092 1093 1094
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1095 1096
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1097 1098 1099 1100
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1101
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1102
  }
Y
yangfei 已提交
1103
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1104
  GType *Out() const { return out_; }
W
wangliu 已提交
1105
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1106

L
liuruilong 已提交
1107
 private:
Y
yangfei 已提交
1108
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1109
  GType *out_;
W
wangliu 已提交
1110
  int batch_size;
L
liuruilong 已提交
1111 1112
};

N
nhzlx 已提交
1113
template <typename Dtype>
L
liuruilong 已提交
1114
class FetchParam : public OpParam {
N
nhzlx 已提交
1115 1116 1117
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1118 1119
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1120
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1121
    input_x_ = InputXFrom<GType>(inputs, scope);
1122
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1123
  }
L
liuruilong 已提交
1124

N
nhzlx 已提交
1125
  const RType *InputX() const { return input_x_; }
1126 1127 1128
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1129
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1130
  }
L
liuruilong 已提交
1131

L
liuruilong 已提交
1132
 private:
N
nhzlx 已提交
1133
  RType *input_x_;
Y
yangfei 已提交
1134
  Tensor *out_;
L
liuruilong 已提交
1135 1136
};

L
lijiancheng0614 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1173
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1174
template <typename Dtype>
E
eclipsess 已提交
1175
class TransposeParam : public OpParam {
N
nhzlx 已提交
1176 1177 1178
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1179 1180 1181
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1182 1183
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1184 1185 1186
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1187
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1188

N
nhzlx 已提交
1189
  RType *Out() const { return out_; }
E
eclipsess 已提交
1190 1191 1192 1193

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1194 1195
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1196 1197
  vector<int> axis_;
};
L
liuruilong 已提交
1198
#endif
E
eclipsess 已提交
1199

L
lijiancheng0614 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1297
#ifdef RESHAPE_OP
N
nhzlx 已提交
1298
template <typename Dtype>
E
eclipsess 已提交
1299
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1300 1301 1302
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1303 1304 1305
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1306 1307 1308
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1309
    shape_ = GetAttr<vector<int>>("shape", attrs);
1310 1311 1312 1313 1314 1315 1316

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1317 1318
  }

N
nhzlx 已提交
1319
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1320

N
nhzlx 已提交
1321
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1322

N
nhzlx 已提交
1323
  RType *Out() const { return out_; }
E
eclipsess 已提交
1324 1325 1326 1327 1328 1329

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1330 1331 1332
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1333 1334 1335
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1336
#endif
E
eclipsess 已提交
1337

L
lijiancheng0614 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1359
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1360

E
eclipsess 已提交
1361
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1362

E
eclipsess 已提交
1363
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1364

E
eclipsess 已提交
1365
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1366 1367 1368 1369 1370 1371

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1372 1373 1374 1375
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1376 1377 1378 1379 1380
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1381
#ifdef SCALE_OP
N
nhzlx 已提交
1382
template <typename Dtype>
I
itminner 已提交
1383
class ScaleParam : public OpParam {
N
nhzlx 已提交
1384 1385 1386
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1387 1388 1389
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1390 1391 1392
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1393 1394 1395 1396 1397 1398
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1399
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1400

N
nhzlx 已提交
1401
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1402

N
nhzlx 已提交
1403
  RType *Out() const { return out_; }
I
itminner 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1414 1415 1416
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1417 1418 1419 1420 1421
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1422 1423 1424
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1425
template <typename Dtype>
I
itminner 已提交
1426
class SliceParam : public OpParam {
N
nhzlx 已提交
1427 1428 1429
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1430 1431 1432
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1433 1434 1435
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1436 1437 1438 1439 1440
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1441
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1442

N
nhzlx 已提交
1443
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1444

N
nhzlx 已提交
1445
  RType *Out() const { return out_; }
I
itminner 已提交
1446 1447 1448 1449 1450 1451 1452 1453

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1454 1455 1456
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1457 1458 1459 1460
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1461 1462 1463
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1464
template <typename Dtype>
T
Tian 已提交
1465
class ResizeParam : public OpParam {
N
nhzlx 已提交
1466 1467 1468
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1469 1470 1471
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1472 1473 1474
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1475 1476 1477 1478 1479 1480
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1481

N
nhzlx 已提交
1482
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1483

N
nhzlx 已提交
1484
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1485

N
nhzlx 已提交
1486
  RType *Out() const { return out_; }
T
Tian 已提交
1487

I
itminner 已提交
1488
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1489

I
itminner 已提交
1490
  const int &Height() const { return height_; }
T
Tian 已提交
1491

I
itminner 已提交
1492
  const int &Width() const { return width_; }
T
Tian 已提交
1493

I
itminner 已提交
1494
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1495

I
itminner 已提交
1496
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1497

I
itminner 已提交
1498
 private:
N
nhzlx 已提交
1499 1500 1501
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1502 1503 1504 1505 1506
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1507 1508 1509
};
#endif

L
liuruilong 已提交
1510
#ifdef RELU_OP
L
liuruilong 已提交
1511 1512 1513
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1514
template <typename Dtype>
D
relu  
dolphin8 已提交
1515
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1516 1517 1518
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1519
 public:
D
relu  
dolphin8 已提交
1520
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1521
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1522 1523
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1524 1525
  }

N
nhzlx 已提交
1526
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1527

N
nhzlx 已提交
1528
  RType *Out() const { return out_; }
E
eclipsess 已提交
1529 1530

 private:
N
nhzlx 已提交
1531 1532
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1533
};
D
relu  
dolphin8 已提交
1534 1535 1536

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1537
 public:
D
relu  
dolphin8 已提交
1538 1539 1540
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1541
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1542 1543
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1544
 public:
D
relu  
dolphin8 已提交
1545
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1546 1547 1548
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1549 1550
  framework::CLImage midImage;
};
Y
yangfei 已提交
1551
#endif
D
relu  
dolphin8 已提交
1552

L
liuruilong 已提交
1553
#endif
E
eclipsess 已提交
1554

Z
zhangyang 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1587
};
L
liuruilong 已提交
1588
#endif
E
eclipsess 已提交
1589

T
Tian 已提交
1590
#ifdef PRELU_OP
N
nhzlx 已提交
1591
template <typename Dtype>
T
Tian 已提交
1592
class PReluParam : public OpParam {
N
nhzlx 已提交
1593 1594 1595
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1596 1597 1598
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1599
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1600
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1601
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1602
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1603
    out_ = OutFrom<GType>(outputs, scope);
1604
    mode_ = GetStringAttr("mode", attrs);
1605
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1606
  }
N
nhzlx 已提交
1607
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1608
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1609
  RType *Out() const { return out_; }
1610
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1611

I
itminner 已提交
1612
 private:
N
nhzlx 已提交
1613 1614
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1615
  RType *alpha_;
1616
  std::string mode_;
T
Tian 已提交
1617 1618 1619
};
#endif

N
nhzlx 已提交
1620
template <typename Dtype>
L
liuruilong 已提交
1621
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1622 1623 1624
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1625
 public:
L
liuruilong 已提交
1626
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1627
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1628 1629 1630 1631
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1632 1633 1634 1635
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1636
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1637

Y
yangfei 已提交
1638
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1639

Y
yangfei 已提交
1640
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1641

xiebaiyuan's avatar
xiebaiyuan 已提交
1642
  GType *Out() const { return out_; }
E
eclipsess 已提交
1643 1644 1645 1646 1647 1648 1649 1650

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1651
  GType *input_x_;
N
nhzlx 已提交
1652 1653
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1654
  GType *out_;
E
eclipsess 已提交
1655 1656 1657
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1658

Z
ZhenWang 已提交
1659
#ifdef PADDLE_MOBILE_FPGA
1660
 private:  // NOLINT
Z
zhangyang 已提交
1661
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1662 1663

 public:
Z
zhangyang 已提交
1664 1665
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1666
#endif
E
eclipsess 已提交
1667
};
1668 1669

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1670 1671
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1672
#endif
E
eclipsess 已提交
1673

N
nhzlx 已提交
1674
template <typename Dtype>
1675
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1676 1677 1678
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1679
 public:
L
liuruilong 已提交
1680
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1681
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1682 1683 1684 1685 1686
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1687
  }
N
nhzlx 已提交
1688
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1689 1690 1691

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1692
  RType *Output() const { return output_; }
W
wangliu 已提交
1693

L
liuruilong 已提交
1694
 protected:
N
nhzlx 已提交
1695
  RType *bias_;
W
wangliu 已提交
1696
  int axis_;
N
nhzlx 已提交
1697
  RType *output_;
W
wangliu 已提交
1698 1699
};

N
nhzlx 已提交
1700 1701
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1702

Z
zhangyang 已提交
1703
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1704 1705
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1706
 public:
L
liuruilong 已提交
1707
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1708 1709
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1710
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1711 1712 1713
};
#endif

1714
#ifdef FUSION_CONVADDPRELU_OP
1715 1716 1717 1718
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1719 1720 1721 1722

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1723 1724 1725
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1726
    mode_ = OpParam::GetStringAttr("mode", attrs);
1727
    framework::DDim dims = alpha_->dims();
1728 1729 1730
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1748 1749 1750 1751
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1752 1753 1754 1755

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1756 1757 1758 1759
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1760
    mode_ = OpParam::GetStringAttr("mode", attrs);
1761
    framework::DDim dims = alpha_->dims();
1762 1763 1764 1765 1766 1767
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1768
    if (keyX1_ == keyOutput_) {
1769
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1770
    } else if (keyY1_ == keyOutput_) {
1771
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1796
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1797
template <typename Dtype>
1798
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1799 1800 1801
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1802 1803 1804
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1817
  }
N
nhzlx 已提交
1818
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1819 1820 1821

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1822
  RType *Output() const { return output_; }
E
eclipsess 已提交
1823

N
nhzlx 已提交
1824
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1825

N
nhzlx 已提交
1826
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1827

N
nhzlx 已提交
1828
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1829

N
nhzlx 已提交
1830
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1831 1832 1833 1834 1835 1836 1837

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1838
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1839

N
nhzlx 已提交
1840
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1841

N
nhzlx 已提交
1842
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1843

N
nhzlx 已提交
1844
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1845 1846

 protected:
N
nhzlx 已提交
1847
  RType *bias_;
E
eclipsess 已提交
1848
  int axis_;
N
nhzlx 已提交
1849 1850 1851 1852 1853
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1854 1855 1856
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1857 1858
  RType *new_bias_;
  RType *new_scale_;
1859 1860 1861 1862 1863
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1864
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1865 1866 1867 1868 1869 1870
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1885
    if (keyX_ == keyBNY_) {
1886
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1887
    } else if (keyY_ == keyBNY_) {
1888
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1889
    }
1890
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
1936
};
1937
#endif
E
eclipsess 已提交
1938

Z
zhangyang 已提交
1939
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1940
template <typename Dtype>
1941
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1942 1943 1944
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1945 1946 1947
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1958
  }
N
nhzlx 已提交
1959
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1960

N
nhzlx 已提交
1961
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1962

N
nhzlx 已提交
1963
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1964

N
nhzlx 已提交
1965
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1966

N
nhzlx 已提交
1967
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1968 1969 1970 1971 1972 1973 1974

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1975
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1976

N
nhzlx 已提交
1977
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1978

N
nhzlx 已提交
1979
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1980

N
nhzlx 已提交
1981
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1982 1983

 protected:
N
nhzlx 已提交
1984 1985 1986 1987 1988
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1989 1990 1991
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1992 1993
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1994 1995 1996
};
#endif

1997
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1998
template <typename Dtype>
1999
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2000 2001 2002
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2003 2004 2005
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2018
  }
N
nhzlx 已提交
2019
  RType *Bias() const { return bias_; }
2020 2021 2022

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2023
  RType *Output() const { return output_y_; }
2024

N
nhzlx 已提交
2025
  const RType *InputBias() const { return input_bias_; }
2026

N
nhzlx 已提交
2027
  const RType *InputMean() const { return input_mean_; }
2028

N
nhzlx 已提交
2029
  const RType *InputScale() const { return input_scale_; }
2030

N
nhzlx 已提交
2031
  const RType *InputVariance() const { return input_variance_; }
2032 2033 2034 2035 2036 2037 2038

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2039
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2040

N
nhzlx 已提交
2041
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2042

N
nhzlx 已提交
2043
  const RType *NewScale() const { return new_scale_; }
2044

N
nhzlx 已提交
2045
  const RType *NewBias() const { return new_bias_; }
2046 2047

 protected:
N
nhzlx 已提交
2048
  RType *bias_;
2049
  int axis_;
N
nhzlx 已提交
2050 2051 2052 2053 2054
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2055 2056 2057
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2058 2059
  RType *new_bias_;
  RType *new_scale_;
2060
};
E
eclipsess 已提交
2061
#endif
Y
Yao,kun 已提交
2062

E
eclipsess 已提交
2063
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2064
template <typename Dtype>
2065
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2066 2067 2068
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2069 2070 2071
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2082
  }
N
nhzlx 已提交
2083
  RType *Output() const { return output_; }
E
eclipsess 已提交
2084

N
nhzlx 已提交
2085
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2086

N
nhzlx 已提交
2087
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2088

N
nhzlx 已提交
2089
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2090

N
nhzlx 已提交
2091
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2092 2093 2094 2095 2096 2097 2098

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2099
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2100

N
nhzlx 已提交
2101
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2102

N
nhzlx 已提交
2103
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2104

N
nhzlx 已提交
2105
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2106 2107

 protected:
N
nhzlx 已提交
2108 2109 2110 2111 2112
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2113 2114 2115
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2116 2117
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2118 2119 2120 2121
};

#endif

2122
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2123
template <typename Dtype>
2124
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2125 2126 2127
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2128 2129 2130
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2141
  }
N
nhzlx 已提交
2142
  RType *Output() const { return output_; }
2143

N
nhzlx 已提交
2144
  const RType *InputBias() const { return input_bias_; }
2145

N
nhzlx 已提交
2146
  const RType *InputMean() const { return input_mean_; }
2147

N
nhzlx 已提交
2148
  const RType *InputScale() const { return input_scale_; }
2149

N
nhzlx 已提交
2150
  const RType *InputVariance() const { return input_variance_; }
2151 2152 2153 2154 2155 2156 2157

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2158
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2159

N
nhzlx 已提交
2160
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2161

N
nhzlx 已提交
2162
  const RType *NewScale() const { return new_scale_; }
2163

N
nhzlx 已提交
2164
  const RType *NewBias() const { return new_bias_; }
2165 2166

 protected:
N
nhzlx 已提交
2167 2168 2169 2170 2171
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2172 2173 2174
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2175 2176
  RType *new_bias_;
  RType *new_scale_;
2177 2178 2179
};
#endif

Y
Yao,kun 已提交
2180
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2181
template <typename Dtype>
Y
Yao,kun 已提交
2182
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2183 2184 2185
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2186 2187 2188 2189
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2190 2191
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2192 2193 2194 2195 2196
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2197
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2198

E
eclipsess 已提交
2199
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2200 2201 2202 2203 2204 2205 2206 2207

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2208 2209
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2210 2211 2212 2213
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2214
#endif
Y
Yao,kun 已提交
2215

2216
#ifdef DROPOUT_OP
N
nhzlx 已提交
2217
template <typename Dtype>
Y
Yao,kun 已提交
2218
class DropoutParam : public OpParam {
N
nhzlx 已提交
2219 2220 2221
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2222 2223 2224
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2225 2226
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2227 2228

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2229 2230
  }

N
nhzlx 已提交
2231
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2232

N
nhzlx 已提交
2233
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2234

Y
yangfei 已提交
2235 2236
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2237
 private:
N
nhzlx 已提交
2238 2239
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2240
  float dropout_prob_;
Y
Yao,kun 已提交
2241
};
2242
#endif
Y
Yao,kun 已提交
2243

N
nhzlx 已提交
2244
template <typename Dtype>
L
liuruilong 已提交
2245
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2246 2247 2248
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2249 2250 2251 2252
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2253 2254
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2255
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2256
    if (outputs.count("Output")) {
2257
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2258
    }
L
liuruilong 已提交
2259 2260 2261 2262 2263 2264
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2265
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2266

N
nhzlx 已提交
2267
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2268

N
nhzlx 已提交
2269
  RType *Output() const { return output_; }
L
liuruilong 已提交
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2280 2281 2282
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2283 2284 2285 2286
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
#endif
L
liuruilong 已提交
2297
};
Z
zhangyang 已提交
2298

qnqinan's avatar
qnqinan 已提交
2299 2300 2301 2302 2303
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2304 2305

 public:
qnqinan's avatar
qnqinan 已提交
2306
  FusionDeconvAddParam(const VariableNameMap &inputs,
2307 2308 2309
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2331

Z
zhangyang 已提交
2332 2333 2334 2335 2336
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2362 2363
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2408
    axis = GetAttr<int>("axis", attrs);
2409 2410 2411
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2412
  const int &Axis() const { return axis; }
2413 2414 2415 2416

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2417
  int axis;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2431
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2432
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2433 2434 2435 2436 2437 2438
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2439 2440
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2441 2442 2443 2444 2445
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2446 2447 2448

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2449
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2450
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2451 2452 2453
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2454 2455 2456 2457 2458 2459 2460 2461 2462
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2479 2480
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2481 2482
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2483
  const RType *InputOutPutSize() const { return input_outsize_; }
2484
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2485 2486
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2487 2488 2489 2490 2491

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2492 2493
  int out_h_;
  int out_w_;
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2509
  const RType *Input() const { return input_; }
2510 2511 2512 2513 2514 2515 2516 2517
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

2518
#ifdef QUANT_OP
2519
template <typename Dtype>
2520 2521 2522 2523 2524
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2525 2526
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2527
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2528
    output_ = OutFrom<GType>(outputs, scope);
2529 2530
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2531
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2532
    // offline
2533
    if (inputs.count("InScale")) {
2534 2535
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2536 2537
    }
    // x = round(scale * x)
2538 2539
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2540
    }
2541 2542 2543 2544 2545 2546
  }

 public:
  // op input
  RType *input_;
  // op output
H
hjchen2 已提交
2547
  RType *output_;
2548
  RType *online_scale_;
2549 2550 2551 2552
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2553
  // round method type
H
hjchen2 已提交
2554 2555
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2556
};
2557
#endif
2558

2559
#ifdef DEQUANT_OP
2560
template <typename Dtype>
2561 2562 2563 2564 2565
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2566 2567
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2568
    input_ = InputXFrom<GType>(inputs, scope);
2569
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2570
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2571
    // dequantization is performed as x = x / static_scale / online_scale
2572 2573
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2574
    } else {
2575
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2576 2577 2578 2579 2580 2581 2582
    }
  }

 public:
  // op input
  RType *input_;
  // op output
H
hjchen2 已提交
2583
  RType *output_;
2584 2585 2586
  RType *activation_scale_;
  float weight_scale_;
};
2587
#endif
2588

2589 2590 2591 2592
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2593
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2594
template <typename Dtype>
2595
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2596 2597 2598 2599
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2600 2601 2602
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2619 2620 2621
};
#endif

2622 2623 2624 2625
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2662 2663 2664
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2665 2666 2667 2668 2669 2670 2671 2672 2673
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2674 2675 2676 2677
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2678 2679 2680 2681 2682 2683
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

朔-望's avatar
朔-望 已提交
2684 2685
}  // namespace operators
}  // namespace paddle_mobile