op_param.h 100.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
27 28 29 30 31 32 33

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
34
#endif
朔-望's avatar
朔-望 已提交
35

C
Chon 已提交
36 37 38 39
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
40 41
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
42
#endif
朔-望's avatar
朔-望 已提交
43 44

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
45 46
namespace operators {

W
wangliu 已提交
47 48 49 50 51
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
52
using framework::Variable;
W
wangliu 已提交
53 54
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
55

N
nhzlx 已提交
56 57 58 59 60 61 62 63 64
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
65
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
66 67 68 69 70 71 72 73
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
74
#endif
L
liuruilong 已提交
75

L
liuruilong 已提交
76
class OpParam {
77 78
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
79 80
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
81

82 83
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
84

C
Chon 已提交
85 86 87 88 89 90
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
91
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
92 93 94 95
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
96 97 98 99 100 101 102

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

103 104 105 106 107
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

108 109 110 111 112 113 114 115 116
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
117 118 119 120 121
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

149 150 151 152
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
153 154 155 156 157 158

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

159 160 161 162 163
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
164 165 166 167 168
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

169 170 171 172 173
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
174 175 176 177
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
178 179 180 181 182 183 184 185 186 187 188 189
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
190 191 192 193
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
210

E
eclipsess 已提交
211 212 213 214 215 216 217 218 219 220
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
221 222 223 224
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
225

226
  template <typename T>
W
wangliu 已提交
227 228
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
229 230 231
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
232 233 234 235 236
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
237 238 239 240 241 242
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
243 244 245 246 247
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
265 266 267 268 269 270 271 272 273 274 275 276
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

277 278 279 280 281
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
282 283 284 285 286
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

287 288 289 290 291
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
292 293 294 295 296 297
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

298 299 300 301 302
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
303 304 305 306 307 308
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
315 316 317 318 319
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
325 326 327 328 329 330
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

331 332 333 334 335 336 337 338 339 340 341
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
342
  static const T GetAttr(const string &key, const AttributeMap &map) {
343 344
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
345 346
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
347 348
    return ((Attribute)map.at(key)).GetString();
  }
349

350 351 352 353
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

354
  template <typename T>
W
wangliu 已提交
355
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
356
                        const Scope &scope) {
W
wangliu 已提交
357 358
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
359 360 361 362 363 364
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
365
    }
366
  }
朔-望's avatar
朔-望 已提交
367

E
eclipsess 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

381
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
382
                            int index) {
383 384
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

403
  template <typename T>
W
wangliu 已提交
404 405 406
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
407 408
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
409
    vector<T *> var_res;
410 411 412
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
413
    }
414 415
    return var_res;
  }
E
eclipsess 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
429 430
};

431 432 433 434 435 436
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
437
template <typename Dtype>
438
class ConvParam : public OpParam {
N
nhzlx 已提交
439 440 441
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
442
 public:
443
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
444 445 446 447
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
448
    if (outputs.count("Output")) {
449
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
450 451 452 453 454
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
455
  }
朔-望's avatar
朔-望 已提交
456

457
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
458

459
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
460

461
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
462

W
wangliu 已提交
463
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
464

W
wangliu 已提交
465
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
466

W
wangliu 已提交
467
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
468

H
hjchen2 已提交
469 470 471
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
472 473
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
474 475
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
476
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
477
    EXEC_GEMM_INT8,
H
hjchen2 已提交
478
    EXEC_DEPTHWISE3x3_INT8,
479
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
480 481
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
482 483 484 485 486
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
H
hjchen2 已提交
487 488 489 490
  };

  ExecMode &ExecMode() const { return exec_mode_; }

491
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
492

493 494 495 496 497 498 499
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
500
 public:
501 502 503 504
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
505 506 507
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
508
  mutable enum ExecMode exec_mode_;
509
  int groups;
510 511 512 513

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
514 515 516

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
517
 public:
Z
zhangyang 已提交
518 519 520 521 522
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
523 524 525 526 527 528 529

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
530
#endif
朔-望's avatar
朔-望 已提交
531
};
N
nhzlx 已提交
532 533
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
534

N
nhzlx 已提交
535
template <typename Dtype>
536
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
537 538 539
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
540
 public:
541
  ElementwiseAddParam(const VariableNameMap &inputs,
542
                      const VariableNameMap &outputs, const AttributeMap &attrs,
543 544 545 546 547
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
548 549 550
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
551
  const GType *InputX() const { return input_x_; }
552

xiebaiyuan's avatar
xiebaiyuan 已提交
553
  const GType *InputY() const { return input_y_; }
554

xiebaiyuan's avatar
xiebaiyuan 已提交
555
  GType *Out() const { return out_; }
556 557 558

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
559
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
560 561 562
  GType *input_x_;
  GType *input_y_;
  GType *out_;
563
  int axis_;
Z
zhangyang 已提交
564 565 566
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
567
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
568 569

 public:
H
hanbuhe 已提交
570 571
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
572 573 574 575

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
576
#endif
朔-望's avatar
朔-望 已提交
577 578
};

E
eclipsess 已提交
579
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
580
template <typename Dtype>
581
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
582 583 584 585 586 587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
588 589 590 591 592
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
609 610 611 612 613 614
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
615
};
S
suiyang 已提交
616
#endif
E
eclipsess 已提交
617

618
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
619 620
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
621 622
#endif

623
#ifdef ELEMENTWISESUB_OP
624
template <typename Dtype>
625
class ElementwiseSubParam : public OpParam {
626 627 628 629 630 631
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
632 633 634 635 636
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
654
#endif
655

L
liuruilong 已提交
656
#ifdef MUL_OP
N
nhzlx 已提交
657
template <typename Dtype>
658
class MulParam : public OpParam {
N
nhzlx 已提交
659 660 661
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
662
 public:
663
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
664 665 666 667 668
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
669 670 671
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
672

xiebaiyuan's avatar
xiebaiyuan 已提交
673
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
674

xiebaiyuan's avatar
xiebaiyuan 已提交
675
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
676

xiebaiyuan's avatar
xiebaiyuan 已提交
677
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
678

679
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
680

681
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
682

朔-望's avatar
朔-望 已提交
683
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
684 685 686
  GType *input_x_;
  GType *input_y_;
  GType *out_;
687 688
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
689
};
L
liuruilong 已提交
690
#endif
朔-望's avatar
朔-望 已提交
691

L
liuruilong 已提交
692
#ifdef CONCAT_OP
N
nhzlx 已提交
693
template <typename Dtype>
朔-望's avatar
朔-望 已提交
694
class ConcatParam : public OpParam {
N
nhzlx 已提交
695 696 697
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
698
 public:
699
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
700 701 702 703
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
704 705
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
706

N
nhzlx 已提交
707
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
708

xiebaiyuan's avatar
xiebaiyuan 已提交
709
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
710

711
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
712

朔-望's avatar
朔-望 已提交
713
 private:
N
nhzlx 已提交
714
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
715
  GType *out_;
716
  int axis_;
Z
zhangyang 已提交
717 718 719 720 721 722 723 724 725
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
726
};
L
liuruilong 已提交
727
#endif
朔-望's avatar
朔-望 已提交
728

E
eclipsess 已提交
729 730 731 732 733 734 735 736
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
737 738 739 740 741 742
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
761
#ifdef LRN_OP
N
nhzlx 已提交
762
template <typename Dtype>
E
eclipsess 已提交
763
class LrnParam : public OpParam {
N
nhzlx 已提交
764 765 766
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
767
 public:
768
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
769 770 771 772 773
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
774 775 776 777
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
778
    data_format_ = GetStringAttr("data_format", attrs);
779
  }
E
eclipsess 已提交
780

781
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
782

783
  GType *Out() const { return out_; }
E
eclipsess 已提交
784

785
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
786

787
  const int &N() const { return n_; }
E
eclipsess 已提交
788

789
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
790

791
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
792

793
  const float &K() const { return k_; }
E
eclipsess 已提交
794

W
wangliu 已提交
795
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
796

朔-望's avatar
朔-望 已提交
797
 private:
798 799 800
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
801 802 803 804
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
805
  string data_format_;
E
eclipsess 已提交
806
};
L
liuruilong 已提交
807 808
#endif

Z
zhaojiaying01 已提交
809 810
#ifdef NORM_OP
template <typename Dtype>
811
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
812 813 814 815 816
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
817 818 819 820 821
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
822 823 824 825
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

826
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
827

828
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
829

830
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
831 832 833 834 835 836

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
837 838 839
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
840 841 842 843 844
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
845
#ifdef BATCHNORM_OP
N
nhzlx 已提交
846
template <typename Dtype>
847
class BatchNormParam : public OpParam {
N
nhzlx 已提交
848 849 850
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
851
 public:
852
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
853 854 855 856 857 858 859 860
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
861 862
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
863
    //    is_test_ = GetAttr<bool>("is_test", attrs);
864
  }
E
eclipsess 已提交
865

866
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
867

868
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
869

870
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
871

872
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
873

874
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
875

876
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
877

878
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
879

880
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
881

882
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
883

W
wangliu 已提交
884
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
885

886
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
887

888
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
889

890
  const GType *NewScale() const { return new_scale_; }
891

892
  const GType *NewBias() const { return new_bias_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
895 896 897 898 899 900
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
901 902 903
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
904
  string data_format_;
905 906
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
907
};
L
liuruilong 已提交
908 909 910
#endif

#ifdef POOL_OP
N
nhzlx 已提交
911
template <typename Dtype>
912
class PoolParam : public OpParam {
N
nhzlx 已提交
913 914 915
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
916
 public:
917
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
918 919 920
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
921

922
    output_ = OutFrom<GType>(outputs, *scope);
923
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
924 925 926
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
927
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
928
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
929
  }
930

931
  const GType *Input() const { return input_; }
932

933
  GType *Output() const { return output_; }
934

W
wangliu 已提交
935
  const string &PoolingType() const { return pooling_type_; }
936

W
wangliu 已提交
937
  const vector<int> &Ksize() const { return ksize_; }
938

W
wangliu 已提交
939
  const vector<int> &Strides() const { return strides_; }
940

W
wangliu 已提交
941
  const vector<int> &Paddings() const { return paddings_; }
942

943
  bool isCeilMode() const { return ceil_mode_; }
944

Z
zhangyang 已提交
945
  bool isGlobalPooling() const { return global_pooling_; }
946

朔-望's avatar
朔-望 已提交
947
 private:
948 949
  GType *input_;
  GType *output_;
W
wangliu 已提交
950 951 952 953
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
954
  bool ceil_mode_;
955
  bool global_pooling_ = false;
Z
zhangyang 已提交
956
#ifdef PADDLE_MOBILE_FPGA
957 958

 private:
H
hanbuhe 已提交
959
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
960 961

 public:
H
hanbuhe 已提交
962 963
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
964
#endif
965
};
L
liuruilong 已提交
966 967 968
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
969
template <typename Dtype>
E
eclipsess 已提交
970
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
971 972 973
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
974 975
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
976 977 978 979 980 981
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
982 983 984 985
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
986 987 988 989

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
990 991
    } else {
      min_max_aspect_ratios_order_ = false;
992
    }
E
eclipsess 已提交
993 994 995 996 997 998
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
999
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1000

1001
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1002

1003
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1004

1005
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1008

W
wangliu 已提交
1009
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1010

W
wangliu 已提交
1011
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1012

W
wangliu 已提交
1013
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1025 1026 1027 1028
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1029
 private:
1030 1031 1032 1033
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1034 1035 1036 1037
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1038 1039 1040 1041 1042
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1043
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1044
};
L
liuruilong 已提交
1045
#endif
E
eclipsess 已提交
1046

L
liuruilong 已提交
1047
#ifdef BOXCODER_OP
N
nhzlx 已提交
1048
template <typename Dtype>
E
eclipsess 已提交
1049
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1050 1051 1052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1053 1054
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1055 1056 1057 1058 1059 1060
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1061
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1062
  }
1063
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1064

1065
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1066

1067
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1068

1069
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1070 1071 1072 1073

  const std::string &CodeType() const { return code_type_; }

 private:
1074 1075 1076 1077
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1078 1079
  std::string code_type_;
};
L
liuruilong 已提交
1080
#endif
W
wangliu 已提交
1081

L
liuruilong 已提交
1082
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1083
template <typename Dtype>
W
wangliu 已提交
1084
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1085 1086 1087
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1088 1089
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1090 1091 1092 1093
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1094
  }
H
hjchen2 已提交
1095 1096
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1097 1098

 private:
H
hjchen2 已提交
1099 1100
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1101 1102 1103 1104

#ifdef PADDLE_MOBILE_FPGA

 private:
1105
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1106 1107 1108
  fpga::BypassArgs fpga_bypass_args;

 public:
1109
  GType *FloatInput() const {
H
hanbuhe 已提交
1110 1111
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1112
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1113 1114 1115
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1116
};
L
liuruilong 已提交
1117
#endif
W
wangliu 已提交
1118

L
liuruilong 已提交
1119
#ifdef SIGMOID_OP
N
nhzlx 已提交
1120
template <typename Dtype>
W
wangliu 已提交
1121
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1122 1123 1124
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1125 1126
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1127 1128 1129 1130
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1131
  }
1132 1133
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1134 1135

 private:
1136 1137
  GType *input_x_;
  GType *out_;
1138 1139 1140 1141 1142 1143 1144 1145 1146
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1147
};
L
liuruilong 已提交
1148 1149 1150
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1151
template <typename Dtype>
E
eclipsess 已提交
1152
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1153 1154 1155
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1156 1157 1158
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1159 1160 1161 1162 1163
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1164 1165 1166 1167 1168 1169 1170 1171
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1172
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1173

1174
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1175

1176
  GType *Out() const { return out_; }
E
eclipsess 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1191 1192 1193
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1194 1195 1196 1197 1198 1199 1200
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1201
#endif
W
wangliu 已提交
1202

L
lijiancheng0614 已提交
1203 1204 1205 1206 1207 1208 1209 1210 1211
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1212 1213 1214 1215
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1216
  }
1217 1218
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1219 1220

 private:
1221 1222
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1223 1224 1225
};
#endif

N
nhzlx 已提交
1226
template <typename Dtype>
L
liuruilong 已提交
1227
class FeedParam : public OpParam {
N
nhzlx 已提交
1228 1229 1230
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1231 1232
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1233
            const AttributeMap &attrs, Scope *scope)
1234
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1235
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1236
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1237
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1238
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1239
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1240
  }
H
hjchen2 已提交
1241
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1242
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1243
  const int Col() const { return col_; }
W
wangliu 已提交
1244
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1245

L
liuruilong 已提交
1246
 private:
H
hjchen2 已提交
1247
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1248
  GType *out_;
H
update  
hjchen2 已提交
1249
  int col_;
W
wangliu 已提交
1250
  int batch_size;
L
liuruilong 已提交
1251 1252
};

N
nhzlx 已提交
1253
template <typename Dtype>
L
liuruilong 已提交
1254
class FetchParam : public OpParam {
N
nhzlx 已提交
1255 1256 1257
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1258 1259
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1260
             const AttributeMap &attrs, Scope *scope)
1261
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1262 1263
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1264
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1265
  }
L
liuruilong 已提交
1266

H
hjchen2 已提交
1267 1268
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1269
  const int Col() const { return col_; }
L
liuruilong 已提交
1270

L
liuruilong 已提交
1271
 private:
H
hjchen2 已提交
1272 1273
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1274
  int col_;
qnqinan's avatar
qnqinan 已提交
1275
#ifdef PADDLE_MOBILE_FPGA
1276

qnqinan's avatar
qnqinan 已提交
1277
 public:
1278
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1279
  fpga::BypassArgs fpga_bypass_args;
1280
  Tensor aligned_out;
1281 1282 1283
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1284
#endif
L
liuruilong 已提交
1285 1286
};

L
lijiancheng0614 已提交
1287 1288 1289 1290 1291 1292 1293 1294 1295
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1296 1297 1298 1299
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1300 1301 1302 1303 1304 1305 1306
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1307
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1317
  GType *out_;
L
lijiancheng0614 已提交
1318 1319 1320 1321 1322 1323
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1324
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1325
template <typename Dtype>
E
eclipsess 已提交
1326
class TransposeParam : public OpParam {
N
nhzlx 已提交
1327 1328 1329
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1330 1331
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1332 1333 1334 1335
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1336 1337 1338
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1339
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1340

1341
  GType *Out() const { return out_; }
E
eclipsess 已提交
1342 1343 1344 1345

  const vector<int> &Axis() const { return axis_; }

 private:
1346 1347
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1348 1349
  vector<int> axis_;
};
L
liuruilong 已提交
1350
#endif
E
eclipsess 已提交
1351

L
lijiancheng0614 已提交
1352 1353 1354 1355 1356 1357 1358 1359
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1360 1361 1362 1363 1364
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1365 1366 1367
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1368
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1369

1370
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1371

1372
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1373 1374 1375 1376

  const vector<int> &Axis() const { return axis_; }

 private:
1377 1378 1379
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1380 1381 1382 1383
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1384 1385 1386 1387 1388 1389 1390 1391
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1392 1393 1394 1395 1396
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1423 1424
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1425
    // todo crf params
1426 1427 1428 1429
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1430 1431 1432 1433 1434 1435
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1436 1437
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1438 1439 1440 1441 1442 1443 1444 1445
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1446 1447
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1448 1449 1450 1451
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1452
#ifdef RESHAPE_OP
N
nhzlx 已提交
1453
template <typename Dtype>
E
eclipsess 已提交
1454
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1455 1456 1457
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1458 1459
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1460 1461 1462 1463 1464
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1465
    shape_ = GetAttr<vector<int>>("shape", attrs);
1466 1467 1468 1469 1470 1471 1472

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1473 1474
  }

1475
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1476

1477
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1478

1479
  GType *Out() const { return out_; }
E
eclipsess 已提交
1480 1481 1482 1483 1484 1485

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1486 1487 1488
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1489 1490 1491
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1492
#endif
E
eclipsess 已提交
1493

L
lijiancheng0614 已提交
1494 1495 1496 1497 1498 1499 1500 1501
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1502 1503 1504 1505 1506 1507
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1508 1509 1510 1511 1512 1513 1514 1515
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1516
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1517

E
eclipsess 已提交
1518
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1519

E
eclipsess 已提交
1520
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1521

E
eclipsess 已提交
1522
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1523 1524 1525 1526 1527 1528

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1529 1530 1531 1532
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1533 1534 1535 1536 1537
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1538
#ifdef SCALE_OP
N
nhzlx 已提交
1539
template <typename Dtype>
I
itminner 已提交
1540
class ScaleParam : public OpParam {
N
nhzlx 已提交
1541 1542 1543
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1544 1545
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1546 1547 1548 1549
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1550 1551
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1552 1553
  }

1554
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1555

1556
  GType *Out() const { return out_; }
I
itminner 已提交
1557

1558
  const float Scale() const { return scale_; }
I
itminner 已提交
1559

1560
  const float Bias() const { return bias_; }
I
itminner 已提交
1561 1562

 private:
1563 1564
  GType *input_x_;
  GType *out_;
1565 1566
  float scale_;
  float bias_;
I
itminner 已提交
1567
};
T
Tian 已提交
1568 1569 1570
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1571
template <typename Dtype>
I
itminner 已提交
1572
class SliceParam : public OpParam {
N
nhzlx 已提交
1573 1574 1575
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1576 1577
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1578 1579 1580 1581
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1582

1583 1584 1585 1586
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1587

1588 1589 1590 1591 1592 1593
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1594
};
T
Tian 已提交
1595 1596 1597
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1598
template <typename Dtype>
T
Tian 已提交
1599
class ResizeParam : public OpParam {
N
nhzlx 已提交
1600 1601 1602
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1603 1604
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1605 1606 1607 1608 1609
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1610 1611 1612 1613 1614 1615
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1616

1617
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1618

1619
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1620

1621
  GType *Out() const { return out_; }
T
Tian 已提交
1622

I
itminner 已提交
1623
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1624

I
itminner 已提交
1625
  const int &Height() const { return height_; }
T
Tian 已提交
1626

I
itminner 已提交
1627
  const int &Width() const { return width_; }
T
Tian 已提交
1628

I
itminner 已提交
1629
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1630

I
itminner 已提交
1631
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1632

I
itminner 已提交
1633
 private:
1634 1635 1636
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1637 1638 1639 1640 1641
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1642 1643 1644
};
#endif

L
liuruilong 已提交
1645
#ifdef RELU_OP
L
liuruilong 已提交
1646 1647 1648
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1649
template <typename Dtype>
D
relu  
dolphin8 已提交
1650
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1651 1652 1653
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1654
 public:
D
relu  
dolphin8 已提交
1655
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1656 1657 1658 1659
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1660 1661
  }

1662
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1663

1664
  GType *Out() const { return out_; }
E
eclipsess 已提交
1665 1666

 private:
1667 1668
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1669
};
D
relu  
dolphin8 已提交
1670 1671 1672

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1673
 public:
D
relu  
dolphin8 已提交
1674 1675 1676
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1677
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1678 1679
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1680
 public:
D
relu  
dolphin8 已提交
1681
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1682 1683 1684
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1685 1686
  framework::CLImage midImage;
};
Y
yangfei 已提交
1687
#endif
D
relu  
dolphin8 已提交
1688

L
liuruilong 已提交
1689
#endif
E
eclipsess 已提交
1690

Z
zhangyang 已提交
1691 1692 1693 1694 1695 1696 1697 1698
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1699 1700 1701 1702
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1703
  }
1704 1705
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1706 1707

 private:
1708 1709
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1710 1711 1712
#ifdef PADDLE_MOBILE_FPGA

 private:
1713
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1714 1715 1716
  fpga::BypassArgs fpga_bypass_args;

 public:
1717
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1718 1719
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1720
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1721 1722 1723
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1724
};
L
liuruilong 已提交
1725
#endif
E
eclipsess 已提交
1726

T
Tian 已提交
1727
#ifdef PRELU_OP
N
nhzlx 已提交
1728
template <typename Dtype>
T
Tian 已提交
1729
class PReluParam : public OpParam {
N
nhzlx 已提交
1730 1731 1732
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1733 1734
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1735 1736
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1737
    DLOG << "PReluParam inputs before";
1738 1739
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1740
    framework::DDim dims = alpha_->dims();
1741
    out_ = OutFrom<GType>(outputs, *scope);
1742
    mode_ = GetStringAttr("mode", attrs);
1743
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1744
  }
1745 1746 1747
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1748
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1749

I
itminner 已提交
1750
 private:
1751 1752 1753
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1754
  std::string mode_;
T
Tian 已提交
1755 1756 1757
};
#endif

N
nhzlx 已提交
1758
template <typename Dtype>
L
liuruilong 已提交
1759
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1760 1761 1762
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1763
 public:
L
liuruilong 已提交
1764
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1765 1766 1767 1768 1769 1770
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1771 1772 1773 1774
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1775
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1776

1777
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1778

1779
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1780

xiebaiyuan's avatar
xiebaiyuan 已提交
1781
  GType *Out() const { return out_; }
E
eclipsess 已提交
1782 1783 1784 1785 1786 1787 1788 1789

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1790
  GType *input_x_;
1791 1792
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1793
  GType *out_;
E
eclipsess 已提交
1794 1795 1796
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1797

Z
ZhenWang 已提交
1798
#ifdef PADDLE_MOBILE_FPGA
1799
 private:  // NOLINT
Z
zhangyang 已提交
1800
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1801 1802

 public:
Z
zhangyang 已提交
1803 1804
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1805
#endif
E
eclipsess 已提交
1806
};
1807 1808

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1809 1810
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1811
#endif
E
eclipsess 已提交
1812

N
nhzlx 已提交
1813
template <typename Dtype>
1814
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1815 1816 1817
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1818
 public:
L
liuruilong 已提交
1819
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1820
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1821
                     Scope *scope)
1822
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1823
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1824
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1825
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1826
  }
1827
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1828 1829 1830

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1831
 protected:
1832
  GType *bias_;
W
wangliu 已提交
1833 1834 1835
  int axis_;
};

N
nhzlx 已提交
1836 1837
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1838

Z
zhangyang 已提交
1839
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1840 1841
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1842
 public:
L
liuruilong 已提交
1843
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1844
                         const VariableNameMap &outputs,
1845
                         const AttributeMap &attrs, Scope *scope)
1846
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1847 1848 1849
};
#endif

1850
#ifdef FUSION_CONVADDPRELU_OP
1851 1852 1853 1854
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1855 1856 1857 1858

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1859
                          const AttributeMap &attrs, Scope *scope)
1860
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1861
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1862
    mode_ = OpParam::GetStringAttr("mode", attrs);
1863
    framework::DDim dims = alpha_->dims();
1864
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1865
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1866
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1867
  }
1868
  const GType *InputAlpha() const { return alpha_; }
1869
  const std::string &Mode() const { return mode_; }
1870
  GType *Bias() const { return bias_; }
1871 1872 1873
  const int &Axis() const { return axis_; }

 protected:
1874
  GType *bias_;
1875
  int axis_;
1876
  GType *alpha_;
1877 1878 1879 1880 1881
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1882 1883 1884 1885
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1886 1887 1888 1889

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1890
                             const AttributeMap &attrs, Scope *scope)
1891
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1892 1893
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1894
    mode_ = OpParam::GetStringAttr("mode", attrs);
1895
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1896
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1897
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1898 1899 1900
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1901
    if (keyX1_ == keyOutput_) {
1902
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1903
    } else if (keyY1_ == keyOutput_) {
1904
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1905
    }
H
update  
hjchen2 已提交
1906
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1907
  }
1908
  const GType *InputAlpha() const { return alpha_; }
1909
  const std::string &Mode() const { return mode_; }
1910
  const GType *Bias1() const { return bias1_; }
1911

1912
  GType *Bias() const { return bias_; }
1913 1914 1915 1916

  const int &Axis() const { return axis_; }

 protected:
1917
  GType *bias_;
1918
  int axis_;
1919
  GType *alpha_;
1920
  std::string mode_;
1921
  GType *bias1_;
1922 1923 1924 1925 1926 1927
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1928
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1929
template <typename Dtype>
1930
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1931 1932 1933
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1934 1935 1936
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1937
                           const AttributeMap &attrs, Scope *scope)
1938
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1939
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1940
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1941 1942 1943 1944
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1945 1946
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1947
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1948
  }
1949
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1950 1951 1952

  const int &Axis() const { return axis_; }

1953
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1954

1955
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1956

1957
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1958

1959
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1960 1961 1962 1963 1964

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1965
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1966

1967
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1968

1969
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1970

1971
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1972 1973

 protected:
1974
  GType *bias_;
E
eclipsess 已提交
1975
  int axis_;
1976 1977 1978 1979
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1980 1981
  float epsilon_;
  float momentum_;
1982 1983
  GType *new_bias_;
  GType *new_scale_;
1984 1985 1986 1987 1988
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1989
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1990 1991 1992 1993 1994 1995
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1996
                           const AttributeMap &attrs, Scope *scope)
1997
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1998
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1999
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2000 2001 2002 2003
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2004 2005
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2006 2007 2008
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2009
    if (keyX_ == keyBNY_) {
2010
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2011
    } else if (keyY_ == keyBNY_) {
2012
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2013
    }
H
update  
hjchen2 已提交
2014
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2015
  }
2016
  GType *Bias() const { return bias_; }
2017 2018 2019

  const int &Axis() const { return axis_; }

2020
  const GType *InputBias() const { return input_bias_; }
2021

2022
  const GType *InputMean() const { return input_mean_; }
2023

2024
  const GType *InputScale() const { return input_scale_; }
2025

2026
  const GType *InputVariance() const { return input_variance_; }
2027 2028 2029 2030 2031

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2032
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2033

2034
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2035

2036
  const GType *NewScale() const { return new_scale_; }
2037

2038
  const GType *NewBias() const { return new_bias_; }
2039 2040

 protected:
2041
  GType *bias_;
2042
  int axis_;
2043 2044 2045 2046
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2047 2048
  float epsilon_;
  float momentum_;
2049 2050
  GType *new_bias_;
  GType *new_scale_;
2051 2052 2053
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2054
};
2055
#endif
E
eclipsess 已提交
2056

Z
zhangyang 已提交
2057
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2058
template <typename Dtype>
2059
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2060 2061 2062
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2063 2064 2065
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2066
                    Scope *scope)
2067
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2068 2069 2070 2071
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2072 2073
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2074
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2075 2076
  }

2077
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2078

2079
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2080

2081
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2082

2083
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2084 2085 2086 2087 2088

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2089
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2090

2091
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2092

2093
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2094

2095
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2096 2097

 protected:
2098 2099 2100 2101
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2102 2103
  float epsilon_;
  float momentum_;
2104 2105
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2106 2107 2108
};
#endif

2109
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2110
template <typename Dtype>
2111
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2112 2113 2114
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2115 2116 2117
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2118
                       const AttributeMap &attrs, Scope *scope)
2119
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2120
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2121
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2122 2123 2124 2125
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2126 2127
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2128
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2129
  }
2130
  GType *Bias() const { return bias_; }
2131 2132 2133

  const int &Axis() const { return axis_; }

2134
  const GType *InputBias() const { return input_bias_; }
2135

2136
  const GType *InputMean() const { return input_mean_; }
2137

2138
  const GType *InputScale() const { return input_scale_; }
2139

2140
  const GType *InputVariance() const { return input_variance_; }
2141 2142 2143 2144 2145

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2146
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2147

2148
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2149

2150
  const GType *NewScale() const { return new_scale_; }
2151

2152
  const GType *NewBias() const { return new_bias_; }
2153 2154

 protected:
2155
  GType *bias_;
2156
  int axis_;
2157 2158 2159 2160
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2161 2162
  float epsilon_;
  float momentum_;
2163 2164
  GType *new_bias_;
  GType *new_scale_;
2165
};
E
eclipsess 已提交
2166
#endif
Y
Yao,kun 已提交
2167

E
eclipsess 已提交
2168
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2169
template <typename Dtype>
2170
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2171 2172 2173
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2174 2175 2176
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2177
                          const AttributeMap &attrs, Scope *scope)
2178
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2179 2180 2181 2182
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2183 2184
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2185
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2186 2187
  }

2188
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2189

2190
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2191

2192
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2193

2194
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2195 2196 2197 2198 2199

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2200
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2201

2202
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2203

2204
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2205

2206
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2207 2208

 protected:
2209 2210 2211 2212
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2213 2214
  float epsilon_;
  float momentum_;
2215 2216
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2217 2218 2219 2220
};

#endif

2221
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2222
template <typename Dtype>
2223
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2224 2225 2226
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2227 2228 2229
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2230
                        const AttributeMap &attrs, Scope *scope)
2231
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2232 2233 2234 2235
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2236 2237
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2238
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2239 2240
  }

2241
  const GType *InputBias() const { return input_bias_; }
2242

2243
  const GType *InputMean() const { return input_mean_; }
2244

2245
  const GType *InputScale() const { return input_scale_; }
2246

2247
  const GType *InputVariance() const { return input_variance_; }
2248 2249 2250 2251 2252

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2253
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2254

2255
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2256

2257
  const GType *NewScale() const { return new_scale_; }
2258

2259
  const GType *NewBias() const { return new_bias_; }
2260 2261

 protected:
2262 2263 2264 2265
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2266 2267
  float epsilon_;
  float momentum_;
2268 2269
  GType *new_bias_;
  GType *new_scale_;
2270 2271 2272
};
#endif

Y
Yao,kun 已提交
2273
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2274
template <typename Dtype>
Y
Yao,kun 已提交
2275
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2276 2277 2278
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2279 2280 2281
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2282 2283 2284 2285
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2286 2287 2288 2289 2290
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2291
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2292

E
eclipsess 已提交
2293
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2294 2295 2296 2297 2298 2299 2300 2301

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2302 2303
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2304 2305 2306 2307
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2308
#endif
Y
Yao,kun 已提交
2309

2310
#ifdef DROPOUT_OP
N
nhzlx 已提交
2311
template <typename Dtype>
Y
Yao,kun 已提交
2312
class DropoutParam : public OpParam {
N
nhzlx 已提交
2313 2314 2315
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2316 2317
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2318 2319 2320 2321
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2322 2323

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2324 2325
  }

2326
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2327

2328
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2329

Y
yangfei 已提交
2330 2331
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2332
 private:
2333 2334
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2335
  float dropout_prob_;
Y
Yao,kun 已提交
2336
};
2337
#endif
Y
Yao,kun 已提交
2338

N
nhzlx 已提交
2339
template <typename Dtype>
L
liuruilong 已提交
2340
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2341 2342 2343
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2344 2345 2346
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2347 2348 2349 2350
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2351
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2352
    if (outputs.count("Output")) {
2353
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2354
    }
L
liuruilong 已提交
2355 2356 2357 2358 2359 2360
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2361
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2362

2363
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2364

2365
  GType *Output() const { return output_; }
L
liuruilong 已提交
2366 2367 2368 2369 2370 2371 2372 2373 2374

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2375 2376 2377 2378 2379 2380 2381 2382 2383
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2384
 private:
2385 2386 2387
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2388 2389 2390 2391
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2392
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2393 2394 2395 2396 2397

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2398
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2399 2400 2401

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2402 2403 2404
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2405
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2406 2407 2408
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2409
#endif
L
liuruilong 已提交
2410
};
Z
zhangyang 已提交
2411

qnqinan's avatar
qnqinan 已提交
2412 2413 2414 2415 2416
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2417 2418

 public:
qnqinan's avatar
qnqinan 已提交
2419
  FusionDeconvAddParam(const VariableNameMap &inputs,
2420
                       const VariableNameMap &outputs,
2421
                       const AttributeMap &attrs, Scope *scope)
2422
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2423
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2424
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2425
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2426
  }
2427
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2428 2429 2430

  const int &Axis() const { return axis_; }

2431
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2432 2433

 protected:
2434
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2435
  int axis_;
2436
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2437 2438 2439 2440 2441 2442 2443
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2444 2445 2446 2447 2448 2449 2450 2451 2452
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2453
                         const AttributeMap &attrs, Scope *scope)
2454
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2455 2456 2457 2458 2459
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2460 2461 2462 2463 2464 2465 2466
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2510
                          const AttributeMap &attrs, Scope *scope)
2511
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2512 2513 2514 2515 2516
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2517 2518 2519 2520 2521 2522
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2566
                             const AttributeMap &attrs, Scope *scope)
2567
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2568 2569 2570 2571 2572
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2614

Z
zhangyang 已提交
2615 2616 2617 2618 2619
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2634 2635 2636 2637 2638 2639 2640 2641
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2642
    output_batch_reset_hidden_prev_ =
2643 2644 2645
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2646 2647
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2681 2682 2683 2684 2685 2686 2687
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2688 2689 2690 2691 2692 2693 2694 2695
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2696
    output_reset_hidden_prev_ =
2697 2698
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2727 2728 2729 2730 2731 2732 2733 2734
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2735 2736 2737 2738
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2739
    axis = GetAttr<int>("axis", attrs);
2740
  }
2741 2742
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2743
  const int &Axis() const { return axis; }
2744 2745

 private:
2746 2747
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2748
  int axis;
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2760 2761 2762 2763
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2764
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2765 2766 2767 2768 2769 2770
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2771
  }
2772
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2773 2774 2775 2776 2777
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2778 2779

 private:
2780
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2781
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2782
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2783 2784 2785
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2786 2787 2788 2789 2790 2791 2792 2793 2794
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2807 2808 2809 2810 2811
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2812 2813
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2814
  }
2815 2816 2817
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2818 2819
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2820 2821

 private:
2822 2823 2824
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2825 2826
  int out_h_;
  int out_w_;
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2838 2839 2840 2841
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2842
  }
2843 2844
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2845 2846

 private:
2847 2848
  GType *input_;
  GType *out_;
2849 2850 2851
};
#endif

H
hjchen2 已提交
2852 2853 2854 2855 2856 2857 2858 2859
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2860 2861 2862 2863 2864
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2865 2866 2867 2868
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2869 2870 2871
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2884 2885 2886 2887
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2888 2889 2890 2891 2892
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2893 2894
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2895 2896 2897 2898 2899
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2900
#ifdef QUANT_OP
2901
template <typename Dtype>
2902 2903 2904 2905 2906
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2907
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2908 2909 2910 2911
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2912 2913
    // online
    // scale = max(abs(x))
2914
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2915
    // offline
2916
    if (inputs.count("InScale")) {
2917
      offline_ = true;
2918
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2919 2920
    }
    // x = round(scale * x)
2921 2922
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2923
    }
2924 2925 2926 2927
  }

 public:
  // op input
2928
  GType *input_;
2929
  // op output
2930
  GType *output_;
2931
  GType *online_scale_;
2932
  // quantize offline scale
2933
  GType *offline_scale_;
2934 2935
  // if offine scale or not
  bool offline_ = false;
2936
  // round method type
2937 2938
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2939
};
2940
#endif
2941

2942
#ifdef DEQUANT_OP
2943
template <typename Dtype>
2944 2945 2946 2947 2948
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2949
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2950 2951 2952 2953 2954
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2955
    // dequantization is performed as x = x / static_scale / online_scale
2956 2957
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2958
    } else {
2959
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2960 2961 2962 2963 2964
    }
  }

 public:
  // op input
2965
  GType *input_;
2966
  // op output
2967
  GType *output_;
2968
  GType *activation_scale_;
2969 2970
  float weight_scale_;
};
2971
#endif
2972

2973 2974 2975 2976
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2977
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2978
template <typename Dtype>
2979
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2980 2981 2982 2983
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2984 2985
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2986
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
2987 2988
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
2989 2990 2991 2992
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
2993 2994 2995 2996 2997
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
2998 2999 3000 3001
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3002
  float epsilon_;
3003 3004 3005
};
#endif

3006 3007 3008 3009
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3010 3011 3012 3013 3014 3015 3016 3017
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3018
                          const AttributeMap &attrs, Scope *scope)
3019 3020 3021
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3022
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3023 3024 3025 3026 3027
  }

 public:
  // elementwise add
  int axis_;
3028
  GType *bias_;
3029 3030 3031
};
#endif

3032 3033 3034 3035 3036 3037 3038 3039 3040
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3041
                               const AttributeMap &attrs, Scope *scope)
3042 3043
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3044
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3045
    // offline
3046 3047
    if (inputs.count("InScale")) {
      offline_ = true;
3048
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3049 3050 3051 3052 3053 3054 3055 3056
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3057
  GType *online_scale_;
3058
  // quantize offline scale
3059
  GType *offline_scale_;
3060 3061
  // if offine scale or not
  bool offline_ = false;
3062 3063 3064 3065 3066 3067
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3068 3069 3070 3071 3072 3073 3074 3075 3076
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3077 3078 3079 3080 3081
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3105 3106 3107 3108
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3109 3110
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3111
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3122 3123 3124 3125 3126 3127 3128 3129
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3130 3131 3132 3133
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3134 3135
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3136
      input_y_ = InputYFrom<GType>(inputs, *scope);
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3150 3151 3152 3153 3154 3155 3156 3157
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3158 3159 3160 3161 3162
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3174
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3175
template <typename Dtype>
Z
zhaojiaying01 已提交
3176
class LogicalBinaryParam : public OpParam {
3177 3178 3179 3180
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3181 3182
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3183 3184 3185 3186 3187
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3199
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3200 3201 3202

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3203
class LogicalUnaryParam : public OpParam {
3204 3205 3206 3207
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3208 3209
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3210 3211 3212 3213
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3225 3226 3227
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3228 3229 3230
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3231 3232 3233
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3234 3235
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3236 3237 3238
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3239 3240 3241
  }

 public:
H
hjchen2 已提交
3242 3243 3244
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3245 3246 3247 3248 3249 3250
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3251 3252 3253
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3254 3255 3256
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3257 3258
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3259 3260 3261
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3262 3263 3264
  }

 public:
H
hjchen2 已提交
3265 3266 3267
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3268 3269 3270
};
#endif

Z
zhaojiaying01 已提交
3271 3272 3273 3274 3275 3276 3277 3278
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3279 3280 3281 3282
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3302
                 const AttributeMap &attrs, Scope *scope)
3303
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3304 3305
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3306
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3307 3308 3309 3310
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3311
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3312 3313 3314 3315

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3316
  float step_;
Z
zhaojiaying01 已提交
3317 3318
};
#endif  // INCREMENT_OP
3319 3320 3321 3322 3323 3324 3325 3326
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3327 3328 3329 3330
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3331 3332 3333 3334 3335 3336 3337 3338 3339
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3340

朔-望's avatar
朔-望 已提交
3341 3342
}  // namespace operators
}  // namespace paddle_mobile