提交 52b15bc9 编写于 作者: Z zhangyang

add new param definitions for FPGA ops

上级 4f5095fd
......@@ -232,7 +232,6 @@ class ConvParam : OpParam {
Print &operator<<(Print &printer, const ConvParam &conv_param);
#endif
#ifdef ELEMENTWISEADD_OP
class ElementwiseAddParam : OpParam {
public:
ElementwiseAddParam(const VariableNameMap &inputs,
......@@ -259,6 +258,8 @@ class ElementwiseAddParam : OpParam {
int axis_;
};
#ifdef FUSION_ELEMENTWISEADDRELU_OP
using ElementwiseAddReluParam = ElementwiseAddParam;
#endif
#ifdef MUL_OP
......@@ -421,7 +422,7 @@ class PoolParam : public OpParam {
strides_ = GetAttr<vector<int>>("strides", attrs);
paddings_ = GetAttr<vector<int>>("paddings", attrs);
ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
gloabal_pooling_ = GetAttr<bool>("global_pooling", attrs);
global_pooling_ = GetAttr<bool>("global_pooling", attrs);
}
const Tensor *Input() const { return input_; }
......@@ -448,9 +449,81 @@ class PoolParam : public OpParam {
vector<int> strides_;
vector<int> paddings_;
bool ceil_mode_;
bool gloabal_pooling_ = false;
bool global_pooling_ = false;
};
#endif
#ifdef FUSION_POOLBN_OP
class PoolBNParam : OpParam {
public:
PoolBNParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
input_ = InputXFrom<LoDTensor>(inputs, scope);
pooling_type_ = GetAttr<string>("pooling_type", attrs);
ksize_ = GetAttr<vector<int>>("ksize", attrs);
strides_ = GetAttr<vector<int>>("strides", attrs);
paddings_ = GetAttr<vector<int>>("paddings", attrs);
ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
global_pooling_ = GetAttr<bool>("global_pooling", attrs);
output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
epsilon_ = GetAttr<float>("epsilon", attrs);
momentum_ = GetAttr<float>("momentum", attrs);
// is_test_ = GetAttr<bool>("is_test", attrs);
}
const Tensor *Input() const { return input_; }
const string &PoolingType() const { return pooling_type_; }
const vector<int> &Ksize() const { return ksize_; }
const vector<int> &Strides() const { return strides_; }
const vector<int> &Paddings() const { return paddings_; }
bool isCeilMode() const { return ceil_mode_; }
bool isGlobalPooling() const { return gloabal_pooling_; }
Tensor *OutputY() const { return output_y_; }
const Tensor *InputBias() const { return input_bias_; }
const Tensor *InputMean() const { return input_mean_; }
const Tensor *InputScale() const { return input_scale_; }
const Tensor *InputVariance() const { return input_variance_; }
const float &Epsilon() const { return epsilon_; }
const float &Momentum() const { return momentum_; }
const bool &IsTest() const { return is_test_; }
const string &DataFormat() const { return data_format_; }
private:
Tensor *input_;
string pooling_type_;
vector<int> ksize_;
vector<int> strides_;
vector<int> paddings_;
bool ceil_mode_;
bool global_pooling_ = false;
Tensor *output_y_;
Tensor *input_bias_;
Tensor *input_mean_;
Tensor *input_scale_;
Tensor *input_variance_;
float epsilon_;
float momentum_;
bool is_test_;
string data_format_;
};
#endif
#ifdef PRIORBOX_OP
......@@ -875,7 +948,6 @@ class PReluParam : public OpParam {
};
#endif
#ifdef FUSION_FC_OP
class FusionFcParam : public OpParam {
public:
FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
......@@ -911,9 +983,11 @@ class FusionFcParam : public OpParam {
int y_num_col_dims_;
int axis_;
};
#ifdef FUSION_FCRELU_OP
using FusionFcReluParam = FusionFcParam;
#endif
#ifdef FUSION_CONVADD_OP
class FusionConvAddParam : public OpParam {
public:
FusionConvAddParam(const VariableNameMap &inputs,
......@@ -960,7 +1034,6 @@ class FusionConvAddParam : public OpParam {
};
Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
#endif
#ifdef FUSION_CONVADDRELU_OP
class FusionConvAddReluParam : public FusionConvAddParam {
......@@ -1055,8 +1128,91 @@ class FusionConvAddBNReluParam : public OpParam {
Tensor *new_bias_;
Tensor *new_scale_;
};
#endif
Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
#ifdef FUSION_CONVADDBN_OP
class FusionConvAddBNParam : public OpParam {
public:
FusionConvAddBNParam(const VariableNameMap &inputs,
const VariableNameMap &outputs,
const AttributeMap &attrs, const Scope &scope) {
bias_ = InputYFrom<LoDTensor>(inputs, scope);
axis_ = GetAttr<int>("axis", attrs);
filter_ = FilterFrom<LoDTensor>(inputs, scope);
input_ = InputFrom<LoDTensor>(inputs, scope);
output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
strides_ = GetAttr<vector<int>>("strides", attrs);
paddings_ = GetAttr<vector<int>>("paddings", attrs);
dilations_ = GetAttr<vector<int>>("dilations", attrs);
groups = GetAttr<int>("groups", attrs);
input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
epsilon_ = GetAttr<float>("epsilon", attrs);
momentum_ = GetAttr<float>("momentum", attrs);
// is_test_ = GetAttr<bool>("is_test", attrs);
}
Tensor *Bias() const { return bias_; }
const int &Axis() const { return axis_; }
const Tensor *Input() const { return input_; }
const Tensor *Filter() const { return filter_; }
Tensor *OutputY() const { return output_y_; }
const vector<int> &Strides() const { return strides_; }
const vector<int> &Paddings() const { return paddings_; }
const vector<int> &Dilations() const { return dilations_; }
const int &Groups() const { return groups; }
const Tensor *InputBias() const { return input_bias_; }
const Tensor *InputMean() const { return input_mean_; }
const Tensor *InputScale() const { return input_scale_; }
const Tensor *InputVariance() const { return input_variance_; }
const float &Epsilon() const { return epsilon_; }
const float &Momentum() const { return momentum_; }
const bool &IsTest() const { return is_test_; }
void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }
void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }
const Tensor *NewScale() const { return new_scale_; }
const Tensor *NewBias() const { return new_bias_; }
protected:
Tensor *bias_;
int axis_;
Tensor *input_;
Tensor *output_y_;
Tensor *filter_;
vector<int> strides_;
vector<int> paddings_;
vector<int> dilations_;
int groups;
Tensor *input_bias_;
Tensor *input_mean_;
Tensor *input_scale_;
Tensor *input_variance_;
float epsilon_;
float momentum_;
bool is_test_;
Tensor *new_bias_;
Tensor *new_scale_;
};
#endif
#ifdef FUSION_DWCONVBNRELU_OP
......@@ -1269,5 +1425,9 @@ class DropoutParam : public OpParam {
};
#endif
#ifdef REGION_OP
class RegionParam : public OpParam {};
#endif
} // namespace operators
} // namespace paddle_mobile
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册