op_param.h 103.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
26
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
27
#include "framework/variable.h"
Z
zhangyang 已提交
28 29 30 31 32 33 34

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
35
#endif
朔-望's avatar
朔-望 已提交
36

C
Chon 已提交
37 38 39 40
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
41 42
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
43
#endif
朔-望's avatar
朔-望 已提交
44 45

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
46 47
namespace operators {

W
wangliu 已提交
48 49 50 51 52
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
53
using framework::Variable;
W
wangliu 已提交
54 55
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
56

57
using framework::DtypeTensorTrait;
L
liuruilong 已提交
58

L
liuruilong 已提交
59
class OpParam {
60 61
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
62 63
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
64

65 66
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
67

C
Chon 已提交
68 69 70 71 72 73
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
74
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
79 80 81 82 83 84 85

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

86 87 88 89 90
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

91 92 93 94 95 96 97 98 99
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
100 101 102 103 104
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

132 133 134 135
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
136 137 138 139 140 141

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

142 143 144 145 146
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
147 148 149 150 151
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

152 153 154 155 156
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
157 158 159 160
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
161 162 163 164 165 166 167 168 169 170 171 172
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
173 174 175 176
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
193

E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
204 205 206 207
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
208

209
  template <typename T>
W
wangliu 已提交
210 211
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
212 213 214
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
215 216 217 218 219
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
220 221 222 223 224 225
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
226 227 228 229 230
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234 235 236 237 238 239 240 241
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258 259
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

260 261 262 263 264
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

270 271 272 273 274
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
275 276 277 278 279 280
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

281 282 283 284 285
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
286 287 288 289 290 291
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
292 293 294 295 296 297
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
298 299 300 301 302
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
303 304 305 306 307
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

314 315 316 317 318 319 320 321 322 323 324
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
325
  static const T GetAttr(const string &key, const AttributeMap &map) {
326 327
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
328 329
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
330 331
    return ((Attribute)map.at(key)).GetString();
  }
332

333 334 335 336
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

337
  template <typename T>
W
wangliu 已提交
338
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
339
                        const Scope &scope) {
W
wangliu 已提交
340 341
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
342 343 344 345 346 347
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
348
    }
349
  }
朔-望's avatar
朔-望 已提交
350

E
eclipsess 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

364
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
365
                            int index) {
366 367
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

386
  template <typename T>
W
wangliu 已提交
387 388 389
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
390 391
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
392
    vector<T *> var_res;
393 394 395
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
396
    }
397 398
    return var_res;
  }
E
eclipsess 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
412 413
};

414 415 416 417 418 419
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
420
template <typename Dtype>
421
class ConvParam : public OpParam {
N
nhzlx 已提交
422 423 424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
425
 public:
426
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
427 428 429 430
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
431
    if (outputs.count("Output")) {
432
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
433 434 435 436 437
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
438
  }
朔-望's avatar
朔-望 已提交
439

440
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
441

442
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
443

444
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
445

W
wangliu 已提交
446
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
447

W
wangliu 已提交
448
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
449

W
wangliu 已提交
450
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
451

H
hjchen2 已提交
452 453 454
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
455 456
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
457 458
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
459
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
460
    EXEC_GEMM_INT8,
H
hjchen2 已提交
461
    EXEC_DEPTHWISE3x3_INT8,
462
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
463 464
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
465 466 467 468 469
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
H
hjchen2 已提交
470 471 472 473
  };

  ExecMode &ExecMode() const { return exec_mode_; }

474
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
475

476 477 478 479 480 481 482
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
483
 public:
484 485 486 487
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
488 489 490
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
491
  mutable enum ExecMode exec_mode_;
492
  int groups;
493 494 495 496

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
497 498 499

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
500
 public:
Z
zhangyang 已提交
501 502 503 504 505
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
506 507 508 509 510 511 512

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
513
#endif
朔-望's avatar
朔-望 已提交
514
};
N
nhzlx 已提交
515 516
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
517

N
nhzlx 已提交
518
template <typename Dtype>
519
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
520 521 522
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
523
 public:
524
  ElementwiseAddParam(const VariableNameMap &inputs,
525
                      const VariableNameMap &outputs, const AttributeMap &attrs,
526 527 528 529 530
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
531 532 533
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
534
  const GType *InputX() const { return input_x_; }
535

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputY() const { return input_y_; }
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  GType *Out() const { return out_; }
539 540 541

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
542
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
543 544 545
  GType *input_x_;
  GType *input_y_;
  GType *out_;
546
  int axis_;
Z
zhangyang 已提交
547 548 549
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
550
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
551 552

 public:
H
hanbuhe 已提交
553 554
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
555 556 557 558

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
559
#endif
朔-望's avatar
朔-望 已提交
560 561
};

E
eclipsess 已提交
562
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
563
template <typename Dtype>
564
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
565 566 567 568 569 570
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
571 572 573 574 575
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
592 593 594 595 596 597
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
598
};
S
suiyang 已提交
599
#endif
E
eclipsess 已提交
600

601
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
602 603
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
604 605
#endif

606
#ifdef ELEMENTWISESUB_OP
607
template <typename Dtype>
608
class ElementwiseSubParam : public OpParam {
609 610 611 612 613 614
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
615 616 617 618 619
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
637
#endif
638

L
liuruilong 已提交
639
#ifdef MUL_OP
N
nhzlx 已提交
640
template <typename Dtype>
641
class MulParam : public OpParam {
N
nhzlx 已提交
642 643 644
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
645
 public:
646
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
647 648 649 650 651
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
652 653 654
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
655

xiebaiyuan's avatar
xiebaiyuan 已提交
656
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
657

xiebaiyuan's avatar
xiebaiyuan 已提交
658
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
659

xiebaiyuan's avatar
xiebaiyuan 已提交
660
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
661

662
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
663

664
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
665

朔-望's avatar
朔-望 已提交
666
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
667 668 669
  GType *input_x_;
  GType *input_y_;
  GType *out_;
670 671
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
672
};
L
liuruilong 已提交
673
#endif
朔-望's avatar
朔-望 已提交
674

L
liuruilong 已提交
675
#ifdef CONCAT_OP
N
nhzlx 已提交
676
template <typename Dtype>
朔-望's avatar
朔-望 已提交
677
class ConcatParam : public OpParam {
N
nhzlx 已提交
678 679 680
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
681
 public:
682
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
683 684 685 686
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
687 688
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
689

N
nhzlx 已提交
690
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
691

xiebaiyuan's avatar
xiebaiyuan 已提交
692
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
693

694
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
695

朔-望's avatar
朔-望 已提交
696
 private:
N
nhzlx 已提交
697
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
698
  GType *out_;
699
  int axis_;
Z
zhangyang 已提交
700 701 702 703 704 705 706 707 708
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
709
};
L
liuruilong 已提交
710
#endif
朔-望's avatar
朔-望 已提交
711

E
eclipsess 已提交
712 713 714 715 716 717 718 719
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720 721 722 723 724 725
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
744
#ifdef LRN_OP
N
nhzlx 已提交
745
template <typename Dtype>
E
eclipsess 已提交
746
class LrnParam : public OpParam {
N
nhzlx 已提交
747 748 749
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
750
 public:
751
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
752 753 754 755 756
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
757 758 759 760
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
761
    data_format_ = GetStringAttr("data_format", attrs);
762
  }
E
eclipsess 已提交
763

764
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
765

766
  GType *Out() const { return out_; }
E
eclipsess 已提交
767

768
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
769

770
  const int &N() const { return n_; }
E
eclipsess 已提交
771

772
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
773

774
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
775

776
  const float &K() const { return k_; }
E
eclipsess 已提交
777

W
wangliu 已提交
778
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
779

朔-望's avatar
朔-望 已提交
780
 private:
781 782 783
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
784 785 786 787
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
788
  string data_format_;
E
eclipsess 已提交
789
};
L
liuruilong 已提交
790 791
#endif

Z
zhaojiaying01 已提交
792 793
#ifdef NORM_OP
template <typename Dtype>
794
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
795 796 797 798 799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
800 801 802 803 804
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
805 806 807 808
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

809
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
810

811
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
812

813
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
814 815 816 817 818 819

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
820 821 822
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
823 824 825 826 827
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
828
#ifdef BATCHNORM_OP
N
nhzlx 已提交
829
template <typename Dtype>
830
class BatchNormParam : public OpParam {
N
nhzlx 已提交
831 832 833
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
834
 public:
835
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
836 837 838 839 840 841 842 843
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
844 845
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
846
    //    is_test_ = GetAttr<bool>("is_test", attrs);
847
  }
E
eclipsess 已提交
848

849
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
850

851
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
852

853
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
854

855
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
856

857
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
858

859
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
860

861
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
862

863
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
864

865
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
866

W
wangliu 已提交
867
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
868

869
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
870

871
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
872

873
  const GType *NewScale() const { return new_scale_; }
874

875
  const GType *NewBias() const { return new_bias_; }
876

朔-望's avatar
朔-望 已提交
877
 private:
878 879 880 881 882 883
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
884 885 886
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
887
  string data_format_;
888 889
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
890
};
L
liuruilong 已提交
891 892 893
#endif

#ifdef POOL_OP
N
nhzlx 已提交
894
template <typename Dtype>
895
class PoolParam : public OpParam {
N
nhzlx 已提交
896 897 898
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
899
 public:
900
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
901 902 903
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
904

905
    output_ = OutFrom<GType>(outputs, *scope);
906
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
907 908 909
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
910
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
911
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
912 913 914 915 916 917

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
918
  }
919

920
  const GType *Input() const { return input_; }
921

922
  GType *Output() const { return output_; }
923

W
wangliu 已提交
924
  const string &PoolingType() const { return pooling_type_; }
925

W
wangliu 已提交
926
  const vector<int> &Ksize() const { return ksize_; }
927

W
wangliu 已提交
928
  const vector<int> &Strides() const { return strides_; }
929

W
wangliu 已提交
930
  const vector<int> &Paddings() const { return paddings_; }
931

932
  bool isCeilMode() const { return ceil_mode_; }
933

Z
zhangyang 已提交
934
  bool isGlobalPooling() const { return global_pooling_; }
935

936 937
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
938
 private:
939 940
  GType *input_;
  GType *output_;
W
wangliu 已提交
941 942 943 944
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
945
  bool ceil_mode_;
946
  bool global_pooling_ = false;
947
  bool exclusive_ = true;
Z
zhangyang 已提交
948
#ifdef PADDLE_MOBILE_FPGA
949 950

 private:
H
hanbuhe 已提交
951
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
952 953

 public:
H
hanbuhe 已提交
954 955
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
956
#endif
957
};
L
liuruilong 已提交
958 959 960
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
961
template <typename Dtype>
E
eclipsess 已提交
962
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
963 964 965
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
966 967
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
968 969 970 971 972 973
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
974 975 976 977
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
978 979 980 981

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
982 983
    } else {
      min_max_aspect_ratios_order_ = false;
984
    }
E
eclipsess 已提交
985 986 987 988 989 990
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
991
  const GType *Input() const { return input_; }
E
eclipsess 已提交
992

993
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
994

995
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
996

997
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
998

W
wangliu 已提交
999
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1000

W
wangliu 已提交
1001
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1002

W
wangliu 已提交
1003
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1004

W
wangliu 已提交
1005
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1017 1018 1019 1020
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1021
 private:
1022 1023 1024 1025
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1026 1027 1028 1029
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1030 1031 1032 1033 1034
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1035
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1036
};
L
liuruilong 已提交
1037
#endif
E
eclipsess 已提交
1038

L
liuruilong 已提交
1039
#ifdef BOXCODER_OP
N
nhzlx 已提交
1040
template <typename Dtype>
E
eclipsess 已提交
1041
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1042 1043 1044
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1045 1046
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1047 1048 1049 1050 1051 1052
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1053
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1054
  }
1055
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1056

1057
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1058

1059
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1060

1061
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1062 1063 1064 1065

  const std::string &CodeType() const { return code_type_; }

 private:
1066 1067 1068 1069
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1070 1071
  std::string code_type_;
};
L
liuruilong 已提交
1072
#endif
W
wangliu 已提交
1073

L
liuruilong 已提交
1074
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1075
template <typename Dtype>
W
wangliu 已提交
1076
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1077 1078 1079
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1080 1081
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1082 1083 1084 1085
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1086
  }
H
hjchen2 已提交
1087 1088
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1089 1090

 private:
H
hjchen2 已提交
1091 1092
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1093 1094 1095

#ifdef PADDLE_MOBILE_FPGA

1096 1097
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1098
 private:
1099
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1100 1101 1102
  fpga::BypassArgs fpga_bypass_args;

 public:
1103
  GType *FloatInput() const {
H
hanbuhe 已提交
1104 1105
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1106
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1107 1108
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1121
#endif
W
wangliu 已提交
1122
};
L
liuruilong 已提交
1123
#endif
W
wangliu 已提交
1124

L
liuruilong 已提交
1125
#ifdef SIGMOID_OP
N
nhzlx 已提交
1126
template <typename Dtype>
W
wangliu 已提交
1127
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1128 1129 1130
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1131 1132
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1133 1134 1135 1136
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1137
  }
1138 1139
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1140 1141

 private:
1142 1143
  GType *input_x_;
  GType *out_;
1144 1145 1146 1147 1148 1149 1150 1151 1152
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1153
};
L
liuruilong 已提交
1154 1155 1156
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1157
template <typename Dtype>
E
eclipsess 已提交
1158
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1159 1160 1161
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1162 1163 1164
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1165 1166 1167 1168 1169
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1170 1171 1172 1173 1174 1175 1176 1177
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1178
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1179

1180
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1181

1182
  GType *Out() const { return out_; }
E
eclipsess 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1197 1198 1199
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1200 1201 1202 1203 1204 1205 1206
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1207
#endif
W
wangliu 已提交
1208

L
lijiancheng0614 已提交
1209 1210 1211 1212 1213 1214 1215 1216 1217
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1218 1219 1220 1221
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1222
  }
1223 1224
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1225 1226

 private:
1227 1228
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1229 1230 1231
};
#endif

N
nhzlx 已提交
1232
template <typename Dtype>
L
liuruilong 已提交
1233
class FeedParam : public OpParam {
N
nhzlx 已提交
1234 1235 1236
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1237 1238
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1239
            const AttributeMap &attrs, Scope *scope)
1240
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1241
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1242
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1243
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1244
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1245
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1246
  }
H
hjchen2 已提交
1247
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1248
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1249
  const int Col() const { return col_; }
W
wangliu 已提交
1250
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1251

L
liuruilong 已提交
1252
 private:
H
hjchen2 已提交
1253
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1254
  GType *out_;
H
update  
hjchen2 已提交
1255
  int col_;
W
wangliu 已提交
1256
  int batch_size;
L
liuruilong 已提交
1257 1258
};

N
nhzlx 已提交
1259
template <typename Dtype>
L
liuruilong 已提交
1260
class FetchParam : public OpParam {
N
nhzlx 已提交
1261 1262 1263
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1264 1265
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1266
             const AttributeMap &attrs, Scope *scope)
1267
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1268 1269
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1270
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1271
  }
L
liuruilong 已提交
1272

H
hjchen2 已提交
1273 1274
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1275
  const int Col() const { return col_; }
L
liuruilong 已提交
1276

L
liuruilong 已提交
1277
 private:
H
hjchen2 已提交
1278 1279
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1280
  int col_;
qnqinan's avatar
qnqinan 已提交
1281
#ifdef PADDLE_MOBILE_FPGA
1282

qnqinan's avatar
qnqinan 已提交
1283
 public:
1284
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1285
  fpga::BypassArgs fpga_bypass_args;
1286
  Tensor aligned_out;
1287 1288 1289
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1290
#endif
L
liuruilong 已提交
1291 1292
};

L
lijiancheng0614 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1302 1303 1304 1305
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1306 1307 1308 1309 1310 1311 1312
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1313
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1314 1315 1316 1317 1318 1319 1320 1321 1322

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1323
  GType *out_;
L
lijiancheng0614 已提交
1324 1325 1326 1327 1328 1329
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1330
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1331
template <typename Dtype>
E
eclipsess 已提交
1332
class TransposeParam : public OpParam {
N
nhzlx 已提交
1333 1334 1335
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1336 1337
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1338 1339 1340 1341
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1342 1343 1344
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1345
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1346

1347
  GType *Out() const { return out_; }
E
eclipsess 已提交
1348 1349 1350 1351

  const vector<int> &Axis() const { return axis_; }

 private:
1352 1353
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1354 1355
  vector<int> axis_;
};
L
liuruilong 已提交
1356
#endif
E
eclipsess 已提交
1357

L
lijiancheng0614 已提交
1358 1359 1360 1361 1362 1363 1364 1365
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1366 1367 1368 1369 1370
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1371 1372 1373
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1374
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1375

1376
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1377

1378
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1379 1380 1381 1382

  const vector<int> &Axis() const { return axis_; }

 private:
1383 1384 1385
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1386 1387 1388 1389
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1390 1391 1392 1393 1394 1395 1396 1397
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1398 1399 1400 1401 1402
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1429 1430
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1431
    // todo crf params
1432 1433 1434 1435
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1436 1437 1438 1439 1440 1441
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1442 1443
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1444 1445 1446 1447 1448 1449 1450 1451
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1452 1453
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1454 1455 1456 1457
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1458
#ifdef RESHAPE_OP
N
nhzlx 已提交
1459
template <typename Dtype>
E
eclipsess 已提交
1460
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1461 1462 1463
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1464 1465
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1466 1467 1468 1469 1470
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1471
    shape_ = GetAttr<vector<int>>("shape", attrs);
1472 1473 1474 1475 1476 1477 1478

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1479 1480
  }

1481
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1482

1483
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1484

1485
  GType *Out() const { return out_; }
E
eclipsess 已提交
1486 1487 1488 1489 1490 1491

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1492 1493 1494
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1495 1496 1497
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1498
#endif
E
eclipsess 已提交
1499

L
lijiancheng0614 已提交
1500 1501 1502 1503 1504 1505 1506 1507
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1508 1509 1510 1511 1512 1513
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1514 1515 1516 1517 1518 1519 1520 1521
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1522
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1523

E
eclipsess 已提交
1524
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1525

E
eclipsess 已提交
1526
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1527

E
eclipsess 已提交
1528
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1529 1530 1531 1532 1533 1534

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1535 1536 1537 1538
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1539 1540 1541 1542 1543
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1544
#ifdef SCALE_OP
N
nhzlx 已提交
1545
template <typename Dtype>
I
itminner 已提交
1546
class ScaleParam : public OpParam {
N
nhzlx 已提交
1547 1548 1549
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1550 1551
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1552 1553 1554 1555
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1556 1557
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1558 1559
  }

1560
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1561

1562
  GType *Out() const { return out_; }
I
itminner 已提交
1563

1564
  const float Scale() const { return scale_; }
I
itminner 已提交
1565

1566
  const float Bias() const { return bias_; }
I
itminner 已提交
1567 1568

 private:
1569 1570
  GType *input_x_;
  GType *out_;
1571 1572
  float scale_;
  float bias_;
I
itminner 已提交
1573
};
T
Tian 已提交
1574 1575 1576
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1577
template <typename Dtype>
I
itminner 已提交
1578
class SliceParam : public OpParam {
N
nhzlx 已提交
1579 1580 1581
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1582 1583
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1584 1585 1586 1587
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1588

1589 1590 1591 1592
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1593

1594 1595 1596 1597 1598 1599
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1600
};
T
Tian 已提交
1601 1602 1603
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1604
template <typename Dtype>
T
Tian 已提交
1605
class ResizeParam : public OpParam {
N
nhzlx 已提交
1606 1607 1608
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1609 1610
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1611 1612 1613 1614 1615
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1616 1617 1618 1619 1620 1621
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1622

1623
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1624

1625
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1626

1627
  GType *Out() const { return out_; }
T
Tian 已提交
1628

I
itminner 已提交
1629
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1630

I
itminner 已提交
1631
  const int &Height() const { return height_; }
T
Tian 已提交
1632

I
itminner 已提交
1633
  const int &Width() const { return width_; }
T
Tian 已提交
1634

I
itminner 已提交
1635
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1636

I
itminner 已提交
1637
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1638

I
itminner 已提交
1639
 private:
1640 1641 1642
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1643 1644 1645 1646 1647
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1648 1649 1650
};
#endif

L
liuruilong 已提交
1651
#ifdef RELU_OP
L
liuruilong 已提交
1652 1653 1654
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1655
template <typename Dtype>
D
relu  
dolphin8 已提交
1656
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1657 1658 1659
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1660
 public:
D
relu  
dolphin8 已提交
1661
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1662 1663 1664 1665
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1666 1667
  }

1668
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1669

1670
  GType *Out() const { return out_; }
E
eclipsess 已提交
1671 1672

 private:
1673 1674
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1675
};
D
relu  
dolphin8 已提交
1676 1677 1678

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1679
 public:
D
relu  
dolphin8 已提交
1680 1681 1682
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1697
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1698 1699
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1700
 public:
D
relu  
dolphin8 已提交
1701
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1702 1703 1704
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1705 1706
  framework::CLImage midImage;
};
Y
yangfei 已提交
1707
#endif
D
relu  
dolphin8 已提交
1708

L
liuruilong 已提交
1709
#endif
E
eclipsess 已提交
1710

Z
zhangyang 已提交
1711 1712 1713 1714 1715 1716 1717 1718
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1719 1720 1721 1722
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1723
  }
1724 1725
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1726 1727

 private:
1728 1729
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1730 1731 1732
#ifdef PADDLE_MOBILE_FPGA

 private:
1733
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1734 1735 1736
  fpga::BypassArgs fpga_bypass_args;

 public:
1737
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1738 1739
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1740
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1741 1742 1743
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1744
};
L
liuruilong 已提交
1745
#endif
E
eclipsess 已提交
1746

T
Tian 已提交
1747
#ifdef PRELU_OP
N
nhzlx 已提交
1748
template <typename Dtype>
T
Tian 已提交
1749
class PReluParam : public OpParam {
N
nhzlx 已提交
1750 1751 1752
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1753 1754
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1755 1756
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1757
    DLOG << "PReluParam inputs before";
1758 1759
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1760
    framework::DDim dims = alpha_->dims();
1761
    out_ = OutFrom<GType>(outputs, *scope);
1762
    mode_ = GetStringAttr("mode", attrs);
1763
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1764
  }
1765 1766 1767
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1768
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1769

I
itminner 已提交
1770
 private:
1771 1772 1773
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1774
  std::string mode_;
T
Tian 已提交
1775 1776 1777
};
#endif

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1803
template <typename Dtype>
L
liuruilong 已提交
1804
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1805 1806 1807
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1808
 public:
L
liuruilong 已提交
1809
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1810 1811 1812 1813 1814 1815
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1816 1817 1818 1819
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1820
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1821

1822
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1823

1824
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1825

xiebaiyuan's avatar
xiebaiyuan 已提交
1826
  GType *Out() const { return out_; }
E
eclipsess 已提交
1827 1828 1829 1830 1831 1832 1833 1834

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1835
  GType *input_x_;
1836 1837
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1838
  GType *out_;
E
eclipsess 已提交
1839 1840 1841
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1842

Z
ZhenWang 已提交
1843
#ifdef PADDLE_MOBILE_FPGA
1844
 private:  // NOLINT
Z
zhangyang 已提交
1845
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1846 1847

 public:
Z
zhangyang 已提交
1848 1849
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1850
#endif
E
eclipsess 已提交
1851
};
1852 1853

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1854 1855
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1856
#endif
E
eclipsess 已提交
1857

N
nhzlx 已提交
1858
template <typename Dtype>
1859
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1860 1861 1862
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1863
 public:
L
liuruilong 已提交
1864
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1865
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1866
                     Scope *scope)
1867
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1868
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1869
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1870
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1871
  }
1872
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1873 1874 1875

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1876
 protected:
1877
  GType *bias_;
W
wangliu 已提交
1878 1879 1880
  int axis_;
};

N
nhzlx 已提交
1881 1882
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1883

Z
zhangyang 已提交
1884
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1885 1886
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1887
 public:
L
liuruilong 已提交
1888
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1889
                         const VariableNameMap &outputs,
1890
                         const AttributeMap &attrs, Scope *scope)
1891
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1892 1893 1894
};
#endif

1895
#ifdef FUSION_CONVADDPRELU_OP
1896 1897 1898 1899
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1900 1901 1902 1903

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1904
                          const AttributeMap &attrs, Scope *scope)
1905
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1906
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1907
    mode_ = OpParam::GetStringAttr("mode", attrs);
1908
    framework::DDim dims = alpha_->dims();
1909
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1910
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1911
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1912
  }
1913
  const GType *InputAlpha() const { return alpha_; }
1914
  const std::string &Mode() const { return mode_; }
1915
  GType *Bias() const { return bias_; }
1916 1917 1918
  const int &Axis() const { return axis_; }

 protected:
1919
  GType *bias_;
1920
  int axis_;
1921
  GType *alpha_;
1922 1923 1924 1925 1926
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1927 1928 1929 1930
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1931 1932 1933 1934

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1935
                             const AttributeMap &attrs, Scope *scope)
1936
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1937 1938
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1939
    mode_ = OpParam::GetStringAttr("mode", attrs);
1940
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1941
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1942
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1943 1944 1945
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1946
    if (keyX1_ == keyOutput_) {
1947
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1948
    } else if (keyY1_ == keyOutput_) {
1949
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1950
    }
H
update  
hjchen2 已提交
1951
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1952
  }
1953
  const GType *InputAlpha() const { return alpha_; }
1954
  const std::string &Mode() const { return mode_; }
1955
  const GType *Bias1() const { return bias1_; }
1956

1957
  GType *Bias() const { return bias_; }
1958 1959 1960 1961

  const int &Axis() const { return axis_; }

 protected:
1962
  GType *bias_;
1963
  int axis_;
1964
  GType *alpha_;
1965
  std::string mode_;
1966
  GType *bias1_;
1967 1968 1969 1970 1971 1972
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1973
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1974
template <typename Dtype>
1975
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1976 1977 1978
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1979 1980 1981
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1982
                           const AttributeMap &attrs, Scope *scope)
1983
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1984
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1985
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1986 1987 1988 1989
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1990 1991
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1992
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1993
  }
1994
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1995 1996 1997

  const int &Axis() const { return axis_; }

1998
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1999

2000
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2001

2002
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2003

2004
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2005 2006 2007 2008 2009

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2010
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2011

2012
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2013

2014
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2015

2016
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2017 2018

 protected:
2019
  GType *bias_;
E
eclipsess 已提交
2020
  int axis_;
2021 2022 2023 2024
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2025 2026
  float epsilon_;
  float momentum_;
2027 2028
  GType *new_bias_;
  GType *new_scale_;
2029 2030 2031 2032 2033
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2034
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2035 2036 2037 2038 2039 2040
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2041
                           const AttributeMap &attrs, Scope *scope)
2042
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2043
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2044
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2045 2046 2047 2048
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2049 2050
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2051 2052 2053
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2054
    if (keyX_ == keyBNY_) {
2055
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2056
    } else if (keyY_ == keyBNY_) {
2057
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2058
    }
H
update  
hjchen2 已提交
2059
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2060
  }
2061
  GType *Bias() const { return bias_; }
2062 2063 2064

  const int &Axis() const { return axis_; }

2065
  const GType *InputBias() const { return input_bias_; }
2066

2067
  const GType *InputMean() const { return input_mean_; }
2068

2069
  const GType *InputScale() const { return input_scale_; }
2070

2071
  const GType *InputVariance() const { return input_variance_; }
2072 2073 2074 2075 2076

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2077
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2078

2079
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2080

2081
  const GType *NewScale() const { return new_scale_; }
2082

2083
  const GType *NewBias() const { return new_bias_; }
2084 2085

 protected:
2086
  GType *bias_;
2087
  int axis_;
2088 2089 2090 2091
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2092 2093
  float epsilon_;
  float momentum_;
2094 2095
  GType *new_bias_;
  GType *new_scale_;
2096 2097 2098
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2099
};
2100
#endif
E
eclipsess 已提交
2101

Z
zhangyang 已提交
2102
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2103
template <typename Dtype>
2104
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2105 2106 2107
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2108 2109 2110
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2111
                    Scope *scope)
2112
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2113 2114 2115 2116
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2117 2118
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2119
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2120 2121
  }

2122
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2123

2124
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2125

2126
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2127

2128
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2129 2130 2131 2132 2133

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2134
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2135

2136
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2137

2138
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2139

2140
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2141 2142

 protected:
2143 2144 2145 2146
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2147 2148
  float epsilon_;
  float momentum_;
2149 2150
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2151 2152 2153
};
#endif

2154
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2155
template <typename Dtype>
2156
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2157 2158 2159
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2160 2161 2162
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2163
                       const AttributeMap &attrs, Scope *scope)
2164
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2165
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2166
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2167 2168 2169 2170
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2171 2172
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2173
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2174
  }
2175
  GType *Bias() const { return bias_; }
2176 2177 2178

  const int &Axis() const { return axis_; }

2179
  const GType *InputBias() const { return input_bias_; }
2180

2181
  const GType *InputMean() const { return input_mean_; }
2182

2183
  const GType *InputScale() const { return input_scale_; }
2184

2185
  const GType *InputVariance() const { return input_variance_; }
2186 2187 2188 2189 2190

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2191
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2192

2193
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2194

2195
  const GType *NewScale() const { return new_scale_; }
2196

2197
  const GType *NewBias() const { return new_bias_; }
2198 2199

 protected:
2200
  GType *bias_;
2201
  int axis_;
2202 2203 2204 2205
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2206 2207
  float epsilon_;
  float momentum_;
2208 2209
  GType *new_bias_;
  GType *new_scale_;
2210
};
E
eclipsess 已提交
2211
#endif
Y
Yao,kun 已提交
2212

E
eclipsess 已提交
2213
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2214
template <typename Dtype>
2215
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2216 2217 2218
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2219 2220 2221
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2222
                          const AttributeMap &attrs, Scope *scope)
2223
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2224 2225 2226 2227
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2228 2229
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2230
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2231 2232
  }

2233
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2234

2235
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2236

2237
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2238

2239
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2240 2241 2242 2243 2244

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2245
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2246

2247
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2248

2249
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2250

2251
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2252 2253

 protected:
2254 2255 2256 2257
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2258 2259
  float epsilon_;
  float momentum_;
2260 2261
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2262 2263 2264 2265
};

#endif

2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2282
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2283
template <typename Dtype>
2284
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2285 2286 2287
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2288 2289 2290
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2291
                        const AttributeMap &attrs, Scope *scope)
2292
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2293 2294 2295 2296
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2297 2298
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2299
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2300 2301
  }

2302
  const GType *InputBias() const { return input_bias_; }
2303

2304
  const GType *InputMean() const { return input_mean_; }
2305

2306
  const GType *InputScale() const { return input_scale_; }
2307

2308
  const GType *InputVariance() const { return input_variance_; }
2309 2310 2311 2312 2313

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2314
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2315

2316
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2317

2318
  const GType *NewScale() const { return new_scale_; }
2319

2320
  const GType *NewBias() const { return new_bias_; }
2321 2322

 protected:
2323 2324 2325 2326
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2327 2328
  float epsilon_;
  float momentum_;
2329 2330
  GType *new_bias_;
  GType *new_scale_;
2331 2332 2333
};
#endif

Y
Yao,kun 已提交
2334
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2335
template <typename Dtype>
Y
Yao,kun 已提交
2336
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2337 2338 2339
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2340 2341 2342
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2343 2344 2345 2346
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2347 2348 2349 2350 2351
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2352
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2353

E
eclipsess 已提交
2354
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2355 2356 2357 2358 2359 2360 2361 2362

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2363 2364
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2365 2366 2367 2368
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2369
#endif
Y
Yao,kun 已提交
2370

2371
#ifdef DROPOUT_OP
N
nhzlx 已提交
2372
template <typename Dtype>
Y
Yao,kun 已提交
2373
class DropoutParam : public OpParam {
N
nhzlx 已提交
2374 2375 2376
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2377 2378
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2379 2380 2381 2382
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2383 2384

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2385 2386
  }

2387
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2388

2389
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2390

Y
yangfei 已提交
2391 2392
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2393
 private:
2394 2395
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2396
  float dropout_prob_;
Y
Yao,kun 已提交
2397
};
2398
#endif
Y
Yao,kun 已提交
2399

N
nhzlx 已提交
2400
template <typename Dtype>
L
liuruilong 已提交
2401
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2402 2403 2404
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2405 2406 2407
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2408 2409 2410 2411
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2412
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2413
    if (outputs.count("Output")) {
2414
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2415
    }
L
liuruilong 已提交
2416 2417 2418 2419 2420 2421
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2422
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2423

2424
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2425

2426
  GType *Output() const { return output_; }
L
liuruilong 已提交
2427 2428 2429 2430 2431 2432 2433 2434 2435

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2445
 private:
2446 2447 2448
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2449 2450 2451 2452
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2453
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2454 2455 2456 2457 2458

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2459
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2460 2461 2462

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2463 2464 2465
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2466
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2467 2468 2469
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2470
#endif
L
liuruilong 已提交
2471
};
Z
zhangyang 已提交
2472

qnqinan's avatar
qnqinan 已提交
2473 2474 2475 2476 2477
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2478 2479

 public:
qnqinan's avatar
qnqinan 已提交
2480
  FusionDeconvAddParam(const VariableNameMap &inputs,
2481
                       const VariableNameMap &outputs,
2482
                       const AttributeMap &attrs, Scope *scope)
2483
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2484
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2485
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2486
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2487
  }
2488
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2489 2490 2491

  const int &Axis() const { return axis_; }

2492
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2493 2494

 protected:
2495
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2496
  int axis_;
2497
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2498 2499 2500 2501 2502 2503 2504
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2505 2506 2507 2508 2509 2510 2511 2512 2513
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2514
                         const AttributeMap &attrs, Scope *scope)
2515
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2516 2517 2518 2519 2520
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2521 2522 2523 2524 2525 2526 2527
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2571
                          const AttributeMap &attrs, Scope *scope)
2572
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2573 2574 2575 2576 2577
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2578 2579 2580 2581 2582 2583
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2627
                             const AttributeMap &attrs, Scope *scope)
2628
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2629 2630 2631 2632 2633
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2675

Z
zhangyang 已提交
2676 2677 2678 2679 2680
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2695 2696 2697 2698 2699 2700 2701 2702
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2703
    output_batch_reset_hidden_prev_ =
2704 2705 2706
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2707 2708
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2742 2743 2744 2745 2746 2747 2748
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2749 2750 2751 2752 2753 2754 2755 2756
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2757
    output_reset_hidden_prev_ =
2758 2759
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2788 2789 2790 2791 2792 2793 2794 2795
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2796 2797 2798 2799
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2800
    axis = GetAttr<int>("axis", attrs);
2801
  }
2802 2803
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2804
  const int &Axis() const { return axis; }
2805 2806

 private:
2807 2808
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2809
  int axis;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2821 2822 2823 2824
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2825
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2826 2827 2828 2829 2830 2831
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2832
  }
2833
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2834 2835 2836 2837 2838
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2839 2840

 private:
2841
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2842
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2843
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2844 2845 2846
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2847 2848 2849 2850 2851 2852 2853 2854 2855
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2868 2869 2870 2871 2872
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2873 2874
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2875
  }
2876
  const GType *InputX() const { return input_x_; }
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
2909 2910
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2911 2912
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2913 2914

 private:
2915 2916 2917
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2918 2919
  int out_h_;
  int out_w_;
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2931 2932 2933 2934
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2935
  }
2936 2937
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2938 2939

 private:
2940 2941
  GType *input_;
  GType *out_;
2942 2943 2944
};
#endif

H
hjchen2 已提交
2945 2946 2947 2948 2949 2950 2951 2952
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2953 2954 2955 2956 2957
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2958 2959 2960 2961
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2962 2963 2964
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2977 2978 2979 2980
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2981 2982 2983 2984 2985
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2986 2987
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2988 2989 2990 2991 2992
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2993
#ifdef QUANT_OP
2994
template <typename Dtype>
2995 2996 2997 2998 2999
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3000
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3001 3002 3003 3004
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3005 3006
    // online
    // scale = max(abs(x))
3007
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3008
    // offline
3009
    if (inputs.count("InScale")) {
3010
      offline_ = true;
3011
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3012 3013
    }
    // x = round(scale * x)
3014 3015
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3016
    }
3017 3018 3019 3020
  }

 public:
  // op input
3021
  GType *input_;
3022
  // op output
3023
  GType *output_;
3024
  GType *online_scale_;
3025
  // quantize offline scale
3026
  GType *offline_scale_;
3027 3028
  // if offine scale or not
  bool offline_ = false;
3029
  // round method type
3030 3031
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3032
};
3033
#endif
3034

3035
#ifdef DEQUANT_OP
3036
template <typename Dtype>
3037 3038 3039 3040 3041
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3042
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3043 3044 3045 3046 3047
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3048
    // dequantization is performed as x = x / static_scale / online_scale
3049 3050
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3051
    } else {
3052
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3053 3054 3055 3056 3057
    }
  }

 public:
  // op input
3058
  GType *input_;
3059
  // op output
3060
  GType *output_;
3061
  GType *activation_scale_;
3062 3063
  float weight_scale_;
};
3064
#endif
3065

3066 3067 3068 3069
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3070
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3071
template <typename Dtype>
3072
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3073 3074 3075 3076
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3077 3078
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3079
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3080 3081
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3082 3083 3084 3085
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3086 3087 3088 3089 3090
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3091 3092 3093 3094
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3095
  float epsilon_;
3096 3097 3098
};
#endif

3099 3100 3101 3102
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3103 3104 3105 3106 3107 3108 3109 3110
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3111
                          const AttributeMap &attrs, Scope *scope)
3112 3113 3114
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3115
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3116 3117 3118 3119 3120
  }

 public:
  // elementwise add
  int axis_;
3121
  GType *bias_;
3122 3123 3124
};
#endif

3125 3126 3127 3128 3129 3130 3131 3132 3133
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3134
                               const AttributeMap &attrs, Scope *scope)
3135 3136
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3137
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3138
    // offline
3139 3140
    if (inputs.count("InScale")) {
      offline_ = true;
3141
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3142 3143 3144 3145 3146 3147 3148 3149
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3150
  GType *online_scale_;
3151
  // quantize offline scale
3152
  GType *offline_scale_;
3153 3154
  // if offine scale or not
  bool offline_ = false;
3155 3156 3157 3158 3159 3160
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3161 3162 3163 3164 3165 3166 3167 3168 3169
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3170 3171 3172 3173 3174
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3198 3199 3200 3201
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3202 3203
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3204
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3215 3216 3217 3218 3219 3220 3221 3222
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3223 3224 3225 3226
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3227 3228
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3229
      input_y_ = InputYFrom<GType>(inputs, *scope);
3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3243 3244 3245 3246 3247 3248 3249 3250
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3251 3252 3253 3254 3255
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3267
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3268
template <typename Dtype>
Z
zhaojiaying01 已提交
3269
class LogicalBinaryParam : public OpParam {
3270 3271 3272 3273
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3274 3275
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3276 3277 3278 3279 3280
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3292
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3293 3294 3295

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3296
class LogicalUnaryParam : public OpParam {
3297 3298 3299 3300
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3301 3302
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3303 3304 3305 3306
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3318 3319 3320
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3321 3322 3323
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3324 3325 3326
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3327 3328
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3329 3330 3331
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3332 3333 3334
  }

 public:
H
hjchen2 已提交
3335 3336 3337
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3338 3339 3340 3341 3342 3343
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3344 3345 3346
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3347 3348 3349
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3350 3351
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3352 3353 3354
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3355 3356 3357
  }

 public:
H
hjchen2 已提交
3358 3359 3360
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3361 3362 3363
};
#endif

Z
zhaojiaying01 已提交
3364 3365 3366 3367 3368 3369 3370 3371
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3372 3373 3374 3375
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3395
                 const AttributeMap &attrs, Scope *scope)
3396
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3397 3398
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3399
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3400 3401 3402 3403
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3404
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3405 3406 3407 3408

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3409
  float step_;
Z
zhaojiaying01 已提交
3410 3411
};
#endif  // INCREMENT_OP
3412 3413 3414 3415 3416 3417 3418 3419
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3420 3421 3422 3423
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3424 3425 3426 3427 3428 3429 3430 3431 3432
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3433

朔-望's avatar
朔-望 已提交
3434 3435
}  // namespace operators
}  // namespace paddle_mobile