op_param.h 50.8 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29 30

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
31 32
namespace operators {

W
wangliu 已提交
33 34 35 36 37 38 39
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
40

N
nhzlx 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
liuruilong 已提交
74
class OpParam {
朔-望's avatar
朔-望 已提交
75
 protected:
76 77 78 79 80
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
96 97 98 99 100
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
118 119 120 121
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
138

E
eclipsess 已提交
139 140 141 142 143 144 145 146 147 148
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
149 150 151 152
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
153

154
  template <typename T>
W
wangliu 已提交
155 156
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    return GetMultiVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
175 176 177 178 179 180
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
181 182 183 184 185
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
186 187 188 189 190 191
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

192 193 194 195 196 197 198 199 200 201 202
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
203
  static const T GetAttr(const string &key, const AttributeMap &map) {
204 205 206 207
    return ((Attribute)map.at(key)).Get<T>();
  }

  template <typename T>
W
wangliu 已提交
208
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
209
                        const Scope &scope) {
W
wangliu 已提交
210 211
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
212 213 214 215 216 217
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
218
    }
219
  }
朔-望's avatar
朔-望 已提交
220

221
  template <typename T>
W
wangliu 已提交
222 223 224
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
225 226
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
227
    vector<T *> var_res;
228 229 230
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
231
    }
232 233
    return var_res;
  }
朔-望's avatar
朔-望 已提交
234 235
};

L
liuruilong 已提交
236
#ifdef CONV_OP
N
nhzlx 已提交
237
template <typename Dtype>
朔-望's avatar
朔-望 已提交
238
class ConvParam : OpParam {
N
nhzlx 已提交
239 240 241
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
242
 public:
243
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
244
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
245 246 247
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
W
wangliu 已提交
248 249 250
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
251 252
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
253

N
nhzlx 已提交
254
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
255

N
nhzlx 已提交
256
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
257

N
nhzlx 已提交
258
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
259

W
wangliu 已提交
260
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
261

W
wangliu 已提交
262
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
263

W
wangliu 已提交
264
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
265

266
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
267

朔-望's avatar
朔-望 已提交
268
 private:
N
nhzlx 已提交
269 270 271
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
272 273 274
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
275
  int groups;
朔-望's avatar
朔-望 已提交
276
};
N
nhzlx 已提交
277 278
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
L
liuruilong 已提交
279
#endif
朔-望's avatar
朔-望 已提交
280

N
nhzlx 已提交
281
template <typename Dtype>
朔-望's avatar
朔-望 已提交
282
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
283 284 285
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
286
 public:
287
  ElementwiseAddParam(const VariableNameMap &inputs,
288 289
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
290 291 292
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
293 294 295
    axis_ = GetAttr<int>("axis", attrs);
  }

N
nhzlx 已提交
296
  const RType *InputX() const { return input_x_; }
297

N
nhzlx 已提交
298
  const RType *InputY() const { return input_y_; }
299

N
nhzlx 已提交
300
  RType *Out() const { return out_; }
301 302 303

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
304
 private:
N
nhzlx 已提交
305 306 307
  RType *input_x_;
  RType *input_y_;
  RType *out_;
308
  int axis_;
Z
zhangyang 已提交
309 310 311
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
312
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
313 314

 public:
H
hanbuhe 已提交
315 316
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
317
#endif
朔-望's avatar
朔-望 已提交
318 319
};

320
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
321 322
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
323 324 325
#endif

#ifdef MUL_OP
N
nhzlx 已提交
326
template <typename Dtype>
朔-望's avatar
朔-望 已提交
327
class MulParam : OpParam {
N
nhzlx 已提交
328 329 330
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
331
 public:
332
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
333
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
334 335 336
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
337 338 339
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
340

N
nhzlx 已提交
341
  const RType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
342

N
nhzlx 已提交
343
  const RType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
344

N
nhzlx 已提交
345
  RType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
346

347
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
348

349
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
350

朔-望's avatar
朔-望 已提交
351
 private:
N
nhzlx 已提交
352 353 354
  RType *input_x_;
  RType *input_y_;
  RType *out_;
355 356
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
357
};
L
liuruilong 已提交
358
#endif
朔-望's avatar
朔-望 已提交
359

L
liuruilong 已提交
360
#ifdef CONCAT_OP
N
nhzlx 已提交
361
template <typename Dtype>
朔-望's avatar
朔-望 已提交
362
class ConcatParam : public OpParam {
N
nhzlx 已提交
363 364 365
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
366
 public:
367
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
368
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
369 370
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
371 372
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
373

N
nhzlx 已提交
374
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
375

N
nhzlx 已提交
376
  RType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
377

378
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
379

朔-望's avatar
朔-望 已提交
380
 private:
N
nhzlx 已提交
381 382
  vector<GType *> inputs_;
  RType *out_;
383
  int axis_;
朔-望's avatar
朔-望 已提交
384
};
L
liuruilong 已提交
385
#endif
朔-望's avatar
朔-望 已提交
386

L
liuruilong 已提交
387
#ifdef LRN_OP
N
nhzlx 已提交
388
template <typename Dtype>
E
eclipsess 已提交
389
class LrnParam : public OpParam {
N
nhzlx 已提交
390 391 392
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
393
 public:
394
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
395
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
396 397 398
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
399 400 401 402
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
403
    data_format_ = GetAttr<string>("data_format", attrs);
404
  }
E
eclipsess 已提交
405

N
nhzlx 已提交
406
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
407

N
nhzlx 已提交
408
  RType *Out() const { return out_; }
E
eclipsess 已提交
409

N
nhzlx 已提交
410
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
411

412
  const int &N() const { return n_; }
E
eclipsess 已提交
413

414
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
415

416
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
417

418
  const float &K() const { return k_; }
E
eclipsess 已提交
419

W
wangliu 已提交
420
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
421

朔-望's avatar
朔-望 已提交
422
 private:
N
nhzlx 已提交
423 424 425
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
426 427 428 429
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
430
  string data_format_;
E
eclipsess 已提交
431
};
L
liuruilong 已提交
432 433 434
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
435
template <typename Dtype>
E
eclipsess 已提交
436
class BatchNormParam : OpParam {
N
nhzlx 已提交
437 438 439
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
440
 public:
441
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
442
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
443 444 445 446 447 448
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
449 450
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
451
    //    is_test_ = GetAttr<bool>("is_test", attrs);
452
  }
E
eclipsess 已提交
453

N
nhzlx 已提交
454
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
455

N
nhzlx 已提交
456
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
457

N
nhzlx 已提交
458
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
459

N
nhzlx 已提交
460
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
461

N
nhzlx 已提交
462
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
463

N
nhzlx 已提交
464
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
465

466
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
467

468
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
469

470
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
471

W
wangliu 已提交
472
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
473

朔-望's avatar
朔-望 已提交
474
 private:
N
nhzlx 已提交
475 476 477 478 479 480
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
481 482 483
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
484
  string data_format_;
E
eclipsess 已提交
485
};
L
liuruilong 已提交
486 487 488
#endif

#ifdef POOL_OP
N
nhzlx 已提交
489
template <typename Dtype>
490
class PoolParam : public OpParam {
N
nhzlx 已提交
491 492 493
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
494
 public:
495
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
496
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
497
    input_ = InputXFrom<GType>(inputs, scope);
498

N
nhzlx 已提交
499
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
500 501 502 503
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
504
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
505
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
506
  }
507

N
nhzlx 已提交
508
  const RType *Input() const { return input_; }
509

N
nhzlx 已提交
510
  RType *Output() const { return output_; }
511

W
wangliu 已提交
512
  const string &PoolingType() const { return pooling_type_; }
513

W
wangliu 已提交
514
  const vector<int> &Ksize() const { return ksize_; }
515

W
wangliu 已提交
516
  const vector<int> &Strides() const { return strides_; }
517

W
wangliu 已提交
518
  const vector<int> &Paddings() const { return paddings_; }
519

520
  bool isCeilMode() const { return ceil_mode_; }
521

Z
zhangyang 已提交
522
  bool isGlobalPooling() const { return global_pooling_; }
523

朔-望's avatar
朔-望 已提交
524
 private:
N
nhzlx 已提交
525 526
  RType *input_;
  RType *output_;
W
wangliu 已提交
527 528 529 530
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
531
  bool ceil_mode_;
532
  bool global_pooling_ = false;
Z
zhangyang 已提交
533
#ifdef PADDLE_MOBILE_FPGA
534 535

 private:
H
hanbuhe 已提交
536
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
537 538

 public:
H
hanbuhe 已提交
539 540
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
541
#endif
542
};
L
liuruilong 已提交
543 544 545
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
546
template <typename Dtype>
E
eclipsess 已提交
547
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
548 549 550
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
551 552
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
553
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
554 555 556 557
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
558 559 560 561
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
562 563 564 565 566 567
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
568
  const RType *Input() const { return input_; }
E
eclipsess 已提交
569

N
nhzlx 已提交
570
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
571

N
nhzlx 已提交
572
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
573

N
nhzlx 已提交
574
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
575

W
wangliu 已提交
576
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
577

W
wangliu 已提交
578
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
579

W
wangliu 已提交
580
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
581

W
wangliu 已提交
582
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
583 584 585 586 587 588 589 590 591 592 593 594

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
N
nhzlx 已提交
595 596 597 598
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
599 600 601 602
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
603 604 605 606 607 608
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
609
#endif
E
eclipsess 已提交
610

L
liuruilong 已提交
611
#ifdef BOXCODER_OP
N
nhzlx 已提交
612
template <typename Dtype>
E
eclipsess 已提交
613
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
614 615 616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
617 618
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
619
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
620 621 622 623
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
624 625
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
626
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
627

N
nhzlx 已提交
628
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
629

N
nhzlx 已提交
630
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
631

N
nhzlx 已提交
632
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
633 634 635 636

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
637 638 639 640
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
641 642
  std::string code_type_;
};
L
liuruilong 已提交
643
#endif
W
wangliu 已提交
644

L
liuruilong 已提交
645
#ifdef SOFTMAX_OP
N
nhzlx 已提交
646
template <typename Dtype>
W
wangliu 已提交
647
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
648 649 650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
651 652
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
653
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
654 655
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
656
  }
N
nhzlx 已提交
657 658
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
659 660

 private:
N
nhzlx 已提交
661 662
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
663 664 665 666

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
667
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
668 669 670
  fpga::BypassArgs fpga_bypass_args;

 public:
N
nhzlx 已提交
671
  RType *FloatInput() {
H
hanbuhe 已提交
672 673 674 675 676 677
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
678
};
L
liuruilong 已提交
679
#endif
W
wangliu 已提交
680

L
liuruilong 已提交
681
#ifdef SIGMOID_OP
N
nhzlx 已提交
682
template <typename Dtype>
W
wangliu 已提交
683
class SigmoidParam : public OpParam {
N
nhzlx 已提交
684 685 686
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
687 688
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
689
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
690 691
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
692
  }
N
nhzlx 已提交
693 694
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
695 696

 private:
N
nhzlx 已提交
697 698
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
699
};
L
liuruilong 已提交
700 701 702
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
703
template <typename Dtype>
E
eclipsess 已提交
704
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
705 706 707
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
708 709 710 711
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
712 713 714
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
715 716 717 718 719 720 721 722
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
723
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
724

N
nhzlx 已提交
725
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
726

N
nhzlx 已提交
727
  RType *Out() const { return out_; }
E
eclipsess 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
742 743 744
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
745 746 747 748 749 750 751
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
752
#endif
W
wangliu 已提交
753

N
nhzlx 已提交
754
template <typename Dtype>
L
liuruilong 已提交
755
class FeedParam : public OpParam {
N
nhzlx 已提交
756 757 758
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
759 760
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
761
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
762 763
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
764
    auto var = scope->Var("batch_size");
W
wangliu 已提交
765
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
766
  }
N
nhzlx 已提交
767 768
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
769
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
770

L
liuruilong 已提交
771
 private:
N
nhzlx 已提交
772 773
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
774
  int batch_size;
L
liuruilong 已提交
775 776
};

N
nhzlx 已提交
777
template <typename Dtype>
L
liuruilong 已提交
778
class FetchParam : public OpParam {
N
nhzlx 已提交
779 780 781
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
782 783
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
784
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
785 786
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
787
  }
N
nhzlx 已提交
788 789
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
790

L
liuruilong 已提交
791
 private:
N
nhzlx 已提交
792 793
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
794 795
};

L
liuruilong 已提交
796
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
797
template <typename Dtype>
E
eclipsess 已提交
798
class TransposeParam : public OpParam {
N
nhzlx 已提交
799 800 801
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
802 803 804
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
805 806
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
807 808 809
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
810
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
811

N
nhzlx 已提交
812
  RType *Out() const { return out_; }
E
eclipsess 已提交
813 814 815 816

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
817 818
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
819 820
  vector<int> axis_;
};
L
liuruilong 已提交
821
#endif
E
eclipsess 已提交
822

L
liuruilong 已提交
823
#ifdef RESHAPE_OP
N
nhzlx 已提交
824
template <typename Dtype>
E
eclipsess 已提交
825
class ReshapeParam : public OpParam {
N
nhzlx 已提交
826 827 828
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
829 830 831
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
832 833 834
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
835 836 837 838
    shape_ = GetAttr<vector<int>>("shape", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
839
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
840

N
nhzlx 已提交
841
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
842

N
nhzlx 已提交
843
  RType *Out() const { return out_; }
E
eclipsess 已提交
844 845 846 847 848 849

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
850 851 852
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
853 854 855
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
856
#endif
E
eclipsess 已提交
857

T
Tian 已提交
858
#ifdef SCALE_OP
N
nhzlx 已提交
859
template <typename Dtype>
I
itminner 已提交
860
class ScaleParam : public OpParam {
N
nhzlx 已提交
861 862 863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
864 865 866
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
867 868 869
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
870 871 872 873 874 875
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
876
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
877

N
nhzlx 已提交
878
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
879

N
nhzlx 已提交
880
  RType *Out() const { return out_; }
I
itminner 已提交
881 882 883 884 885 886 887 888 889 890

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
891 892 893
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
894 895 896 897 898
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
899 900 901
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
902
template <typename Dtype>
I
itminner 已提交
903
class SliceParam : public OpParam {
N
nhzlx 已提交
904 905 906
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
907 908 909
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
910 911 912
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
913 914 915 916 917
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
918
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
919

N
nhzlx 已提交
920
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
921

N
nhzlx 已提交
922
  RType *Out() const { return out_; }
I
itminner 已提交
923 924 925 926 927 928 929 930

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
931 932 933
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
934 935 936 937
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
938 939 940
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
941
template <typename Dtype>
T
Tian 已提交
942
class ResizeParam : public OpParam {
N
nhzlx 已提交
943 944 945
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
946 947 948
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
949 950 951
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
952 953 954 955 956 957
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
958

N
nhzlx 已提交
959
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
960

N
nhzlx 已提交
961
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
962

N
nhzlx 已提交
963
  RType *Out() const { return out_; }
T
Tian 已提交
964

I
itminner 已提交
965
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
966

I
itminner 已提交
967
  const int &Height() const { return height_; }
T
Tian 已提交
968

I
itminner 已提交
969
  const int &Width() const { return width_; }
T
Tian 已提交
970

I
itminner 已提交
971
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
972

I
itminner 已提交
973
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
974

I
itminner 已提交
975
 private:
N
nhzlx 已提交
976 977 978
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
979 980 981 982 983
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
984 985 986
};
#endif

L
liuruilong 已提交
987
#ifdef RELU_OP
L
liuruilong 已提交
988 989 990
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
991
template <typename Dtype>
E
eclipsess 已提交
992
class ReluParam : public OpParam {
N
nhzlx 已提交
993 994 995
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
996 997 998
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
999 1000
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1001 1002
  }

N
nhzlx 已提交
1003
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1004

N
nhzlx 已提交
1005
  RType *Out() const { return out_; }
E
eclipsess 已提交
1006 1007

 private:
N
nhzlx 已提交
1008 1009
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1010
};
L
liuruilong 已提交
1011
#endif
E
eclipsess 已提交
1012

T
Tian 已提交
1013
#ifdef PRELU_OP
N
nhzlx 已提交
1014
template <typename Dtype>
T
Tian 已提交
1015
class PReluParam : public OpParam {
N
nhzlx 已提交
1016 1017 1018
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1019 1020 1021
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1022
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1023
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1024
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1025
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1026
    out_ = OutFrom<GType>(outputs, scope);
1027 1028
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1029
  }
N
nhzlx 已提交
1030
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1031
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1032
  RType *Out() const { return out_; }
1033
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1034

I
itminner 已提交
1035
 private:
N
nhzlx 已提交
1036 1037
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1038
  RType *alpha_;
1039
  std::string mode_;
T
Tian 已提交
1040 1041 1042
};
#endif

N
nhzlx 已提交
1043
template <typename Dtype>
L
liuruilong 已提交
1044
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1045 1046 1047
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1048
 public:
L
liuruilong 已提交
1049
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1050
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1051 1052 1053 1054
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1055 1056 1057 1058
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
N
nhzlx 已提交
1059
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1060

1061
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1062
  RType *InputY() const { return input_y_; }
1063
#else
N
nhzlx 已提交
1064
  const RType *InputY() const { return input_y_; }
1065
#endif
E
eclipsess 已提交
1066

N
nhzlx 已提交
1067
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1068

N
nhzlx 已提交
1069
  RType *Out() const { return out_; }
E
eclipsess 已提交
1070 1071 1072 1073 1074 1075 1076 1077

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1078 1079 1080 1081
  RType *input_x_;
  RType *input_y_;
  RType *input_z_;
  RType *out_;
E
eclipsess 已提交
1082 1083 1084
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1085 1086 1087
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1088
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1089 1090

 public:
H
hanbuhe 已提交
1091 1092
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1093
#endif
E
eclipsess 已提交
1094
};
1095 1096

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1097 1098
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1099
#endif
E
eclipsess 已提交
1100

N
nhzlx 已提交
1101
template <typename Dtype>
L
liuruilong 已提交
1102
class FusionConvAddParam : public OpParam {
N
nhzlx 已提交
1103 1104 1105
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1106
 public:
L
liuruilong 已提交
1107
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1108 1109
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1110
    bias_ = InputYFrom<GType>(inputs, scope);
W
wangliu 已提交
1111
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1112 1113 1114
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1115 1116 1117 1118 1119
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
N
nhzlx 已提交
1120
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1121 1122 1123

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1124
  const RType *Input() const { return input_; }
W
wangliu 已提交
1125

1126
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1127
  RType *Filter() const { return filter_; }
1128
#else
N
nhzlx 已提交
1129
  const RType *Filter() const { return filter_; }
1130
#endif
W
wangliu 已提交
1131

N
nhzlx 已提交
1132
  RType *Output() const { return output_; }
W
wangliu 已提交
1133 1134 1135 1136 1137 1138 1139 1140 1141

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1142
 protected:
N
nhzlx 已提交
1143
  RType *bias_;
W
wangliu 已提交
1144
  int axis_;
N
nhzlx 已提交
1145 1146 1147
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
1148 1149 1150 1151
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1152 1153 1154
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1155
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1156 1157

 public:
H
hanbuhe 已提交
1158 1159
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1160
#endif
W
wangliu 已提交
1161 1162
};

N
nhzlx 已提交
1163 1164
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1165

Z
zhangyang 已提交
1166
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1167 1168
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1169
 public:
L
liuruilong 已提交
1170
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1171 1172
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1173
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1174 1175 1176
};
#endif

E
eclipsess 已提交
1177
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1178
template <typename Dtype>
E
eclipsess 已提交
1179
class FusionConvAddBNReluParam : public OpParam {
N
nhzlx 已提交
1180 1181 1182
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1183 1184 1185 1186
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1187
    bias_ = InputYFrom<GType>(inputs, scope);
E
eclipsess 已提交
1188
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1189 1190 1191
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1192 1193 1194 1195
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1196 1197 1198 1199
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1200 1201
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1202
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1203
  }
N
nhzlx 已提交
1204
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1205 1206 1207

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1208
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1209

1210
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1211
  RType *Filter() const { return filter_; }
1212
#else
N
nhzlx 已提交
1213
  const RType *Filter() const { return filter_; }
1214
#endif
E
eclipsess 已提交
1215

N
nhzlx 已提交
1216
  RType *Output() const { return output_; }
E
eclipsess 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1226
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1227

N
nhzlx 已提交
1228
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1229

N
nhzlx 已提交
1230
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1231

N
nhzlx 已提交
1232
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1233 1234 1235 1236 1237 1238 1239

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1240
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1241

N
nhzlx 已提交
1242
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1243

N
nhzlx 已提交
1244
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1245

N
nhzlx 已提交
1246
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1247 1248

 protected:
N
nhzlx 已提交
1249
  RType *bias_;
E
eclipsess 已提交
1250
  int axis_;
N
nhzlx 已提交
1251 1252 1253
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1254 1255 1256 1257
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1258 1259 1260 1261
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1262 1263 1264
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1265 1266
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1267 1268 1269
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1270
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1271 1272

 public:
H
hanbuhe 已提交
1273 1274
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1275
#endif
E
eclipsess 已提交
1276
};
1277
#endif
E
eclipsess 已提交
1278

Z
zhangyang 已提交
1279
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1280
template <typename Dtype>
Z
zhangyang 已提交
1281
class FusionConvBNParam : public OpParam {
N
nhzlx 已提交
1282 1283
 typedef typename DtypeTensorTrait<Dtype>::gtype GType;
 typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhangyang 已提交
1284 1285 1286 1287
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
N
nhzlx 已提交
1288 1289 1290
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
Z
zhangyang 已提交
1291 1292 1293 1294
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1295 1296 1297 1298
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
Z
zhangyang 已提交
1299 1300 1301 1302 1303
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1304
  const RType *Input() const { return input_; }
Z
zhangyang 已提交
1305 1306

#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1307
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1308
#else
N
nhzlx 已提交
1309
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1310
#endif
N
nhzlx 已提交
1311
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1312 1313 1314 1315 1316 1317 1318 1319 1320

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1321
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1322

N
nhzlx 已提交
1323
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1324

N
nhzlx 已提交
1325
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1326

N
nhzlx 已提交
1327
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1328 1329 1330 1331 1332 1333 1334

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1335
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1336

N
nhzlx 已提交
1337
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1338

N
nhzlx 已提交
1339
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1340

N
nhzlx 已提交
1341
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1342 1343

 protected:
N
nhzlx 已提交
1344 1345 1346
  RType *input_;
  RType *output_y_;
  RType *filter_;
Z
zhangyang 已提交
1347 1348 1349 1350
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1351 1352 1353 1354
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1355 1356 1357
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1358 1359
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

1372
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1373
template <typename Dtype>
1374
class FusionConvAddBNParam : public OpParam {
N
nhzlx 已提交
1375 1376 1377
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1378 1379 1380 1381
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1382
    bias_ = InputYFrom<GType>(inputs, scope);
1383
    axis_ = GetAttr<int>("axis", attrs);
N
nhzlx 已提交
1384 1385 1386
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
1387 1388 1389 1390
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1391 1392 1393 1394
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1395 1396 1397 1398
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
N
nhzlx 已提交
1399
  RType *Bias() const { return bias_; }
1400 1401 1402

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1403
  const RType *Input() const { return input_; }
1404

1405
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1406
  RType *Filter() const { return filter_; }
1407
#else
N
nhzlx 已提交
1408
  const RType *Filter() const { return filter_; }
1409
#endif
N
nhzlx 已提交
1410
  RType *Output() const { return output_y_; }
1411 1412 1413 1414 1415 1416 1417 1418 1419

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1420
  const RType *InputBias() const { return input_bias_; }
1421

N
nhzlx 已提交
1422
  const RType *InputMean() const { return input_mean_; }
1423

N
nhzlx 已提交
1424
  const RType *InputScale() const { return input_scale_; }
1425

N
nhzlx 已提交
1426
  const RType *InputVariance() const { return input_variance_; }
1427 1428 1429 1430 1431 1432 1433

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1434
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1435

N
nhzlx 已提交
1436
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1437

N
nhzlx 已提交
1438
  const RType *NewScale() const { return new_scale_; }
1439

N
nhzlx 已提交
1440
  const RType *NewBias() const { return new_bias_; }
1441 1442

 protected:
N
nhzlx 已提交
1443
  RType *bias_;
1444
  int axis_;
N
nhzlx 已提交
1445 1446 1447
  RType *input_;
  RType *output_y_;
  RType *filter_;
1448 1449 1450 1451
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1452 1453 1454 1455
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1456 1457 1458
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1459 1460
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1461 1462 1463
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1464
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1465 1466

 public:
H
hanbuhe 已提交
1467 1468
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1469
#endif
1470
};
E
eclipsess 已提交
1471
#endif
Y
Yao,kun 已提交
1472

E
eclipsess 已提交
1473
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1474
template <typename Dtype>
E
eclipsess 已提交
1475
class FusionDWConvBNReluParam : public OpParam {
N
nhzlx 已提交
1476 1477 1478
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1479 1480 1481 1482
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1483 1484 1485
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1486 1487 1488 1489
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1490 1491 1492 1493
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
E
eclipsess 已提交
1494 1495
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1496
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1497 1498
  }

N
nhzlx 已提交
1499
  const RType *Input() const { return input_; }
E
eclipsess 已提交
1500

N
nhzlx 已提交
1501
  const RType *Filter() const { return filter_; }
E
eclipsess 已提交
1502

N
nhzlx 已提交
1503
  RType *Output() const { return output_; }
E
eclipsess 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1513
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1514

N
nhzlx 已提交
1515
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1516

N
nhzlx 已提交
1517
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1518

N
nhzlx 已提交
1519
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1520 1521 1522 1523 1524 1525 1526

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1527
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1528

N
nhzlx 已提交
1529
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1530

N
nhzlx 已提交
1531
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1532

N
nhzlx 已提交
1533
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1534 1535

 protected:
N
nhzlx 已提交
1536 1537 1538
  RType *input_;
  RType *output_;
  RType *filter_;
E
eclipsess 已提交
1539 1540 1541 1542
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1543 1544 1545 1546
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1547 1548 1549
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1550 1551
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1552 1553 1554 1555
};

#endif

1556
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1557
template <typename Dtype>
1558
class FusionConvBNReluParam : public OpParam {
N
nhzlx 已提交
1559 1560 1561
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1562 1563 1564 1565
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1566 1567 1568
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
1569 1570 1571 1572 1573

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
N
nhzlx 已提交
1574 1575 1576 1577
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
1578 1579 1580 1581 1582
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

N
nhzlx 已提交
1583
  const RType *Input() const { return input_; }
1584

Z
zhangyang 已提交
1585
#ifdef PADDLE_MOBILE_FPGA
N
nhzlx 已提交
1586
  RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1587
#else
N
nhzlx 已提交
1588
  const RType *Filter() const { return filter_; }
Z
zhangyang 已提交
1589
#endif
1590

N
nhzlx 已提交
1591
  RType *Output() const { return output_; }
1592 1593 1594 1595 1596 1597 1598 1599 1600

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

N
nhzlx 已提交
1601
  const RType *InputBias() const { return input_bias_; }
1602

N
nhzlx 已提交
1603
  const RType *InputMean() const { return input_mean_; }
1604

N
nhzlx 已提交
1605
  const RType *InputScale() const { return input_scale_; }
1606

N
nhzlx 已提交
1607
  const RType *InputVariance() const { return input_variance_; }
1608 1609 1610 1611 1612 1613 1614

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1615
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1616

N
nhzlx 已提交
1617
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1618

N
nhzlx 已提交
1619
  const RType *NewScale() const { return new_scale_; }
1620

N
nhzlx 已提交
1621
  const RType *NewBias() const { return new_bias_; }
1622 1623

 protected:
N
nhzlx 已提交
1624 1625 1626
  RType *input_;
  RType *output_;
  RType *filter_;
1627 1628 1629 1630
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
N
nhzlx 已提交
1631 1632 1633 1634
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1635 1636 1637
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1638 1639
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1640 1641 1642 1643 1644 1645 1646 1647 1648
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
1649 1650 1651
};
#endif

Y
Yao,kun 已提交
1652
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1653
template <typename Dtype>
Y
Yao,kun 已提交
1654
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1655 1656 1657
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1658 1659 1660 1661
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1662 1663
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1664 1665 1666 1667 1668
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1669
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1670

N
nhzlx 已提交
1671
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1672 1673 1674 1675 1676 1677 1678 1679

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1680 1681
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1682 1683 1684 1685
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1686
#endif
Y
Yao,kun 已提交
1687

1688
#ifdef DROPOUT_OP
N
nhzlx 已提交
1689
template <typename Dtype>
Y
Yao,kun 已提交
1690
class DropoutParam : public OpParam {
N
nhzlx 已提交
1691 1692 1693
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1694 1695 1696
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1697 1698
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1699 1700
  }

N
nhzlx 已提交
1701
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1702

N
nhzlx 已提交
1703
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1704 1705

 private:
N
nhzlx 已提交
1706 1707
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1708
};
1709
#endif
Y
Yao,kun 已提交
1710

L
liuruilong 已提交
1711
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1712
template <typename Dtype>
L
liuruilong 已提交
1713
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1714 1715 1716
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1717 1718 1719 1720
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1721 1722 1723
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1724 1725 1726 1727 1728 1729
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1730
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1731

N
nhzlx 已提交
1732
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1733

N
nhzlx 已提交
1734
  RType *Output() const { return output_; }
L
liuruilong 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1745 1746 1747
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1748 1749 1750 1751 1752 1753 1754
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

朔-望's avatar
朔-望 已提交
1755 1756
}  // namespace operators
}  // namespace paddle_mobile