op_param.h 100.9 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
27 28 29 30 31 32 33

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
34
#endif
朔-望's avatar
朔-望 已提交
35

C
Chon 已提交
36 37 38 39
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
40 41
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
42
#endif
朔-望's avatar
朔-望 已提交
43 44

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
45 46
namespace operators {

W
wangliu 已提交
47 48 49 50 51
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
52
using framework::Variable;
W
wangliu 已提交
53 54
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
55

N
nhzlx 已提交
56 57 58 59 60 61 62 63 64
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
65
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
66 67 68 69 70 71 72 73
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
74
#endif
L
liuruilong 已提交
75

L
liuruilong 已提交
76
class OpParam {
77 78
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
79 80
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
81

82 83
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
84

C
Chon 已提交
85 86 87 88 89 90
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
91
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
92 93 94 95
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
96 97 98 99 100 101 102

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

103 104 105 106 107
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

108 109 110 111 112 113 114 115 116
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
117 118 119 120 121
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

149 150 151 152
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
153 154 155 156 157 158

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

159 160 161 162 163
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
164 165 166 167 168
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

169 170 171 172 173
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
174 175 176 177
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
178 179 180 181 182 183 184 185 186 187 188 189
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
190 191 192 193
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
210

E
eclipsess 已提交
211 212 213 214 215 216 217 218 219 220
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
221 222 223 224
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
225

226
  template <typename T>
W
wangliu 已提交
227 228
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
229 230 231
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
232 233 234 235 236
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
237 238 239 240 241 242
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
243 244 245 246 247
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
259 260 261 262 263 264
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
265 266 267 268 269 270 271 272 273 274 275 276
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

277 278 279 280 281
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
282 283 284 285 286
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

287 288 289 290 291
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
292 293 294 295 296 297
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

298 299 300 301 302
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
303 304 305 306 307 308
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
315 316 317 318 319
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
325 326 327 328 329 330
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

331 332 333 334 335 336 337 338 339 340 341
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
342
  static const T GetAttr(const string &key, const AttributeMap &map) {
343 344
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
345 346
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
347 348
    return ((Attribute)map.at(key)).GetString();
  }
349

350 351 352 353
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

354
  template <typename T>
W
wangliu 已提交
355
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
356
                        const Scope &scope) {
W
wangliu 已提交
357 358
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
359 360 361 362 363 364
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
365
    }
366
  }
朔-望's avatar
朔-望 已提交
367

E
eclipsess 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

381
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
382
                            int index) {
383 384
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

403
  template <typename T>
W
wangliu 已提交
404 405 406
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
407 408
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
409
    vector<T *> var_res;
410 411 412
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
413
    }
414 415
    return var_res;
  }
E
eclipsess 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
429 430
};

431 432 433 434 435 436
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
437
template <typename Dtype>
438
class ConvParam : public OpParam {
N
nhzlx 已提交
439 440 441
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
442
 public:
443
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
444 445 446 447
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
448
    if (outputs.count("Output")) {
449
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
450 451 452 453 454
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
455
  }
朔-望's avatar
朔-望 已提交
456

457
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
458

459
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
460

461
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
462

W
wangliu 已提交
463
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
464

W
wangliu 已提交
465
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
466

W
wangliu 已提交
467
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
468

H
hjchen2 已提交
469 470 471
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
472 473
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
474 475
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
476
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
477
    EXEC_GEMM_INT8,
H
hjchen2 已提交
478
    EXEC_DEPTHWISE3x3_INT8,
479
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
480 481
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
482 483 484 485 486
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
H
hjchen2 已提交
487 488 489 490
  };

  ExecMode &ExecMode() const { return exec_mode_; }

491
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
492

493 494 495 496 497 498 499
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
500
 public:
501 502 503 504
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
505 506 507
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
508
  mutable enum ExecMode exec_mode_;
509
  int groups;
510 511 512 513

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
514 515 516

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
517
 public:
Z
zhangyang 已提交
518 519 520 521 522
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
523 524 525 526 527 528 529

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
530
#endif
朔-望's avatar
朔-望 已提交
531
};
N
nhzlx 已提交
532 533
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
534

N
nhzlx 已提交
535
template <typename Dtype>
536
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
537 538 539
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
540
 public:
541
  ElementwiseAddParam(const VariableNameMap &inputs,
542
                      const VariableNameMap &outputs, const AttributeMap &attrs,
543 544 545 546 547
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
548 549 550
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
551
  const GType *InputX() const { return input_x_; }
552

xiebaiyuan's avatar
xiebaiyuan 已提交
553
  const GType *InputY() const { return input_y_; }
554

xiebaiyuan's avatar
xiebaiyuan 已提交
555
  GType *Out() const { return out_; }
556 557 558

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
559
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
560 561 562
  GType *input_x_;
  GType *input_y_;
  GType *out_;
563
  int axis_;
Z
zhangyang 已提交
564 565 566
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
567
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
568 569

 public:
H
hanbuhe 已提交
570 571
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
572 573 574 575

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
576
#endif
朔-望's avatar
朔-望 已提交
577 578
};

E
eclipsess 已提交
579
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
580
template <typename Dtype>
581
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
582 583 584 585 586 587
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
588 589 590 591 592
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
609 610 611 612 613 614
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
615
};
S
suiyang 已提交
616
#endif
E
eclipsess 已提交
617

618
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
619 620
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
621 622
#endif

623
#ifdef ELEMENTWISESUB_OP
624
template <typename Dtype>
625
class ElementwiseSubParam : public OpParam {
626 627 628 629 630 631
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
632 633 634 635 636
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
654
#endif
655

L
liuruilong 已提交
656
#ifdef MUL_OP
N
nhzlx 已提交
657
template <typename Dtype>
658
class MulParam : public OpParam {
N
nhzlx 已提交
659 660 661
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
662
 public:
663
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
664 665 666 667 668
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
669 670 671
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
672

xiebaiyuan's avatar
xiebaiyuan 已提交
673
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
674

xiebaiyuan's avatar
xiebaiyuan 已提交
675
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
676

xiebaiyuan's avatar
xiebaiyuan 已提交
677
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
678

679
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
680

681
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
682

朔-望's avatar
朔-望 已提交
683
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
684 685 686
  GType *input_x_;
  GType *input_y_;
  GType *out_;
687 688
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
689
};
L
liuruilong 已提交
690
#endif
朔-望's avatar
朔-望 已提交
691

L
liuruilong 已提交
692
#ifdef CONCAT_OP
N
nhzlx 已提交
693
template <typename Dtype>
朔-望's avatar
朔-望 已提交
694
class ConcatParam : public OpParam {
N
nhzlx 已提交
695 696 697
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
698
 public:
699
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
700 701 702 703
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
704 705
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
706

N
nhzlx 已提交
707
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
708

xiebaiyuan's avatar
xiebaiyuan 已提交
709
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
710

711
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
712

朔-望's avatar
朔-望 已提交
713
 private:
N
nhzlx 已提交
714
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
715
  GType *out_;
716
  int axis_;
Z
zhangyang 已提交
717 718 719 720 721 722 723 724 725
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
726
};
L
liuruilong 已提交
727
#endif
朔-望's avatar
朔-望 已提交
728

E
eclipsess 已提交
729 730 731 732 733 734 735 736
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
737 738 739 740 741 742
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
761
#ifdef LRN_OP
N
nhzlx 已提交
762
template <typename Dtype>
E
eclipsess 已提交
763
class LrnParam : public OpParam {
N
nhzlx 已提交
764 765 766
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
767
 public:
768
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
769 770 771 772 773
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
774 775 776 777
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
778
    data_format_ = GetStringAttr("data_format", attrs);
779
  }
E
eclipsess 已提交
780

781
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
782

783
  GType *Out() const { return out_; }
E
eclipsess 已提交
784

785
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
786

787
  const int &N() const { return n_; }
E
eclipsess 已提交
788

789
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
790

791
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
792

793
  const float &K() const { return k_; }
E
eclipsess 已提交
794

W
wangliu 已提交
795
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
796

朔-望's avatar
朔-望 已提交
797
 private:
798 799 800
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
801 802 803 804
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
805
  string data_format_;
E
eclipsess 已提交
806
};
L
liuruilong 已提交
807 808
#endif

Z
zhaojiaying01 已提交
809 810
#ifdef NORM_OP
template <typename Dtype>
811
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
812 813 814 815 816
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
817 818 819 820 821
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
822 823 824 825
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

826
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
827

828
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
829

830
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
831 832 833 834 835 836

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
837 838 839
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
840 841 842 843 844
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
845
#ifdef BATCHNORM_OP
N
nhzlx 已提交
846
template <typename Dtype>
847
class BatchNormParam : public OpParam {
N
nhzlx 已提交
848 849 850
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
851
 public:
852
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
853 854 855 856 857 858 859 860
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
861 862
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
863
    //    is_test_ = GetAttr<bool>("is_test", attrs);
864
  }
E
eclipsess 已提交
865

866
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
867

868
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
869

870
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
871

872
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
873

874
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
875

876
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
877

878
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
879

880
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
881

882
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
883

W
wangliu 已提交
884
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
885

886
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
887

888
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
889

890
  const GType *NewScale() const { return new_scale_; }
891

892
  const GType *NewBias() const { return new_bias_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
895 896 897 898 899 900
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
901 902 903
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
904
  string data_format_;
905 906
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
907
};
L
liuruilong 已提交
908 909 910
#endif

#ifdef POOL_OP
N
nhzlx 已提交
911
template <typename Dtype>
912
class PoolParam : public OpParam {
N
nhzlx 已提交
913 914 915
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
916
 public:
917
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
918 919 920
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
921

922
    output_ = OutFrom<GType>(outputs, *scope);
923
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
924 925 926
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
927
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
928
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
929
  }
930

931
  const GType *Input() const { return input_; }
932

933
  GType *Output() const { return output_; }
934

W
wangliu 已提交
935
  const string &PoolingType() const { return pooling_type_; }
936

W
wangliu 已提交
937
  const vector<int> &Ksize() const { return ksize_; }
938

W
wangliu 已提交
939
  const vector<int> &Strides() const { return strides_; }
940

W
wangliu 已提交
941
  const vector<int> &Paddings() const { return paddings_; }
942

943
  bool isCeilMode() const { return ceil_mode_; }
944

Z
zhangyang 已提交
945
  bool isGlobalPooling() const { return global_pooling_; }
946

朔-望's avatar
朔-望 已提交
947
 private:
948 949
  GType *input_;
  GType *output_;
W
wangliu 已提交
950 951 952 953
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
954
  bool ceil_mode_;
955
  bool global_pooling_ = false;
Z
zhangyang 已提交
956
#ifdef PADDLE_MOBILE_FPGA
957 958

 private:
H
hanbuhe 已提交
959
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
960 961

 public:
H
hanbuhe 已提交
962 963
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
964
#endif
965
};
L
liuruilong 已提交
966 967 968
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
969
template <typename Dtype>
E
eclipsess 已提交
970
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
971 972 973
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
974 975
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
976 977 978 979 980 981
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
982 983 984 985
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
986 987 988 989

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
990 991
    } else {
      min_max_aspect_ratios_order_ = false;
992
    }
E
eclipsess 已提交
993 994 995 996 997 998
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
999
  const GType *Input() const { return input_; }
E
eclipsess 已提交
1000

1001
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
1002

1003
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1004

1005
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1008

W
wangliu 已提交
1009
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1010

W
wangliu 已提交
1011
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1012

W
wangliu 已提交
1013
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1025 1026 1027 1028
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1029
 private:
1030 1031 1032 1033
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1034 1035 1036 1037
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1038 1039 1040 1041 1042
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1043
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1044
};
L
liuruilong 已提交
1045
#endif
E
eclipsess 已提交
1046

L
liuruilong 已提交
1047
#ifdef BOXCODER_OP
N
nhzlx 已提交
1048
template <typename Dtype>
E
eclipsess 已提交
1049
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1050 1051 1052
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1053 1054
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1055 1056 1057 1058 1059 1060
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1061
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1062
  }
1063
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1064

1065
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1066

1067
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1068

1069
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1070 1071 1072 1073

  const std::string &CodeType() const { return code_type_; }

 private:
1074 1075 1076 1077
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1078 1079
  std::string code_type_;
};
L
liuruilong 已提交
1080
#endif
W
wangliu 已提交
1081

L
liuruilong 已提交
1082
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1083
template <typename Dtype>
W
wangliu 已提交
1084
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1085 1086 1087
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1088 1089
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1090 1091 1092 1093
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1094
  }
H
hjchen2 已提交
1095 1096
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1097 1098

 private:
H
hjchen2 已提交
1099 1100
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1101 1102 1103

#ifdef PADDLE_MOBILE_FPGA

1104 1105
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1106
 private:
1107
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1108 1109 1110
  fpga::BypassArgs fpga_bypass_args;

 public:
1111
  GType *FloatInput() const {
H
hanbuhe 已提交
1112 1113
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1114
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1115 1116
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1129
#endif
W
wangliu 已提交
1130
};
L
liuruilong 已提交
1131
#endif
W
wangliu 已提交
1132

L
liuruilong 已提交
1133
#ifdef SIGMOID_OP
N
nhzlx 已提交
1134
template <typename Dtype>
W
wangliu 已提交
1135
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1136 1137 1138
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1139 1140
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1141 1142 1143 1144
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1145
  }
1146 1147
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1148 1149

 private:
1150 1151
  GType *input_x_;
  GType *out_;
1152 1153 1154 1155 1156 1157 1158 1159 1160
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1161
};
L
liuruilong 已提交
1162 1163 1164
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1165
template <typename Dtype>
E
eclipsess 已提交
1166
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1167 1168 1169
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1170 1171 1172
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1173 1174 1175 1176 1177
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1178 1179 1180 1181 1182 1183 1184 1185
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1186
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1187

1188
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1189

1190
  GType *Out() const { return out_; }
E
eclipsess 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1205 1206 1207
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1208 1209 1210 1211 1212 1213 1214
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1215
#endif
W
wangliu 已提交
1216

L
lijiancheng0614 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1226 1227 1228 1229
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1230
  }
1231 1232
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1233 1234

 private:
1235 1236
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1237 1238 1239
};
#endif

N
nhzlx 已提交
1240
template <typename Dtype>
L
liuruilong 已提交
1241
class FeedParam : public OpParam {
N
nhzlx 已提交
1242 1243 1244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1245 1246
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1247
            const AttributeMap &attrs, Scope *scope)
1248
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1249
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1250
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1251
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1252
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1253
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1254
  }
H
hjchen2 已提交
1255
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1256
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1257
  const int Col() const { return col_; }
W
wangliu 已提交
1258
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1259

L
liuruilong 已提交
1260
 private:
H
hjchen2 已提交
1261
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1262
  GType *out_;
H
update  
hjchen2 已提交
1263
  int col_;
W
wangliu 已提交
1264
  int batch_size;
L
liuruilong 已提交
1265 1266
};

N
nhzlx 已提交
1267
template <typename Dtype>
L
liuruilong 已提交
1268
class FetchParam : public OpParam {
N
nhzlx 已提交
1269 1270 1271
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1272 1273
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1274
             const AttributeMap &attrs, Scope *scope)
1275
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1276 1277
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1278
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1279
  }
L
liuruilong 已提交
1280

H
hjchen2 已提交
1281 1282
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1283
  const int Col() const { return col_; }
L
liuruilong 已提交
1284

L
liuruilong 已提交
1285
 private:
H
hjchen2 已提交
1286 1287
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1288
  int col_;
qnqinan's avatar
qnqinan 已提交
1289
#ifdef PADDLE_MOBILE_FPGA
1290

qnqinan's avatar
qnqinan 已提交
1291
 public:
1292
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1293
  fpga::BypassArgs fpga_bypass_args;
1294
  Tensor aligned_out;
1295 1296 1297
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1298
#endif
L
liuruilong 已提交
1299 1300
};

L
lijiancheng0614 已提交
1301 1302 1303 1304 1305 1306 1307 1308 1309
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1310 1311 1312 1313
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1314 1315 1316 1317 1318 1319 1320
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1321
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1331
  GType *out_;
L
lijiancheng0614 已提交
1332 1333 1334 1335 1336 1337
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1338
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1339
template <typename Dtype>
E
eclipsess 已提交
1340
class TransposeParam : public OpParam {
N
nhzlx 已提交
1341 1342 1343
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1344 1345
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1346 1347 1348 1349
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1350 1351 1352
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1353
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1354

1355
  GType *Out() const { return out_; }
E
eclipsess 已提交
1356 1357 1358 1359

  const vector<int> &Axis() const { return axis_; }

 private:
1360 1361
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1362 1363
  vector<int> axis_;
};
L
liuruilong 已提交
1364
#endif
E
eclipsess 已提交
1365

L
lijiancheng0614 已提交
1366 1367 1368 1369 1370 1371 1372 1373
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1374 1375 1376 1377 1378
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1379 1380 1381
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1382
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1383

1384
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1385

1386
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1387 1388 1389 1390

  const vector<int> &Axis() const { return axis_; }

 private:
1391 1392 1393
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1394 1395 1396 1397
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1398 1399 1400 1401 1402 1403 1404 1405
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1406 1407 1408 1409 1410
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1437 1438
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1439
    // todo crf params
1440 1441 1442 1443
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1444 1445 1446 1447 1448 1449
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1450 1451
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1452 1453 1454 1455 1456 1457 1458 1459
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1460 1461
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1462 1463 1464 1465
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1466
#ifdef RESHAPE_OP
N
nhzlx 已提交
1467
template <typename Dtype>
E
eclipsess 已提交
1468
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1469 1470 1471
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1472 1473
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1474 1475 1476 1477 1478
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1479
    shape_ = GetAttr<vector<int>>("shape", attrs);
1480 1481 1482 1483 1484 1485 1486

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1487 1488
  }

1489
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1490

1491
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1492

1493
  GType *Out() const { return out_; }
E
eclipsess 已提交
1494 1495 1496 1497 1498 1499

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1500 1501 1502
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1503 1504 1505
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1506
#endif
E
eclipsess 已提交
1507

L
lijiancheng0614 已提交
1508 1509 1510 1511 1512 1513 1514 1515
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1516 1517 1518 1519 1520 1521
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1522 1523 1524 1525 1526 1527 1528 1529
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1530
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1531

E
eclipsess 已提交
1532
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1533

E
eclipsess 已提交
1534
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1535

E
eclipsess 已提交
1536
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1537 1538 1539 1540 1541 1542

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1543 1544 1545 1546
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1547 1548 1549 1550 1551
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1552
#ifdef SCALE_OP
N
nhzlx 已提交
1553
template <typename Dtype>
I
itminner 已提交
1554
class ScaleParam : public OpParam {
N
nhzlx 已提交
1555 1556 1557
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1558 1559
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1560 1561 1562 1563
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1564 1565
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1566 1567
  }

1568
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1569

1570
  GType *Out() const { return out_; }
I
itminner 已提交
1571

1572
  const float Scale() const { return scale_; }
I
itminner 已提交
1573

1574
  const float Bias() const { return bias_; }
I
itminner 已提交
1575 1576

 private:
1577 1578
  GType *input_x_;
  GType *out_;
1579 1580
  float scale_;
  float bias_;
I
itminner 已提交
1581
};
T
Tian 已提交
1582 1583 1584
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1585
template <typename Dtype>
I
itminner 已提交
1586
class SliceParam : public OpParam {
N
nhzlx 已提交
1587 1588 1589
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1590 1591
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1592 1593 1594 1595
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1596

1597 1598 1599 1600
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1601

1602 1603 1604 1605 1606 1607
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1608
};
T
Tian 已提交
1609 1610 1611
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1612
template <typename Dtype>
T
Tian 已提交
1613
class ResizeParam : public OpParam {
N
nhzlx 已提交
1614 1615 1616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1617 1618
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1619 1620 1621 1622 1623
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1624 1625 1626 1627 1628 1629
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1630

1631
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1632

1633
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1634

1635
  GType *Out() const { return out_; }
T
Tian 已提交
1636

I
itminner 已提交
1637
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1638

I
itminner 已提交
1639
  const int &Height() const { return height_; }
T
Tian 已提交
1640

I
itminner 已提交
1641
  const int &Width() const { return width_; }
T
Tian 已提交
1642

I
itminner 已提交
1643
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1644

I
itminner 已提交
1645
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1646

I
itminner 已提交
1647
 private:
1648 1649 1650
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1651 1652 1653 1654 1655
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1656 1657 1658
};
#endif

L
liuruilong 已提交
1659
#ifdef RELU_OP
L
liuruilong 已提交
1660 1661 1662
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1663
template <typename Dtype>
D
relu  
dolphin8 已提交
1664
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1665 1666 1667
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1668
 public:
D
relu  
dolphin8 已提交
1669
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1670 1671 1672 1673
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1674 1675
  }

1676
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1677

1678
  GType *Out() const { return out_; }
E
eclipsess 已提交
1679 1680

 private:
1681 1682
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1683
};
D
relu  
dolphin8 已提交
1684 1685 1686

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1687
 public:
D
relu  
dolphin8 已提交
1688 1689 1690
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1691
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1692 1693
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1694
 public:
D
relu  
dolphin8 已提交
1695
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1696 1697 1698
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1699 1700
  framework::CLImage midImage;
};
Y
yangfei 已提交
1701
#endif
D
relu  
dolphin8 已提交
1702

L
liuruilong 已提交
1703
#endif
E
eclipsess 已提交
1704

Z
zhangyang 已提交
1705 1706 1707 1708 1709 1710 1711 1712
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1713 1714 1715 1716
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1717
  }
1718 1719
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1720 1721

 private:
1722 1723
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1724 1725 1726
#ifdef PADDLE_MOBILE_FPGA

 private:
1727
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1728 1729 1730
  fpga::BypassArgs fpga_bypass_args;

 public:
1731
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1732 1733
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1734
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1735 1736 1737
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1738
};
L
liuruilong 已提交
1739
#endif
E
eclipsess 已提交
1740

T
Tian 已提交
1741
#ifdef PRELU_OP
N
nhzlx 已提交
1742
template <typename Dtype>
T
Tian 已提交
1743
class PReluParam : public OpParam {
N
nhzlx 已提交
1744 1745 1746
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1747 1748
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1749 1750
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1751
    DLOG << "PReluParam inputs before";
1752 1753
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1754
    framework::DDim dims = alpha_->dims();
1755
    out_ = OutFrom<GType>(outputs, *scope);
1756
    mode_ = GetStringAttr("mode", attrs);
1757
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1758
  }
1759 1760 1761
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1762
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1763

I
itminner 已提交
1764
 private:
1765 1766 1767
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1768
  std::string mode_;
T
Tian 已提交
1769 1770 1771
};
#endif

N
nhzlx 已提交
1772
template <typename Dtype>
L
liuruilong 已提交
1773
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1774 1775 1776
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1777
 public:
L
liuruilong 已提交
1778
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1779 1780 1781 1782 1783 1784
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1785 1786 1787 1788
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1789
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1790

1791
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1792

1793
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1794

xiebaiyuan's avatar
xiebaiyuan 已提交
1795
  GType *Out() const { return out_; }
E
eclipsess 已提交
1796 1797 1798 1799 1800 1801 1802 1803

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1804
  GType *input_x_;
1805 1806
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1807
  GType *out_;
E
eclipsess 已提交
1808 1809 1810
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1811

Z
ZhenWang 已提交
1812
#ifdef PADDLE_MOBILE_FPGA
1813
 private:  // NOLINT
Z
zhangyang 已提交
1814
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1815 1816

 public:
Z
zhangyang 已提交
1817 1818
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1819
#endif
E
eclipsess 已提交
1820
};
1821 1822

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1823 1824
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1825
#endif
E
eclipsess 已提交
1826

N
nhzlx 已提交
1827
template <typename Dtype>
1828
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1829 1830 1831
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1832
 public:
L
liuruilong 已提交
1833
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1834
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1835
                     Scope *scope)
1836
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1837
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1838
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1839
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1840
  }
1841
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1842 1843 1844

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1845
 protected:
1846
  GType *bias_;
W
wangliu 已提交
1847 1848 1849
  int axis_;
};

N
nhzlx 已提交
1850 1851
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1852

Z
zhangyang 已提交
1853
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1854 1855
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1856
 public:
L
liuruilong 已提交
1857
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1858
                         const VariableNameMap &outputs,
1859
                         const AttributeMap &attrs, Scope *scope)
1860
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1861 1862 1863
};
#endif

1864
#ifdef FUSION_CONVADDPRELU_OP
1865 1866 1867 1868
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1869 1870 1871 1872

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1873
                          const AttributeMap &attrs, Scope *scope)
1874
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1875
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1876
    mode_ = OpParam::GetStringAttr("mode", attrs);
1877
    framework::DDim dims = alpha_->dims();
1878
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1879
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1880
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1881
  }
1882
  const GType *InputAlpha() const { return alpha_; }
1883
  const std::string &Mode() const { return mode_; }
1884
  GType *Bias() const { return bias_; }
1885 1886 1887
  const int &Axis() const { return axis_; }

 protected:
1888
  GType *bias_;
1889
  int axis_;
1890
  GType *alpha_;
1891 1892 1893 1894 1895
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1896 1897 1898 1899
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1900 1901 1902 1903

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1904
                             const AttributeMap &attrs, Scope *scope)
1905
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1906 1907
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1908
    mode_ = OpParam::GetStringAttr("mode", attrs);
1909
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1910
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1911
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1912 1913 1914
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1915
    if (keyX1_ == keyOutput_) {
1916
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1917
    } else if (keyY1_ == keyOutput_) {
1918
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1919
    }
H
update  
hjchen2 已提交
1920
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1921
  }
1922
  const GType *InputAlpha() const { return alpha_; }
1923
  const std::string &Mode() const { return mode_; }
1924
  const GType *Bias1() const { return bias1_; }
1925

1926
  GType *Bias() const { return bias_; }
1927 1928 1929 1930

  const int &Axis() const { return axis_; }

 protected:
1931
  GType *bias_;
1932
  int axis_;
1933
  GType *alpha_;
1934
  std::string mode_;
1935
  GType *bias1_;
1936 1937 1938 1939 1940 1941
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1942
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1943
template <typename Dtype>
1944
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1945 1946 1947
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1948 1949 1950
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1951
                           const AttributeMap &attrs, Scope *scope)
1952
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1953
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1954
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1955 1956 1957 1958
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1959 1960
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1961
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1962
  }
1963
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1964 1965 1966

  const int &Axis() const { return axis_; }

1967
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1968

1969
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1970

1971
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1972

1973
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1974 1975 1976 1977 1978

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1979
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1980

1981
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1982

1983
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1984

1985
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1986 1987

 protected:
1988
  GType *bias_;
E
eclipsess 已提交
1989
  int axis_;
1990 1991 1992 1993
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
1994 1995
  float epsilon_;
  float momentum_;
1996 1997
  GType *new_bias_;
  GType *new_scale_;
1998 1999 2000 2001 2002
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2003
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2004 2005 2006 2007 2008 2009
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2010
                           const AttributeMap &attrs, Scope *scope)
2011
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2012
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2013
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2014 2015 2016 2017
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2018 2019
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2020 2021 2022
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2023
    if (keyX_ == keyBNY_) {
2024
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2025
    } else if (keyY_ == keyBNY_) {
2026
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2027
    }
H
update  
hjchen2 已提交
2028
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2029
  }
2030
  GType *Bias() const { return bias_; }
2031 2032 2033

  const int &Axis() const { return axis_; }

2034
  const GType *InputBias() const { return input_bias_; }
2035

2036
  const GType *InputMean() const { return input_mean_; }
2037

2038
  const GType *InputScale() const { return input_scale_; }
2039

2040
  const GType *InputVariance() const { return input_variance_; }
2041 2042 2043 2044 2045

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2046
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2047

2048
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2049

2050
  const GType *NewScale() const { return new_scale_; }
2051

2052
  const GType *NewBias() const { return new_bias_; }
2053 2054

 protected:
2055
  GType *bias_;
2056
  int axis_;
2057 2058 2059 2060
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2061 2062
  float epsilon_;
  float momentum_;
2063 2064
  GType *new_bias_;
  GType *new_scale_;
2065 2066 2067
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2068
};
2069
#endif
E
eclipsess 已提交
2070

Z
zhangyang 已提交
2071
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2072
template <typename Dtype>
2073
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2074 2075 2076
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2077 2078 2079
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2080
                    Scope *scope)
2081
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2082 2083 2084 2085
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2086 2087
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2088
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2089 2090
  }

2091
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2092

2093
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2094

2095
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2096

2097
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2098 2099 2100 2101 2102

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2103
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2104

2105
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2106

2107
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2108

2109
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2110 2111

 protected:
2112 2113 2114 2115
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2116 2117
  float epsilon_;
  float momentum_;
2118 2119
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2120 2121 2122
};
#endif

2123
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2124
template <typename Dtype>
2125
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2126 2127 2128
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2129 2130 2131
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2132
                       const AttributeMap &attrs, Scope *scope)
2133
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2134
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2135
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2136 2137 2138 2139
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2140 2141
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2142
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2143
  }
2144
  GType *Bias() const { return bias_; }
2145 2146 2147

  const int &Axis() const { return axis_; }

2148
  const GType *InputBias() const { return input_bias_; }
2149

2150
  const GType *InputMean() const { return input_mean_; }
2151

2152
  const GType *InputScale() const { return input_scale_; }
2153

2154
  const GType *InputVariance() const { return input_variance_; }
2155 2156 2157 2158 2159

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2160
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2161

2162
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2163

2164
  const GType *NewScale() const { return new_scale_; }
2165

2166
  const GType *NewBias() const { return new_bias_; }
2167 2168

 protected:
2169
  GType *bias_;
2170
  int axis_;
2171 2172 2173 2174
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2175 2176
  float epsilon_;
  float momentum_;
2177 2178
  GType *new_bias_;
  GType *new_scale_;
2179
};
E
eclipsess 已提交
2180
#endif
Y
Yao,kun 已提交
2181

E
eclipsess 已提交
2182
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2183
template <typename Dtype>
2184
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2185 2186 2187
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2188 2189 2190
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2191
                          const AttributeMap &attrs, Scope *scope)
2192
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2193 2194 2195 2196
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2197 2198
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2199
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2200 2201
  }

2202
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2203

2204
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2205

2206
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2207

2208
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2209 2210 2211 2212 2213

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2214
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2215

2216
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2217

2218
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2219

2220
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2221 2222

 protected:
2223 2224 2225 2226
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2227 2228
  float epsilon_;
  float momentum_;
2229 2230
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2231 2232 2233 2234
};

#endif

2235
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2236
template <typename Dtype>
2237
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2238 2239 2240
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2241 2242 2243
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2244
                        const AttributeMap &attrs, Scope *scope)
2245
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2246 2247 2248 2249
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2250 2251
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2252
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2253 2254
  }

2255
  const GType *InputBias() const { return input_bias_; }
2256

2257
  const GType *InputMean() const { return input_mean_; }
2258

2259
  const GType *InputScale() const { return input_scale_; }
2260

2261
  const GType *InputVariance() const { return input_variance_; }
2262 2263 2264 2265 2266

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2267
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2268

2269
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2270

2271
  const GType *NewScale() const { return new_scale_; }
2272

2273
  const GType *NewBias() const { return new_bias_; }
2274 2275

 protected:
2276 2277 2278 2279
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2280 2281
  float epsilon_;
  float momentum_;
2282 2283
  GType *new_bias_;
  GType *new_scale_;
2284 2285 2286
};
#endif

Y
Yao,kun 已提交
2287
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2288
template <typename Dtype>
Y
Yao,kun 已提交
2289
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2290 2291 2292
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2293 2294 2295
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2296 2297 2298 2299
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2300 2301 2302 2303 2304
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2305
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2306

E
eclipsess 已提交
2307
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2308 2309 2310 2311 2312 2313 2314 2315

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2316 2317
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2318 2319 2320 2321
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2322
#endif
Y
Yao,kun 已提交
2323

2324
#ifdef DROPOUT_OP
N
nhzlx 已提交
2325
template <typename Dtype>
Y
Yao,kun 已提交
2326
class DropoutParam : public OpParam {
N
nhzlx 已提交
2327 2328 2329
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2330 2331
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2332 2333 2334 2335
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2336 2337

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2338 2339
  }

2340
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2341

2342
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2343

Y
yangfei 已提交
2344 2345
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2346
 private:
2347 2348
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2349
  float dropout_prob_;
Y
Yao,kun 已提交
2350
};
2351
#endif
Y
Yao,kun 已提交
2352

N
nhzlx 已提交
2353
template <typename Dtype>
L
liuruilong 已提交
2354
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2355 2356 2357
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2358 2359 2360
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2361 2362 2363 2364
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2365
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2366
    if (outputs.count("Output")) {
2367
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2368
    }
L
liuruilong 已提交
2369 2370 2371 2372 2373 2374
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2375
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2376

2377
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2378

2379
  GType *Output() const { return output_; }
L
liuruilong 已提交
2380 2381 2382 2383 2384 2385 2386 2387 2388

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2389 2390 2391 2392 2393 2394 2395 2396 2397
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2398
 private:
2399 2400 2401
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2402 2403 2404 2405
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2406
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2407 2408 2409 2410 2411

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2412
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2413 2414 2415

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2416 2417 2418
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2419
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2420 2421 2422
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2423
#endif
L
liuruilong 已提交
2424
};
Z
zhangyang 已提交
2425

qnqinan's avatar
qnqinan 已提交
2426 2427 2428 2429 2430
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2431 2432

 public:
qnqinan's avatar
qnqinan 已提交
2433
  FusionDeconvAddParam(const VariableNameMap &inputs,
2434
                       const VariableNameMap &outputs,
2435
                       const AttributeMap &attrs, Scope *scope)
2436
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2437
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2438
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2439
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2440
  }
2441
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2442 2443 2444

  const int &Axis() const { return axis_; }

2445
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2446 2447

 protected:
2448
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2449
  int axis_;
2450
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2451 2452 2453 2454 2455 2456 2457
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2458 2459 2460 2461 2462 2463 2464 2465 2466
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2467
                         const AttributeMap &attrs, Scope *scope)
2468
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2469 2470 2471 2472 2473
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2474 2475 2476 2477 2478 2479 2480
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2524
                          const AttributeMap &attrs, Scope *scope)
2525
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2526 2527 2528 2529 2530
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2531 2532 2533 2534 2535 2536
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2580
                             const AttributeMap &attrs, Scope *scope)
2581
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2582 2583 2584 2585 2586
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2628

Z
zhangyang 已提交
2629 2630 2631 2632 2633
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2648 2649 2650 2651 2652 2653 2654 2655
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2656
    output_batch_reset_hidden_prev_ =
2657 2658 2659
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2660 2661
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2695 2696 2697 2698 2699 2700 2701
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2702 2703 2704 2705 2706 2707 2708 2709
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2710
    output_reset_hidden_prev_ =
2711 2712
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2741 2742 2743 2744 2745 2746 2747 2748
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2749 2750 2751 2752
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2753
    axis = GetAttr<int>("axis", attrs);
2754
  }
2755 2756
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2757
  const int &Axis() const { return axis; }
2758 2759

 private:
2760 2761
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2762
  int axis;
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2774 2775 2776 2777
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2778
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2779 2780 2781 2782 2783 2784
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2785
  }
2786
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2787 2788 2789 2790 2791
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2792 2793

 private:
2794
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2795
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2796
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2797 2798 2799
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2800 2801 2802 2803 2804 2805 2806 2807 2808
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2821 2822 2823 2824 2825
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2826 2827
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2828
  }
2829 2830 2831
  const GType *InputX() const { return input_x_; }
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2832 2833
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2834 2835

 private:
2836 2837 2838
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2839 2840
  int out_h_;
  int out_w_;
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2852 2853 2854 2855
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2856
  }
2857 2858
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2859 2860

 private:
2861 2862
  GType *input_;
  GType *out_;
2863 2864 2865
};
#endif

H
hjchen2 已提交
2866 2867 2868 2869 2870 2871 2872 2873
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2874 2875 2876 2877 2878
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2879 2880 2881 2882
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2883 2884 2885
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2898 2899 2900 2901
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2902 2903 2904 2905 2906
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2907 2908
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2909 2910 2911 2912 2913
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2914
#ifdef QUANT_OP
2915
template <typename Dtype>
2916 2917 2918 2919 2920
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2921
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2922 2923 2924 2925
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2926 2927
    // online
    // scale = max(abs(x))
2928
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2929
    // offline
2930
    if (inputs.count("InScale")) {
2931
      offline_ = true;
2932
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2933 2934
    }
    // x = round(scale * x)
2935 2936
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2937
    }
2938 2939 2940 2941
  }

 public:
  // op input
2942
  GType *input_;
2943
  // op output
2944
  GType *output_;
2945
  GType *online_scale_;
2946
  // quantize offline scale
2947
  GType *offline_scale_;
2948 2949
  // if offine scale or not
  bool offline_ = false;
2950
  // round method type
2951 2952
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2953
};
2954
#endif
2955

2956
#ifdef DEQUANT_OP
2957
template <typename Dtype>
2958 2959 2960 2961 2962
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2963
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2964 2965 2966 2967 2968
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
2969
    // dequantization is performed as x = x / static_scale / online_scale
2970 2971
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2972
    } else {
2973
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2974 2975 2976 2977 2978
    }
  }

 public:
  // op input
2979
  GType *input_;
2980
  // op output
2981
  GType *output_;
2982
  GType *activation_scale_;
2983 2984
  float weight_scale_;
};
2985
#endif
2986

2987 2988 2989 2990
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2991
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2992
template <typename Dtype>
2993
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2994 2995 2996 2997
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2998 2999
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3000
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3001 3002
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3003 3004 3005 3006
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3007 3008 3009 3010 3011
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3012 3013 3014 3015
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3016
  float epsilon_;
3017 3018 3019
};
#endif

3020 3021 3022 3023
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3024 3025 3026 3027 3028 3029 3030 3031
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3032
                          const AttributeMap &attrs, Scope *scope)
3033 3034 3035
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3036
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3037 3038 3039 3040 3041
  }

 public:
  // elementwise add
  int axis_;
3042
  GType *bias_;
3043 3044 3045
};
#endif

3046 3047 3048 3049 3050 3051 3052 3053 3054
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3055
                               const AttributeMap &attrs, Scope *scope)
3056 3057
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3058
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3059
    // offline
3060 3061
    if (inputs.count("InScale")) {
      offline_ = true;
3062
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3063 3064 3065 3066 3067 3068 3069 3070
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3071
  GType *online_scale_;
3072
  // quantize offline scale
3073
  GType *offline_scale_;
3074 3075
  // if offine scale or not
  bool offline_ = false;
3076 3077 3078 3079 3080 3081
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3082 3083 3084 3085 3086 3087 3088 3089 3090
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3091 3092 3093 3094 3095
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3119 3120 3121 3122
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3123 3124
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3125
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3136 3137 3138 3139 3140 3141 3142 3143
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3144 3145 3146 3147
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3148 3149
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3150
      input_y_ = InputYFrom<GType>(inputs, *scope);
3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3164 3165 3166 3167 3168 3169 3170 3171
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3172 3173 3174 3175 3176
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3188
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3189
template <typename Dtype>
Z
zhaojiaying01 已提交
3190
class LogicalBinaryParam : public OpParam {
3191 3192 3193 3194
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3195 3196
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3197 3198 3199 3200 3201
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3213
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3214 3215 3216

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3217
class LogicalUnaryParam : public OpParam {
3218 3219 3220 3221
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3222 3223
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3224 3225 3226 3227
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3239 3240 3241
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3242 3243 3244
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3245 3246 3247
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3248 3249
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3250 3251 3252
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3253 3254 3255
  }

 public:
H
hjchen2 已提交
3256 3257 3258
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3259 3260 3261 3262 3263 3264
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3265 3266 3267
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3268 3269 3270
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3271 3272
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3273 3274 3275
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3276 3277 3278
  }

 public:
H
hjchen2 已提交
3279 3280 3281
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3282 3283 3284
};
#endif

Z
zhaojiaying01 已提交
3285 3286 3287 3288 3289 3290 3291 3292
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3293 3294 3295 3296
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3316
                 const AttributeMap &attrs, Scope *scope)
3317
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3318 3319
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3320
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3321 3322 3323 3324
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3325
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3326 3327 3328 3329

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3330
  float step_;
Z
zhaojiaying01 已提交
3331 3332
};
#endif  // INCREMENT_OP
3333 3334 3335 3336 3337 3338 3339 3340
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3341 3342 3343 3344
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3345 3346 3347 3348 3349 3350 3351 3352 3353
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3354

朔-望's avatar
朔-望 已提交
3355 3356
}  // namespace operators
}  // namespace paddle_mobile