op_param.h 102.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
26
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
27
#include "framework/variable.h"
Z
zhangyang 已提交
28 29 30 31 32 33 34

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
35
#endif
朔-望's avatar
朔-望 已提交
36

C
Chon 已提交
37 38 39 40
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
41 42
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
43
#endif
朔-望's avatar
朔-望 已提交
44 45

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
46 47
namespace operators {

W
wangliu 已提交
48 49 50 51 52
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
53
using framework::Variable;
W
wangliu 已提交
54 55
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
56

57
using framework::DtypeTensorTrait;
L
liuruilong 已提交
58

L
liuruilong 已提交
59
class OpParam {
60 61
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
62 63
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
64

65 66
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
67

C
Chon 已提交
68 69 70 71 72 73
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
74
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
79 80 81 82 83 84 85

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

86 87 88 89 90
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

91 92 93 94 95 96 97 98 99
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
100 101 102 103 104
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

132 133 134 135
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
136 137 138 139 140 141

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

142 143 144 145 146
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
147 148 149 150 151
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

152 153 154 155 156
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
157 158 159 160
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
161 162 163 164 165 166 167 168 169 170 171 172
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
173 174 175 176
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
193

E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
204 205 206 207
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
208

209
  template <typename T>
W
wangliu 已提交
210 211
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
212 213 214
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
215 216 217 218 219
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
220 221 222 223 224 225
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
226 227 228 229 230
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234 235 236 237 238 239 240 241
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258 259
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

260 261 262 263 264
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

270 271 272 273 274
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
275 276 277 278 279 280
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

281 282 283 284 285
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
286 287 288 289 290 291
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
292 293 294 295 296 297
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
298 299 300 301 302
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
303 304 305 306 307
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

314 315 316 317 318 319 320 321 322 323 324
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
325
  static const T GetAttr(const string &key, const AttributeMap &map) {
326 327
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
328 329
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
330 331
    return ((Attribute)map.at(key)).GetString();
  }
332

333 334 335 336
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

337
  template <typename T>
W
wangliu 已提交
338
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
339
                        const Scope &scope) {
W
wangliu 已提交
340 341
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
342 343 344 345 346 347
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
348
    }
349
  }
朔-望's avatar
朔-望 已提交
350

E
eclipsess 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

364
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
365
                            int index) {
366 367
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

386
  template <typename T>
W
wangliu 已提交
387 388 389
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
390 391
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
392
    vector<T *> var_res;
393 394 395
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
396
    }
397 398
    return var_res;
  }
E
eclipsess 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
412 413
};

414 415 416 417 418 419
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
420
template <typename Dtype>
421
class ConvParam : public OpParam {
N
nhzlx 已提交
422 423 424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
425
 public:
426
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
427 428 429 430
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
431
    if (outputs.count("Output")) {
432
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
433 434 435 436 437
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
438
  }
朔-望's avatar
朔-望 已提交
439

440
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
441

442
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
443

444
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
445

W
wangliu 已提交
446
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
447

W
wangliu 已提交
448
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
449

W
wangliu 已提交
450
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
451

H
hjchen2 已提交
452 453 454
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
455 456
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
457 458
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
459
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
460
    EXEC_GEMM_INT8,
H
hjchen2 已提交
461
    EXEC_DEPTHWISE3x3_INT8,
462
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
463 464
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
465 466 467 468 469
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
H
hjchen2 已提交
470 471 472 473
  };

  ExecMode &ExecMode() const { return exec_mode_; }

474
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
475

476 477 478 479 480 481 482
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
483
 public:
484 485 486 487
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
488 489 490
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
491
  mutable enum ExecMode exec_mode_;
492
  int groups;
493 494 495 496

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
497 498 499

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
500
 public:
Z
zhangyang 已提交
501 502 503 504 505
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
506 507 508 509 510 511 512

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
513
#endif
朔-望's avatar
朔-望 已提交
514
};
N
nhzlx 已提交
515 516
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
517

N
nhzlx 已提交
518
template <typename Dtype>
519
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
520 521 522
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
523
 public:
524
  ElementwiseAddParam(const VariableNameMap &inputs,
525
                      const VariableNameMap &outputs, const AttributeMap &attrs,
526 527 528 529 530
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
531 532 533
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
534
  const GType *InputX() const { return input_x_; }
535

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputY() const { return input_y_; }
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  GType *Out() const { return out_; }
539 540 541

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
542
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
543 544 545
  GType *input_x_;
  GType *input_y_;
  GType *out_;
546
  int axis_;
Z
zhangyang 已提交
547 548 549
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
550
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
551 552

 public:
H
hanbuhe 已提交
553 554
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
555 556 557 558

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
559
#endif
朔-望's avatar
朔-望 已提交
560 561
};

E
eclipsess 已提交
562
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
563
template <typename Dtype>
564
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
565 566 567 568 569 570
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
571 572 573 574 575
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
592 593 594 595 596 597
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
598
};
S
suiyang 已提交
599
#endif
E
eclipsess 已提交
600

601
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
602 603
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
604 605
#endif

606
#ifdef ELEMENTWISESUB_OP
607
template <typename Dtype>
608
class ElementwiseSubParam : public OpParam {
609 610 611 612 613 614
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
615 616 617 618 619
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
637
#endif
638

L
liuruilong 已提交
639
#ifdef MUL_OP
N
nhzlx 已提交
640
template <typename Dtype>
641
class MulParam : public OpParam {
N
nhzlx 已提交
642 643 644
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
645
 public:
646
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
647 648 649 650 651
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
652 653 654
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
655

xiebaiyuan's avatar
xiebaiyuan 已提交
656
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
657

xiebaiyuan's avatar
xiebaiyuan 已提交
658
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
659

xiebaiyuan's avatar
xiebaiyuan 已提交
660
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
661

662
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
663

664
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
665

朔-望's avatar
朔-望 已提交
666
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
667 668 669
  GType *input_x_;
  GType *input_y_;
  GType *out_;
670 671
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
672
};
L
liuruilong 已提交
673
#endif
朔-望's avatar
朔-望 已提交
674

L
liuruilong 已提交
675
#ifdef CONCAT_OP
N
nhzlx 已提交
676
template <typename Dtype>
朔-望's avatar
朔-望 已提交
677
class ConcatParam : public OpParam {
N
nhzlx 已提交
678 679 680
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
681
 public:
682
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
683 684 685 686
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
687 688
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
689

N
nhzlx 已提交
690
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
691

xiebaiyuan's avatar
xiebaiyuan 已提交
692
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
693

694
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
695

朔-望's avatar
朔-望 已提交
696
 private:
N
nhzlx 已提交
697
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
698
  GType *out_;
699
  int axis_;
Z
zhangyang 已提交
700 701 702 703 704 705 706 707 708
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
709
};
L
liuruilong 已提交
710
#endif
朔-望's avatar
朔-望 已提交
711

E
eclipsess 已提交
712 713 714 715 716 717 718 719
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720 721 722 723 724 725
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
744
#ifdef LRN_OP
N
nhzlx 已提交
745
template <typename Dtype>
E
eclipsess 已提交
746
class LrnParam : public OpParam {
N
nhzlx 已提交
747 748 749
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
750
 public:
751
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
752 753 754 755 756
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
757 758 759 760
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
761
    data_format_ = GetStringAttr("data_format", attrs);
762
  }
E
eclipsess 已提交
763

764
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
765

766
  GType *Out() const { return out_; }
E
eclipsess 已提交
767

768
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
769

770
  const int &N() const { return n_; }
E
eclipsess 已提交
771

772
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
773

774
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
775

776
  const float &K() const { return k_; }
E
eclipsess 已提交
777

W
wangliu 已提交
778
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
779

朔-望's avatar
朔-望 已提交
780
 private:
781 782 783
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
784 785 786 787
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
788
  string data_format_;
E
eclipsess 已提交
789
};
L
liuruilong 已提交
790 791
#endif

Z
zhaojiaying01 已提交
792 793
#ifdef NORM_OP
template <typename Dtype>
794
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
795 796 797 798 799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
800 801 802 803 804
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
805 806 807 808
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

809
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
810

811
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
812

813
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
814 815 816 817 818 819

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
820 821 822
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
823 824 825 826 827
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
828
#ifdef BATCHNORM_OP
N
nhzlx 已提交
829
template <typename Dtype>
830
class BatchNormParam : public OpParam {
N
nhzlx 已提交
831 832 833
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
834
 public:
835
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
836 837 838 839 840 841 842 843
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
844 845
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
846
    //    is_test_ = GetAttr<bool>("is_test", attrs);
847
  }
E
eclipsess 已提交
848

849
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
850

851
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
852

853
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
854

855
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
856

857
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
858

859
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
860

861
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
862

863
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
864

865
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
866

W
wangliu 已提交
867
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
868

869
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
870

871
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
872

873
  const GType *NewScale() const { return new_scale_; }
874

875
  const GType *NewBias() const { return new_bias_; }
876

朔-望's avatar
朔-望 已提交
877
 private:
878 879 880 881 882 883
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
884 885 886
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
887
  string data_format_;
888 889
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
890
};
L
liuruilong 已提交
891 892 893
#endif

#ifdef POOL_OP
N
nhzlx 已提交
894
template <typename Dtype>
895
class PoolParam : public OpParam {
N
nhzlx 已提交
896 897 898
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
899
 public:
900
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
901 902 903
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
904

905
    output_ = OutFrom<GType>(outputs, *scope);
906
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
907 908 909
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
910
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
911
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
912
  }
913

914
  const GType *Input() const { return input_; }
915

916
  GType *Output() const { return output_; }
917

W
wangliu 已提交
918
  const string &PoolingType() const { return pooling_type_; }
919

W
wangliu 已提交
920
  const vector<int> &Ksize() const { return ksize_; }
921

W
wangliu 已提交
922
  const vector<int> &Strides() const { return strides_; }
923

W
wangliu 已提交
924
  const vector<int> &Paddings() const { return paddings_; }
925

926
  bool isCeilMode() const { return ceil_mode_; }
927

Z
zhangyang 已提交
928
  bool isGlobalPooling() const { return global_pooling_; }
929

朔-望's avatar
朔-望 已提交
930
 private:
931 932
  GType *input_;
  GType *output_;
W
wangliu 已提交
933 934 935 936
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
937
  bool ceil_mode_;
938
  bool global_pooling_ = false;
Z
zhangyang 已提交
939
#ifdef PADDLE_MOBILE_FPGA
940 941

 private:
H
hanbuhe 已提交
942
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
943 944

 public:
H
hanbuhe 已提交
945 946
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
947
#endif
948
};
L
liuruilong 已提交
949 950 951
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
952
template <typename Dtype>
E
eclipsess 已提交
953
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
954 955 956
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
957 958
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
959 960 961 962 963 964
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
965 966 967 968
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
969 970 971 972

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
973 974
    } else {
      min_max_aspect_ratios_order_ = false;
975
    }
E
eclipsess 已提交
976 977 978 979 980 981
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
982
  const GType *Input() const { return input_; }
E
eclipsess 已提交
983

984
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
985

986
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
987

988
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
989

W
wangliu 已提交
990
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
991

W
wangliu 已提交
992
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
993

W
wangliu 已提交
994
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
995

W
wangliu 已提交
996
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1008 1009 1010 1011
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1012
 private:
1013 1014 1015 1016
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1017 1018 1019 1020
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1021 1022 1023 1024 1025
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1026
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1027
};
L
liuruilong 已提交
1028
#endif
E
eclipsess 已提交
1029

L
liuruilong 已提交
1030
#ifdef BOXCODER_OP
N
nhzlx 已提交
1031
template <typename Dtype>
E
eclipsess 已提交
1032
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1033 1034 1035
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1036 1037
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1038 1039 1040 1041 1042 1043
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1044
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1045
  }
1046
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1047

1048
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1049

1050
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1051

1052
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1053 1054 1055 1056

  const std::string &CodeType() const { return code_type_; }

 private:
1057 1058 1059 1060
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1061 1062
  std::string code_type_;
};
L
liuruilong 已提交
1063
#endif
W
wangliu 已提交
1064

L
liuruilong 已提交
1065
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1066
template <typename Dtype>
W
wangliu 已提交
1067
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1068 1069 1070
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1071 1072
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1073 1074 1075 1076
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1077
  }
H
hjchen2 已提交
1078 1079
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1080 1081

 private:
H
hjchen2 已提交
1082 1083
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1084 1085 1086

#ifdef PADDLE_MOBILE_FPGA

1087 1088
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1089
 private:
1090
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1091 1092 1093
  fpga::BypassArgs fpga_bypass_args;

 public:
1094
  GType *FloatInput() const {
H
hanbuhe 已提交
1095 1096
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1097
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1098 1099
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1112
#endif
W
wangliu 已提交
1113
};
L
liuruilong 已提交
1114
#endif
W
wangliu 已提交
1115

L
liuruilong 已提交
1116
#ifdef SIGMOID_OP
N
nhzlx 已提交
1117
template <typename Dtype>
W
wangliu 已提交
1118
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1119 1120 1121
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1122 1123
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1124 1125 1126 1127
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1128
  }
1129 1130
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1131 1132

 private:
1133 1134
  GType *input_x_;
  GType *out_;
1135 1136 1137 1138 1139 1140 1141 1142 1143
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1144
};
L
liuruilong 已提交
1145 1146 1147
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1148
template <typename Dtype>
E
eclipsess 已提交
1149
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1150 1151 1152
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1153 1154 1155
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1156 1157 1158 1159 1160
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1161 1162 1163 1164 1165 1166 1167 1168
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1169
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1170

1171
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1172

1173
  GType *Out() const { return out_; }
E
eclipsess 已提交
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1188 1189 1190
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1191 1192 1193 1194 1195 1196 1197
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1198
#endif
W
wangliu 已提交
1199

L
lijiancheng0614 已提交
1200 1201 1202 1203 1204 1205 1206 1207 1208
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1209 1210 1211 1212
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1213
  }
1214 1215
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1216 1217

 private:
1218 1219
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1220 1221 1222
};
#endif

N
nhzlx 已提交
1223
template <typename Dtype>
L
liuruilong 已提交
1224
class FeedParam : public OpParam {
N
nhzlx 已提交
1225 1226 1227
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1228 1229
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1230
            const AttributeMap &attrs, Scope *scope)
1231
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1232
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1233
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1234
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1235
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1236
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1237
  }
H
hjchen2 已提交
1238
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1239
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1240
  const int Col() const { return col_; }
W
wangliu 已提交
1241
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1242

L
liuruilong 已提交
1243
 private:
H
hjchen2 已提交
1244
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1245
  GType *out_;
H
update  
hjchen2 已提交
1246
  int col_;
W
wangliu 已提交
1247
  int batch_size;
L
liuruilong 已提交
1248 1249
};

N
nhzlx 已提交
1250
template <typename Dtype>
L
liuruilong 已提交
1251
class FetchParam : public OpParam {
N
nhzlx 已提交
1252 1253 1254
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1255 1256
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1257
             const AttributeMap &attrs, Scope *scope)
1258
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1259 1260
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1261
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1262
  }
L
liuruilong 已提交
1263

H
hjchen2 已提交
1264 1265
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1266
  const int Col() const { return col_; }
L
liuruilong 已提交
1267

L
liuruilong 已提交
1268
 private:
H
hjchen2 已提交
1269 1270
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1271
  int col_;
qnqinan's avatar
qnqinan 已提交
1272
#ifdef PADDLE_MOBILE_FPGA
1273

qnqinan's avatar
qnqinan 已提交
1274
 public:
1275
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1276
  fpga::BypassArgs fpga_bypass_args;
1277
  Tensor aligned_out;
1278 1279 1280
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1281
#endif
L
liuruilong 已提交
1282 1283
};

L
lijiancheng0614 已提交
1284 1285 1286 1287 1288 1289 1290 1291 1292
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1293 1294 1295 1296
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1297 1298 1299 1300 1301 1302 1303
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1304
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1314
  GType *out_;
L
lijiancheng0614 已提交
1315 1316 1317 1318 1319 1320
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1321
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1322
template <typename Dtype>
E
eclipsess 已提交
1323
class TransposeParam : public OpParam {
N
nhzlx 已提交
1324 1325 1326
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1327 1328
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1329 1330 1331 1332
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1333 1334 1335
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1336
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1337

1338
  GType *Out() const { return out_; }
E
eclipsess 已提交
1339 1340 1341 1342

  const vector<int> &Axis() const { return axis_; }

 private:
1343 1344
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1345 1346
  vector<int> axis_;
};
L
liuruilong 已提交
1347
#endif
E
eclipsess 已提交
1348

L
lijiancheng0614 已提交
1349 1350 1351 1352 1353 1354 1355 1356
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1357 1358 1359 1360 1361
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1362 1363 1364
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1365
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1366

1367
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1368

1369
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1370 1371 1372 1373

  const vector<int> &Axis() const { return axis_; }

 private:
1374 1375 1376
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1377 1378 1379 1380
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1381 1382 1383 1384 1385 1386 1387 1388
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1389 1390 1391 1392 1393
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1420 1421
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1422
    // todo crf params
1423 1424 1425 1426
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1427 1428 1429 1430 1431 1432
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1433 1434
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1435 1436 1437 1438 1439 1440 1441 1442
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1443 1444
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1445 1446 1447 1448
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1449
#ifdef RESHAPE_OP
N
nhzlx 已提交
1450
template <typename Dtype>
E
eclipsess 已提交
1451
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1452 1453 1454
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1455 1456
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1457 1458 1459 1460 1461
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1462
    shape_ = GetAttr<vector<int>>("shape", attrs);
1463 1464 1465 1466 1467 1468 1469

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1470 1471
  }

1472
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1473

1474
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1475

1476
  GType *Out() const { return out_; }
E
eclipsess 已提交
1477 1478 1479 1480 1481 1482

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1483 1484 1485
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1486 1487 1488
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1489
#endif
E
eclipsess 已提交
1490

L
lijiancheng0614 已提交
1491 1492 1493 1494 1495 1496 1497 1498
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1499 1500 1501 1502 1503 1504
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1505 1506 1507 1508 1509 1510 1511 1512
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1513
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1514

E
eclipsess 已提交
1515
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1516

E
eclipsess 已提交
1517
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1518

E
eclipsess 已提交
1519
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1520 1521 1522 1523 1524 1525

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1526 1527 1528 1529
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1530 1531 1532 1533 1534
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1535
#ifdef SCALE_OP
N
nhzlx 已提交
1536
template <typename Dtype>
I
itminner 已提交
1537
class ScaleParam : public OpParam {
N
nhzlx 已提交
1538 1539 1540
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1541 1542
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1543 1544 1545 1546
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1547 1548
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1549 1550
  }

1551
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1552

1553
  GType *Out() const { return out_; }
I
itminner 已提交
1554

1555
  const float Scale() const { return scale_; }
I
itminner 已提交
1556

1557
  const float Bias() const { return bias_; }
I
itminner 已提交
1558 1559

 private:
1560 1561
  GType *input_x_;
  GType *out_;
1562 1563
  float scale_;
  float bias_;
I
itminner 已提交
1564
};
T
Tian 已提交
1565 1566 1567
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1568
template <typename Dtype>
I
itminner 已提交
1569
class SliceParam : public OpParam {
N
nhzlx 已提交
1570 1571 1572
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1573 1574
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1575 1576 1577 1578
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1579

1580 1581 1582 1583
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1584

1585 1586 1587 1588 1589 1590
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1591
};
T
Tian 已提交
1592 1593 1594
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1595
template <typename Dtype>
T
Tian 已提交
1596
class ResizeParam : public OpParam {
N
nhzlx 已提交
1597 1598 1599
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1600 1601
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1602 1603 1604 1605 1606
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1607 1608 1609 1610 1611 1612
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1613

1614
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1615

1616
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1617

1618
  GType *Out() const { return out_; }
T
Tian 已提交
1619

I
itminner 已提交
1620
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1621

I
itminner 已提交
1622
  const int &Height() const { return height_; }
T
Tian 已提交
1623

I
itminner 已提交
1624
  const int &Width() const { return width_; }
T
Tian 已提交
1625

I
itminner 已提交
1626
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1627

I
itminner 已提交
1628
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1629

I
itminner 已提交
1630
 private:
1631 1632 1633
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1634 1635 1636 1637 1638
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1639 1640 1641
};
#endif

L
liuruilong 已提交
1642
#ifdef RELU_OP
L
liuruilong 已提交
1643 1644 1645
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1646
template <typename Dtype>
D
relu  
dolphin8 已提交
1647
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1648 1649 1650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1651
 public:
D
relu  
dolphin8 已提交
1652
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1653 1654 1655 1656
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1657 1658
  }

1659
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1660

1661
  GType *Out() const { return out_; }
E
eclipsess 已提交
1662 1663

 private:
1664 1665
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1666
};
D
relu  
dolphin8 已提交
1667 1668 1669

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1670
 public:
D
relu  
dolphin8 已提交
1671 1672 1673
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1674
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1675 1676
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1677
 public:
D
relu  
dolphin8 已提交
1678
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1679 1680 1681
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1682 1683
  framework::CLImage midImage;
};
Y
yangfei 已提交
1684
#endif
D
relu  
dolphin8 已提交
1685

L
liuruilong 已提交
1686
#endif
E
eclipsess 已提交
1687

Z
zhangyang 已提交
1688 1689 1690 1691 1692 1693 1694 1695
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1696 1697 1698 1699
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1700
  }
1701 1702
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1703 1704

 private:
1705 1706
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1707 1708 1709
#ifdef PADDLE_MOBILE_FPGA

 private:
1710
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1711 1712 1713
  fpga::BypassArgs fpga_bypass_args;

 public:
1714
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1715 1716
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1717
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1718 1719 1720
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1721
};
L
liuruilong 已提交
1722
#endif
E
eclipsess 已提交
1723

T
Tian 已提交
1724
#ifdef PRELU_OP
N
nhzlx 已提交
1725
template <typename Dtype>
T
Tian 已提交
1726
class PReluParam : public OpParam {
N
nhzlx 已提交
1727 1728 1729
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1730 1731
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1732 1733
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1734
    DLOG << "PReluParam inputs before";
1735 1736
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1737
    framework::DDim dims = alpha_->dims();
1738
    out_ = OutFrom<GType>(outputs, *scope);
1739
    mode_ = GetStringAttr("mode", attrs);
1740
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1741
  }
1742 1743 1744
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1745
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1746

I
itminner 已提交
1747
 private:
1748 1749 1750
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1751
  std::string mode_;
T
Tian 已提交
1752 1753 1754
};
#endif

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1780
template <typename Dtype>
L
liuruilong 已提交
1781
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1782 1783 1784
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1785
 public:
L
liuruilong 已提交
1786
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1787 1788 1789 1790 1791 1792
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1793 1794 1795 1796
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1797
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1798

1799
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1800

1801
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1802

xiebaiyuan's avatar
xiebaiyuan 已提交
1803
  GType *Out() const { return out_; }
E
eclipsess 已提交
1804 1805 1806 1807 1808 1809 1810 1811

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1812
  GType *input_x_;
1813 1814
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1815
  GType *out_;
E
eclipsess 已提交
1816 1817 1818
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1819

Z
ZhenWang 已提交
1820
#ifdef PADDLE_MOBILE_FPGA
1821
 private:  // NOLINT
Z
zhangyang 已提交
1822
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1823 1824

 public:
Z
zhangyang 已提交
1825 1826
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1827
#endif
E
eclipsess 已提交
1828
};
1829 1830

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1831 1832
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1833
#endif
E
eclipsess 已提交
1834

N
nhzlx 已提交
1835
template <typename Dtype>
1836
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1837 1838 1839
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1840
 public:
L
liuruilong 已提交
1841
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1842
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1843
                     Scope *scope)
1844
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1845
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1846
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1847
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1848
  }
1849
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1850 1851 1852

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1853
 protected:
1854
  GType *bias_;
W
wangliu 已提交
1855 1856 1857
  int axis_;
};

N
nhzlx 已提交
1858 1859
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1860

Z
zhangyang 已提交
1861
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1862 1863
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1864
 public:
L
liuruilong 已提交
1865
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1866
                         const VariableNameMap &outputs,
1867
                         const AttributeMap &attrs, Scope *scope)
1868
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1869 1870 1871
};
#endif

1872
#ifdef FUSION_CONVADDPRELU_OP
1873 1874 1875 1876
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1877 1878 1879 1880

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1881
                          const AttributeMap &attrs, Scope *scope)
1882
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1883
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1884
    mode_ = OpParam::GetStringAttr("mode", attrs);
1885
    framework::DDim dims = alpha_->dims();
1886
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1887
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1888
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1889
  }
1890
  const GType *InputAlpha() const { return alpha_; }
1891
  const std::string &Mode() const { return mode_; }
1892
  GType *Bias() const { return bias_; }
1893 1894 1895
  const int &Axis() const { return axis_; }

 protected:
1896
  GType *bias_;
1897
  int axis_;
1898
  GType *alpha_;
1899 1900 1901 1902 1903
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1904 1905 1906 1907
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1908 1909 1910 1911

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1912
                             const AttributeMap &attrs, Scope *scope)
1913
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1914 1915
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1916
    mode_ = OpParam::GetStringAttr("mode", attrs);
1917
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1918
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1919
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1920 1921 1922
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1923
    if (keyX1_ == keyOutput_) {
1924
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1925
    } else if (keyY1_ == keyOutput_) {
1926
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1927
    }
H
update  
hjchen2 已提交
1928
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1929
  }
1930
  const GType *InputAlpha() const { return alpha_; }
1931
  const std::string &Mode() const { return mode_; }
1932
  const GType *Bias1() const { return bias1_; }
1933

1934
  GType *Bias() const { return bias_; }
1935 1936 1937 1938

  const int &Axis() const { return axis_; }

 protected:
1939
  GType *bias_;
1940
  int axis_;
1941
  GType *alpha_;
1942
  std::string mode_;
1943
  GType *bias1_;
1944 1945 1946 1947 1948 1949
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1950
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1951
template <typename Dtype>
1952
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1953 1954 1955
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1956 1957 1958
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1959
                           const AttributeMap &attrs, Scope *scope)
1960
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1961
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1962
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1963 1964 1965 1966
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1967 1968
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1969
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1970
  }
1971
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1972 1973 1974

  const int &Axis() const { return axis_; }

1975
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1976

1977
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1978

1979
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1980

1981
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1982 1983 1984 1985 1986

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

1987
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1988

1989
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1990

1991
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1992

1993
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1994 1995

 protected:
1996
  GType *bias_;
E
eclipsess 已提交
1997
  int axis_;
1998 1999 2000 2001
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2002 2003
  float epsilon_;
  float momentum_;
2004 2005
  GType *new_bias_;
  GType *new_scale_;
2006 2007 2008 2009 2010
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2011
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2012 2013 2014 2015 2016 2017
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2018
                           const AttributeMap &attrs, Scope *scope)
2019
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2020
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2021
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2022 2023 2024 2025
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2026 2027
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2028 2029 2030
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2031
    if (keyX_ == keyBNY_) {
2032
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2033
    } else if (keyY_ == keyBNY_) {
2034
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2035
    }
H
update  
hjchen2 已提交
2036
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2037
  }
2038
  GType *Bias() const { return bias_; }
2039 2040 2041

  const int &Axis() const { return axis_; }

2042
  const GType *InputBias() const { return input_bias_; }
2043

2044
  const GType *InputMean() const { return input_mean_; }
2045

2046
  const GType *InputScale() const { return input_scale_; }
2047

2048
  const GType *InputVariance() const { return input_variance_; }
2049 2050 2051 2052 2053

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2054
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2055

2056
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2057

2058
  const GType *NewScale() const { return new_scale_; }
2059

2060
  const GType *NewBias() const { return new_bias_; }
2061 2062

 protected:
2063
  GType *bias_;
2064
  int axis_;
2065 2066 2067 2068
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2069 2070
  float epsilon_;
  float momentum_;
2071 2072
  GType *new_bias_;
  GType *new_scale_;
2073 2074 2075
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2076
};
2077
#endif
E
eclipsess 已提交
2078

Z
zhangyang 已提交
2079
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2080
template <typename Dtype>
2081
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2082 2083 2084
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2085 2086 2087
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2088
                    Scope *scope)
2089
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2090 2091 2092 2093
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2094 2095
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2096
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2097 2098
  }

2099
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2100

2101
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2102

2103
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2104

2105
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2106 2107 2108 2109 2110

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2111
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2112

2113
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2114

2115
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2116

2117
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2118 2119

 protected:
2120 2121 2122 2123
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2124 2125
  float epsilon_;
  float momentum_;
2126 2127
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2128 2129 2130
};
#endif

2131
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2132
template <typename Dtype>
2133
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2134 2135 2136
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2137 2138 2139
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2140
                       const AttributeMap &attrs, Scope *scope)
2141
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2142
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2143
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2144 2145 2146 2147
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2148 2149
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2150
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2151
  }
2152
  GType *Bias() const { return bias_; }
2153 2154 2155

  const int &Axis() const { return axis_; }

2156
  const GType *InputBias() const { return input_bias_; }
2157

2158
  const GType *InputMean() const { return input_mean_; }
2159

2160
  const GType *InputScale() const { return input_scale_; }
2161

2162
  const GType *InputVariance() const { return input_variance_; }
2163 2164 2165 2166 2167

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2168
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2169

2170
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2171

2172
  const GType *NewScale() const { return new_scale_; }
2173

2174
  const GType *NewBias() const { return new_bias_; }
2175 2176

 protected:
2177
  GType *bias_;
2178
  int axis_;
2179 2180 2181 2182
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2183 2184
  float epsilon_;
  float momentum_;
2185 2186
  GType *new_bias_;
  GType *new_scale_;
2187
};
E
eclipsess 已提交
2188
#endif
Y
Yao,kun 已提交
2189

E
eclipsess 已提交
2190
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2191
template <typename Dtype>
2192
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2193 2194 2195
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2196 2197 2198
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2199
                          const AttributeMap &attrs, Scope *scope)
2200
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2201 2202 2203 2204
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2205 2206
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2207
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2208 2209
  }

2210
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2211

2212
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2213

2214
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2215

2216
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2217 2218 2219 2220 2221

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2222
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2223

2224
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2225

2226
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2227

2228
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2229 2230

 protected:
2231 2232 2233 2234
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2235 2236
  float epsilon_;
  float momentum_;
2237 2238
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2239 2240 2241 2242
};

#endif

2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2259
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2260
template <typename Dtype>
2261
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2262 2263 2264
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2265 2266 2267
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2268
                        const AttributeMap &attrs, Scope *scope)
2269
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2270 2271 2272 2273
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2274 2275
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2276
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2277 2278
  }

2279
  const GType *InputBias() const { return input_bias_; }
2280

2281
  const GType *InputMean() const { return input_mean_; }
2282

2283
  const GType *InputScale() const { return input_scale_; }
2284

2285
  const GType *InputVariance() const { return input_variance_; }
2286 2287 2288 2289 2290

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2291
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2292

2293
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2294

2295
  const GType *NewScale() const { return new_scale_; }
2296

2297
  const GType *NewBias() const { return new_bias_; }
2298 2299

 protected:
2300 2301 2302 2303
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2304 2305
  float epsilon_;
  float momentum_;
2306 2307
  GType *new_bias_;
  GType *new_scale_;
2308 2309 2310
};
#endif

Y
Yao,kun 已提交
2311
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2312
template <typename Dtype>
Y
Yao,kun 已提交
2313
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2314 2315 2316
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2317 2318 2319
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2320 2321 2322 2323
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2324 2325 2326 2327 2328
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2329
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2330

E
eclipsess 已提交
2331
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2332 2333 2334 2335 2336 2337 2338 2339

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2340 2341
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2342 2343 2344 2345
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2346
#endif
Y
Yao,kun 已提交
2347

2348
#ifdef DROPOUT_OP
N
nhzlx 已提交
2349
template <typename Dtype>
Y
Yao,kun 已提交
2350
class DropoutParam : public OpParam {
N
nhzlx 已提交
2351 2352 2353
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2354 2355
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2356 2357 2358 2359
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2360 2361

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2362 2363
  }

2364
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2365

2366
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2367

Y
yangfei 已提交
2368 2369
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2370
 private:
2371 2372
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2373
  float dropout_prob_;
Y
Yao,kun 已提交
2374
};
2375
#endif
Y
Yao,kun 已提交
2376

N
nhzlx 已提交
2377
template <typename Dtype>
L
liuruilong 已提交
2378
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2379 2380 2381
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2382 2383 2384
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2385 2386 2387 2388
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2389
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2390
    if (outputs.count("Output")) {
2391
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2392
    }
L
liuruilong 已提交
2393 2394 2395 2396 2397 2398
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2399
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2400

2401
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2402

2403
  GType *Output() const { return output_; }
L
liuruilong 已提交
2404 2405 2406 2407 2408 2409 2410 2411 2412

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2422
 private:
2423 2424 2425
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2426 2427 2428 2429
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2430
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2431 2432 2433 2434 2435

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2436
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2437 2438 2439

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2440 2441 2442
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2443
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2444 2445 2446
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2447
#endif
L
liuruilong 已提交
2448
};
Z
zhangyang 已提交
2449

qnqinan's avatar
qnqinan 已提交
2450 2451 2452 2453 2454
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2455 2456

 public:
qnqinan's avatar
qnqinan 已提交
2457
  FusionDeconvAddParam(const VariableNameMap &inputs,
2458
                       const VariableNameMap &outputs,
2459
                       const AttributeMap &attrs, Scope *scope)
2460
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2461
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2462
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2463
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2464
  }
2465
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2466 2467 2468

  const int &Axis() const { return axis_; }

2469
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2470 2471

 protected:
2472
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2473
  int axis_;
2474
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2475 2476 2477 2478 2479 2480 2481
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2482 2483 2484 2485 2486 2487 2488 2489 2490
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2491
                         const AttributeMap &attrs, Scope *scope)
2492
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2493 2494 2495 2496 2497
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2498 2499 2500 2501 2502 2503 2504
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2548
                          const AttributeMap &attrs, Scope *scope)
2549
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2550 2551 2552 2553 2554
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2555 2556 2557 2558 2559 2560
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2604
                             const AttributeMap &attrs, Scope *scope)
2605
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2606 2607 2608 2609 2610
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2652

Z
zhangyang 已提交
2653 2654 2655 2656 2657
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2672 2673 2674 2675 2676 2677 2678 2679
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2680
    output_batch_reset_hidden_prev_ =
2681 2682 2683
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2684 2685
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2719 2720 2721 2722 2723 2724 2725
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2726 2727 2728 2729 2730 2731 2732 2733
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2734
    output_reset_hidden_prev_ =
2735 2736
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2765 2766 2767 2768 2769 2770 2771 2772
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2773 2774 2775 2776
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2777
    axis = GetAttr<int>("axis", attrs);
2778
  }
2779 2780
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2781
  const int &Axis() const { return axis; }
2782 2783

 private:
2784 2785
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2786
  int axis;
2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2798 2799 2800 2801
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2802
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2803 2804 2805 2806 2807 2808
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2809
  }
2810
  const GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2811 2812 2813 2814 2815
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2816 2817

 private:
2818
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2819
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2820
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2821 2822 2823
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2824 2825 2826 2827 2828 2829 2830 2831 2832
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2845 2846 2847 2848 2849
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2850 2851
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2852
  }
2853
  const GType *InputX() const { return input_x_; }
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
2886 2887
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2888 2889
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2890 2891

 private:
2892 2893 2894
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2895 2896
  int out_h_;
  int out_w_;
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2908 2909 2910 2911
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2912
  }
2913 2914
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2915 2916

 private:
2917 2918
  GType *input_;
  GType *out_;
2919 2920 2921
};
#endif

H
hjchen2 已提交
2922 2923 2924 2925 2926 2927 2928 2929
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2930 2931 2932 2933 2934
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2935 2936 2937 2938
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2939 2940 2941
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2954 2955 2956 2957
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2958 2959 2960 2961 2962
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2963 2964
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2965 2966 2967 2968 2969
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2970
#ifdef QUANT_OP
2971
template <typename Dtype>
2972 2973 2974 2975 2976
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2977
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2978 2979 2980 2981
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2982 2983
    // online
    // scale = max(abs(x))
2984
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2985
    // offline
2986
    if (inputs.count("InScale")) {
2987
      offline_ = true;
2988
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2989 2990
    }
    // x = round(scale * x)
2991 2992
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2993
    }
2994 2995 2996 2997
  }

 public:
  // op input
2998
  GType *input_;
2999
  // op output
3000
  GType *output_;
3001
  GType *online_scale_;
3002
  // quantize offline scale
3003
  GType *offline_scale_;
3004 3005
  // if offine scale or not
  bool offline_ = false;
3006
  // round method type
3007 3008
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3009
};
3010
#endif
3011

3012
#ifdef DEQUANT_OP
3013
template <typename Dtype>
3014 3015 3016 3017 3018
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3019
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3020 3021 3022 3023 3024
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3025
    // dequantization is performed as x = x / static_scale / online_scale
3026 3027
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3028
    } else {
3029
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3030 3031 3032 3033 3034
    }
  }

 public:
  // op input
3035
  GType *input_;
3036
  // op output
3037
  GType *output_;
3038
  GType *activation_scale_;
3039 3040
  float weight_scale_;
};
3041
#endif
3042

3043 3044 3045 3046
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3047
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3048
template <typename Dtype>
3049
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3050 3051 3052 3053
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3054 3055
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3056
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3057 3058
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3059 3060 3061 3062
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3063 3064 3065 3066 3067
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3068 3069 3070 3071
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3072
  float epsilon_;
3073 3074 3075
};
#endif

3076 3077 3078 3079
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3080 3081 3082 3083 3084 3085 3086 3087
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3088
                          const AttributeMap &attrs, Scope *scope)
3089 3090 3091
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3092
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3093 3094 3095 3096 3097
  }

 public:
  // elementwise add
  int axis_;
3098
  GType *bias_;
3099 3100 3101
};
#endif

3102 3103 3104 3105 3106 3107 3108 3109 3110
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3111
                               const AttributeMap &attrs, Scope *scope)
3112 3113
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3114
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3115
    // offline
3116 3117
    if (inputs.count("InScale")) {
      offline_ = true;
3118
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3119 3120 3121 3122 3123 3124 3125 3126
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3127
  GType *online_scale_;
3128
  // quantize offline scale
3129
  GType *offline_scale_;
3130 3131
  // if offine scale or not
  bool offline_ = false;
3132 3133 3134 3135 3136 3137
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3138 3139 3140 3141 3142 3143 3144 3145 3146
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3147 3148 3149 3150 3151
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3175 3176 3177 3178
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3179 3180
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3181
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3192 3193 3194 3195 3196 3197 3198 3199
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3200 3201 3202 3203
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3204 3205
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3206
      input_y_ = InputYFrom<GType>(inputs, *scope);
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3220 3221 3222 3223 3224 3225 3226 3227
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3228 3229 3230 3231 3232
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3244
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3245
template <typename Dtype>
Z
zhaojiaying01 已提交
3246
class LogicalBinaryParam : public OpParam {
3247 3248 3249 3250
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3251 3252
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3253 3254 3255 3256 3257
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3269
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3270 3271 3272

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3273
class LogicalUnaryParam : public OpParam {
3274 3275 3276 3277
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3278 3279
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3280 3281 3282 3283
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3295 3296 3297
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3298 3299 3300
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3301 3302 3303
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3304 3305
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3306 3307 3308
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3309 3310 3311
  }

 public:
H
hjchen2 已提交
3312 3313 3314
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3315 3316 3317 3318 3319 3320
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3321 3322 3323
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3324 3325 3326
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3327 3328
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3329 3330 3331
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3332 3333 3334
  }

 public:
H
hjchen2 已提交
3335 3336 3337
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3338 3339 3340
};
#endif

Z
zhaojiaying01 已提交
3341 3342 3343 3344 3345 3346 3347 3348
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3349 3350 3351 3352
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3372
                 const AttributeMap &attrs, Scope *scope)
3373
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3374 3375
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3376
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3377 3378 3379 3380
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3381
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3382 3383 3384 3385

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3386
  float step_;
Z
zhaojiaying01 已提交
3387 3388
};
#endif  // INCREMENT_OP
3389 3390 3391 3392 3393 3394 3395 3396
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3397 3398 3399 3400
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3401 3402 3403 3404 3405 3406 3407 3408 3409
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3410

朔-望's avatar
朔-望 已提交
3411 3412
}  // namespace operators
}  // namespace paddle_mobile