op_param.h 104.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
22
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
26
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
27
#include "framework/variable.h"
Z
zhangyang 已提交
28 29 30 31 32 33 34

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
35
#endif
朔-望's avatar
朔-望 已提交
36

C
Chon 已提交
37 38 39 40
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
41 42
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
43
#endif
朔-望's avatar
朔-望 已提交
44 45

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
46 47
namespace operators {

W
wangliu 已提交
48 49 50 51 52
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
53
using framework::Variable;
W
wangliu 已提交
54 55
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
56

57
using framework::DtypeTensorTrait;
L
liuruilong 已提交
58

L
liuruilong 已提交
59
class OpParam {
60 61
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
62 63
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
64

65 66
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
67

C
Chon 已提交
68 69 70 71 72 73
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
74
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
75 76 77 78
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
79 80 81 82 83 84 85

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

86 87 88 89 90
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

91 92 93 94 95 96 97 98 99
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
100 101 102 103 104
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

132 133 134 135
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
136 137 138 139 140 141

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

142 143 144 145 146
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
147 148 149 150 151
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

152 153 154 155 156
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
157 158 159 160
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
161 162 163 164 165 166 167 168 169 170 171 172
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
173 174 175 176
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
193

E
eclipsess 已提交
194 195 196 197 198 199 200 201 202 203
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
204 205 206 207
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
208

209
  template <typename T>
W
wangliu 已提交
210 211
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
212 213 214
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
215 216 217 218 219
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
220 221 222 223 224 225
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
226 227 228 229 230
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234 235 236 237 238 239 240 241
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
248 249 250 251 252 253 254 255 256 257 258 259
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

260 261 262 263 264
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
265 266 267 268 269
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

270 271 272 273 274
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
275 276 277 278 279 280
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

281 282 283 284 285
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
286 287 288 289 290 291
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
292 293 294 295 296 297
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
298 299 300 301 302
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
303 304 305 306 307
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

314 315 316 317 318 319 320 321 322 323 324
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
325
  static const T GetAttr(const string &key, const AttributeMap &map) {
326 327
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
328 329
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
330 331
    return ((Attribute)map.at(key)).GetString();
  }
332

333 334 335 336
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

337
  template <typename T>
W
wangliu 已提交
338
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
339
                        const Scope &scope) {
W
wangliu 已提交
340 341
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
342 343 344 345 346 347
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
348
    }
349
  }
朔-望's avatar
朔-望 已提交
350

E
eclipsess 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

364
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
365
                            int index) {
366 367
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

386
  template <typename T>
W
wangliu 已提交
387 388 389
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
390 391
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
392
    vector<T *> var_res;
393 394 395
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
396
    }
397 398
    return var_res;
  }
E
eclipsess 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
412 413
};

414 415 416 417 418 419
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
420
template <typename Dtype>
421
class ConvParam : public OpParam {
N
nhzlx 已提交
422 423 424
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
425
 public:
426
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
427 428 429 430
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
431
    if (outputs.count("Output")) {
432
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
433 434 435 436 437
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
438
  }
朔-望's avatar
朔-望 已提交
439

440
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
441

442
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
443

444
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
445

W
wangliu 已提交
446
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
447

W
wangliu 已提交
448
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
449

W
wangliu 已提交
450
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
451

H
hjchen2 已提交
452 453 454
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
455 456
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
457 458
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
459
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
460
    EXEC_GEMM_INT8,
H
hjchen2 已提交
461
    EXEC_DEPTHWISE3x3_INT8,
462
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
463 464
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
465 466 467 468 469
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
470
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
471 472 473 474
  };

  ExecMode &ExecMode() const { return exec_mode_; }

475
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
476

477 478 479 480 481 482 483
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
484
 public:
485 486 487 488
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
489 490 491
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
492
  mutable enum ExecMode exec_mode_;
493
  int groups;
494 495 496 497

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
498 499 500

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
501
 public:
Z
zhangyang 已提交
502 503 504 505 506
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
507 508 509 510 511 512 513

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
514
#endif
朔-望's avatar
朔-望 已提交
515
};
N
nhzlx 已提交
516 517
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
518

N
nhzlx 已提交
519
template <typename Dtype>
520
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
521 522 523
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
524
 public:
525
  ElementwiseAddParam(const VariableNameMap &inputs,
526
                      const VariableNameMap &outputs, const AttributeMap &attrs,
527 528 529 530 531
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
532 533 534
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
535
  const GType *InputX() const { return input_x_; }
536

xiebaiyuan's avatar
xiebaiyuan 已提交
537
  const GType *InputY() const { return input_y_; }
538

xiebaiyuan's avatar
xiebaiyuan 已提交
539
  GType *Out() const { return out_; }
540 541 542

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
543
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
544 545 546
  GType *input_x_;
  GType *input_y_;
  GType *out_;
547
  int axis_;
Z
zhangyang 已提交
548 549 550
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
551
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
552 553

 public:
H
hanbuhe 已提交
554 555
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
556 557 558 559

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
560
#endif
朔-望's avatar
朔-望 已提交
561 562
};

E
eclipsess 已提交
563
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
564
template <typename Dtype>
565
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
566 567 568 569 570 571
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
572 573 574 575 576
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
593 594 595 596 597 598
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
599
};
S
suiyang 已提交
600
#endif
E
eclipsess 已提交
601

602
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
603 604
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
605 606
#endif

607
#ifdef ELEMENTWISESUB_OP
608
template <typename Dtype>
609
class ElementwiseSubParam : public OpParam {
610 611 612 613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
616 617 618 619 620
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
638
#endif
639

L
liuruilong 已提交
640
#ifdef MUL_OP
N
nhzlx 已提交
641
template <typename Dtype>
642
class MulParam : public OpParam {
N
nhzlx 已提交
643 644 645
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
646
 public:
647
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
648 649 650 651 652
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
653 654 655
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
656

xiebaiyuan's avatar
xiebaiyuan 已提交
657
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
658

xiebaiyuan's avatar
xiebaiyuan 已提交
659
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
664

665
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
666

朔-望's avatar
朔-望 已提交
667
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
668 669 670
  GType *input_x_;
  GType *input_y_;
  GType *out_;
671 672
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
673
};
L
liuruilong 已提交
674
#endif
朔-望's avatar
朔-望 已提交
675

L
liuruilong 已提交
676
#ifdef CONCAT_OP
N
nhzlx 已提交
677
template <typename Dtype>
朔-望's avatar
朔-望 已提交
678
class ConcatParam : public OpParam {
N
nhzlx 已提交
679 680 681
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
682
 public:
683
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
684 685 686 687
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
688 689
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
690

N
nhzlx 已提交
691
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
692

xiebaiyuan's avatar
xiebaiyuan 已提交
693
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
694

695
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
696

朔-望's avatar
朔-望 已提交
697
 private:
N
nhzlx 已提交
698
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
699
  GType *out_;
700
  int axis_;
Z
zhangyang 已提交
701 702 703 704 705 706 707 708 709
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
710
};
L
liuruilong 已提交
711
#endif
朔-望's avatar
朔-望 已提交
712

E
eclipsess 已提交
713 714 715 716 717 718 719 720
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
721 722 723 724 725 726
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
745
#ifdef LRN_OP
N
nhzlx 已提交
746
template <typename Dtype>
E
eclipsess 已提交
747
class LrnParam : public OpParam {
N
nhzlx 已提交
748 749 750
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
751
 public:
752
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
753 754 755 756 757
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
758 759 760 761
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
762
    data_format_ = GetStringAttr("data_format", attrs);
763
  }
E
eclipsess 已提交
764

765
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
766

767
  GType *Out() const { return out_; }
E
eclipsess 已提交
768

769
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
770

771
  const int &N() const { return n_; }
E
eclipsess 已提交
772

773
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
774

775
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
776

777
  const float &K() const { return k_; }
E
eclipsess 已提交
778

W
wangliu 已提交
779
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
780

朔-望's avatar
朔-望 已提交
781
 private:
782 783 784
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
785 786 787 788
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
789
  string data_format_;
E
eclipsess 已提交
790
};
L
liuruilong 已提交
791 792
#endif

Z
zhaojiaying01 已提交
793 794
#ifdef NORM_OP
template <typename Dtype>
795
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
796 797 798 799 800
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
801 802 803 804 805
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
806 807 808 809
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

810
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
811

812
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
813

814
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
815 816 817 818 819 820

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
821 822 823
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
824 825 826 827 828
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
829
#ifdef BATCHNORM_OP
N
nhzlx 已提交
830
template <typename Dtype>
831
class BatchNormParam : public OpParam {
N
nhzlx 已提交
832 833 834
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
835
 public:
836
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
837 838 839 840 841 842 843 844
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
845 846
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
847
    //    is_test_ = GetAttr<bool>("is_test", attrs);
848
  }
E
eclipsess 已提交
849

850
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
851

852
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
853

854
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
855

856
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
857

858
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
859

860
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
861

862
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
863

864
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
865

866
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
867

W
wangliu 已提交
868
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
869

870
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
871

872
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
873

874
  const GType *NewScale() const { return new_scale_; }
875

876
  const GType *NewBias() const { return new_bias_; }
877

朔-望's avatar
朔-望 已提交
878
 private:
879 880 881 882 883 884
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
885 886 887
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
888
  string data_format_;
889 890
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
891
};
L
liuruilong 已提交
892 893 894
#endif

#ifdef POOL_OP
N
nhzlx 已提交
895
template <typename Dtype>
896
class PoolParam : public OpParam {
N
nhzlx 已提交
897 898 899
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
900
 public:
901
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
902 903 904
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
905

906
    output_ = OutFrom<GType>(outputs, *scope);
907
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
908 909 910
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
911
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
912
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
913 914 915 916 917 918

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
919
  }
920

921
  const GType *Input() const { return input_; }
922

923
  GType *Output() const { return output_; }
924

W
wangliu 已提交
925
  const string &PoolingType() const { return pooling_type_; }
926

W
wangliu 已提交
927
  const vector<int> &Ksize() const { return ksize_; }
928

W
wangliu 已提交
929
  const vector<int> &Strides() const { return strides_; }
930

W
wangliu 已提交
931
  const vector<int> &Paddings() const { return paddings_; }
932

933
  bool isCeilMode() const { return ceil_mode_; }
934

Z
zhangyang 已提交
935
  bool isGlobalPooling() const { return global_pooling_; }
936

937 938
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
939
 private:
940 941
  GType *input_;
  GType *output_;
W
wangliu 已提交
942 943 944 945
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
946
  bool ceil_mode_;
947
  bool global_pooling_ = false;
948
  bool exclusive_ = true;
Z
zhangyang 已提交
949
#ifdef PADDLE_MOBILE_FPGA
950 951

 private:
H
hanbuhe 已提交
952
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
953 954

 public:
H
hanbuhe 已提交
955 956
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
957
#endif
958
};
L
liuruilong 已提交
959 960 961
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
962
template <typename Dtype>
E
eclipsess 已提交
963
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
964 965 966
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
967 968
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
969 970 971 972 973 974
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
975 976 977 978
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
979 980 981 982

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
983 984
    } else {
      min_max_aspect_ratios_order_ = false;
985
    }
E
eclipsess 已提交
986 987 988 989 990 991
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
992
  const GType *Input() const { return input_; }
E
eclipsess 已提交
993

994
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
995

996
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
997

998
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
999

W
wangliu 已提交
1000
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1001

W
wangliu 已提交
1002
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1003

W
wangliu 已提交
1004
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1005

W
wangliu 已提交
1006
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1018 1019 1020 1021
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1022
 private:
1023 1024 1025 1026
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1027 1028 1029 1030
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1031 1032 1033 1034 1035
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1036
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1037
};
L
liuruilong 已提交
1038
#endif
E
eclipsess 已提交
1039

L
liuruilong 已提交
1040
#ifdef BOXCODER_OP
N
nhzlx 已提交
1041
template <typename Dtype>
E
eclipsess 已提交
1042
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1043 1044 1045
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1046 1047
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1048 1049 1050 1051 1052 1053
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1054
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1055
  }
1056
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1057

1058
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1059

1060
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1061

1062
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1063 1064 1065 1066

  const std::string &CodeType() const { return code_type_; }

 private:
1067 1068 1069 1070
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1071 1072
  std::string code_type_;
};
L
liuruilong 已提交
1073
#endif
W
wangliu 已提交
1074

L
liuruilong 已提交
1075
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1076
template <typename Dtype>
W
wangliu 已提交
1077
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1078 1079 1080
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1081 1082
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1083 1084 1085 1086
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1087
  }
H
hjchen2 已提交
1088 1089
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1090 1091

 private:
H
hjchen2 已提交
1092 1093
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1094 1095 1096

#ifdef PADDLE_MOBILE_FPGA

1097 1098
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1099
 private:
1100
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1101 1102 1103
  fpga::BypassArgs fpga_bypass_args;

 public:
1104
  GType *FloatInput() const {
H
hanbuhe 已提交
1105 1106
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1107
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1108 1109
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1122
#endif
W
wangliu 已提交
1123
};
L
liuruilong 已提交
1124
#endif
W
wangliu 已提交
1125

L
liuruilong 已提交
1126
#ifdef SIGMOID_OP
N
nhzlx 已提交
1127
template <typename Dtype>
W
wangliu 已提交
1128
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1129 1130 1131
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1132 1133
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1134 1135 1136 1137
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1138
  }
1139 1140
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1141 1142

 private:
1143 1144
  GType *input_x_;
  GType *out_;
1145 1146 1147 1148 1149 1150 1151 1152 1153
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1154
};
L
liuruilong 已提交
1155 1156 1157
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1158
template <typename Dtype>
E
eclipsess 已提交
1159
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1160 1161 1162
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1163 1164 1165
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1166 1167 1168 1169 1170
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1171 1172 1173 1174 1175 1176 1177 1178
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1179
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1180

1181
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1182

1183
  GType *Out() const { return out_; }
E
eclipsess 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1198 1199 1200
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1201 1202 1203 1204 1205 1206 1207
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1208
#endif
W
wangliu 已提交
1209

L
lijiancheng0614 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1219 1220 1221 1222
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1223
  }
1224 1225
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1226 1227

 private:
1228 1229
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1230 1231 1232
};
#endif

N
nhzlx 已提交
1233
template <typename Dtype>
L
liuruilong 已提交
1234
class FeedParam : public OpParam {
N
nhzlx 已提交
1235 1236 1237
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1238 1239
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1240
            const AttributeMap &attrs, Scope *scope)
1241
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1242
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1243
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1244
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1245
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1246
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1247
  }
H
hjchen2 已提交
1248
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1249
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1250
  const int Col() const { return col_; }
W
wangliu 已提交
1251
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1252

L
liuruilong 已提交
1253
 private:
H
hjchen2 已提交
1254
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1255
  GType *out_;
H
update  
hjchen2 已提交
1256
  int col_;
W
wangliu 已提交
1257
  int batch_size;
L
liuruilong 已提交
1258 1259
};

N
nhzlx 已提交
1260
template <typename Dtype>
L
liuruilong 已提交
1261
class FetchParam : public OpParam {
N
nhzlx 已提交
1262 1263 1264
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1265 1266
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1267
             const AttributeMap &attrs, Scope *scope)
1268
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1269 1270
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1271
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1272
  }
L
liuruilong 已提交
1273

H
hjchen2 已提交
1274 1275
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1276
  const int Col() const { return col_; }
L
liuruilong 已提交
1277

L
liuruilong 已提交
1278
 private:
H
hjchen2 已提交
1279 1280
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1281
  int col_;
qnqinan's avatar
qnqinan 已提交
1282
#ifdef PADDLE_MOBILE_FPGA
1283

qnqinan's avatar
qnqinan 已提交
1284
 public:
1285
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1286
  fpga::BypassArgs fpga_bypass_args;
1287
  Tensor aligned_out;
1288 1289 1290
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1291
#endif
L
liuruilong 已提交
1292 1293
};

L
lijiancheng0614 已提交
1294 1295 1296 1297 1298 1299 1300 1301 1302
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1303 1304 1305 1306
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1307 1308 1309 1310 1311 1312 1313
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1314
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1324
  GType *out_;
L
lijiancheng0614 已提交
1325 1326 1327 1328 1329 1330
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1331
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1332
template <typename Dtype>
E
eclipsess 已提交
1333
class TransposeParam : public OpParam {
N
nhzlx 已提交
1334 1335 1336
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1337 1338
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1339 1340 1341 1342
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1343 1344 1345
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1346
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1347

1348
  GType *Out() const { return out_; }
E
eclipsess 已提交
1349 1350 1351 1352

  const vector<int> &Axis() const { return axis_; }

 private:
1353 1354
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1355 1356
  vector<int> axis_;
};
L
liuruilong 已提交
1357
#endif
E
eclipsess 已提交
1358

L
lijiancheng0614 已提交
1359 1360 1361 1362 1363 1364 1365 1366
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1367 1368 1369 1370 1371
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1372 1373 1374
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1375
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1376

1377
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1378

1379
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1380 1381 1382 1383

  const vector<int> &Axis() const { return axis_; }

 private:
1384 1385 1386
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1387 1388 1389 1390
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1391 1392 1393 1394 1395 1396 1397 1398
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1399 1400 1401 1402 1403
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1430 1431
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1432
    // todo crf params
1433 1434 1435 1436
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1437 1438 1439 1440 1441 1442
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1443 1444
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1445 1446 1447 1448 1449 1450 1451 1452
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1453 1454
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1455 1456 1457 1458
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1459
#ifdef RESHAPE_OP
N
nhzlx 已提交
1460
template <typename Dtype>
E
eclipsess 已提交
1461
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1462 1463 1464
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1465 1466
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1467 1468 1469 1470 1471
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1472
    shape_ = GetAttr<vector<int>>("shape", attrs);
1473 1474 1475 1476 1477 1478 1479

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1480 1481
  }

1482
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1483

1484
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1485

1486
  GType *Out() const { return out_; }
E
eclipsess 已提交
1487 1488 1489 1490 1491 1492

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1493 1494 1495
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1496 1497 1498
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1499
#endif
E
eclipsess 已提交
1500

L
lijiancheng0614 已提交
1501 1502 1503 1504 1505 1506 1507 1508
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1509 1510 1511 1512 1513 1514
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1515 1516 1517 1518 1519 1520 1521 1522
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1523
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1524

E
eclipsess 已提交
1525
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1526

E
eclipsess 已提交
1527
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1528

E
eclipsess 已提交
1529
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1530 1531 1532 1533 1534 1535

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1536 1537 1538 1539
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1540 1541 1542 1543 1544
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1545
#ifdef SCALE_OP
N
nhzlx 已提交
1546
template <typename Dtype>
I
itminner 已提交
1547
class ScaleParam : public OpParam {
N
nhzlx 已提交
1548 1549 1550
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1551 1552
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1553 1554 1555 1556
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1557 1558
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1559 1560
  }

1561
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1562

1563
  GType *Out() const { return out_; }
I
itminner 已提交
1564

1565
  const float Scale() const { return scale_; }
I
itminner 已提交
1566

1567
  const float Bias() const { return bias_; }
I
itminner 已提交
1568 1569

 private:
1570 1571
  GType *input_x_;
  GType *out_;
1572 1573
  float scale_;
  float bias_;
I
itminner 已提交
1574
};
T
Tian 已提交
1575 1576 1577
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1578
template <typename Dtype>
I
itminner 已提交
1579
class SliceParam : public OpParam {
N
nhzlx 已提交
1580 1581 1582
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1583 1584
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1585 1586 1587 1588
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1589

1590 1591 1592 1593
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1594

1595 1596 1597 1598 1599 1600
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1601
};
T
Tian 已提交
1602 1603 1604
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1605
template <typename Dtype>
T
Tian 已提交
1606
class ResizeParam : public OpParam {
N
nhzlx 已提交
1607 1608 1609
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1610 1611
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1612 1613 1614 1615 1616
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1617 1618 1619 1620 1621 1622
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1623

1624
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1625

1626
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1627

1628
  GType *Out() const { return out_; }
T
Tian 已提交
1629

I
itminner 已提交
1630
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1631

I
itminner 已提交
1632
  const int &Height() const { return height_; }
T
Tian 已提交
1633

I
itminner 已提交
1634
  const int &Width() const { return width_; }
T
Tian 已提交
1635

I
itminner 已提交
1636
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1637

I
itminner 已提交
1638
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1639

I
itminner 已提交
1640
 private:
1641 1642 1643
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1644 1645 1646 1647 1648
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1649 1650 1651
};
#endif

L
liuruilong 已提交
1652
#ifdef RELU_OP
L
liuruilong 已提交
1653 1654 1655
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1656
template <typename Dtype>
D
relu  
dolphin8 已提交
1657
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1658 1659 1660
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1661
 public:
D
relu  
dolphin8 已提交
1662
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1663 1664 1665 1666
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1667 1668
  }

1669
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1670

1671
  GType *Out() const { return out_; }
E
eclipsess 已提交
1672 1673

 private:
1674 1675
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1676
};
D
relu  
dolphin8 已提交
1677 1678 1679

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1680
 public:
D
relu  
dolphin8 已提交
1681 1682 1683
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1698
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1699 1700
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1701
 public:
D
relu  
dolphin8 已提交
1702
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1703 1704 1705
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1706 1707
  framework::CLImage midImage;
};
Y
yangfei 已提交
1708
#endif
D
relu  
dolphin8 已提交
1709

L
liuruilong 已提交
1710
#endif
E
eclipsess 已提交
1711

Z
zhangyang 已提交
1712 1713 1714 1715 1716 1717 1718 1719
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1720 1721 1722 1723
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1724
  }
1725 1726
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1727 1728

 private:
1729 1730
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1731 1732 1733
#ifdef PADDLE_MOBILE_FPGA

 private:
1734
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1735 1736 1737
  fpga::BypassArgs fpga_bypass_args;

 public:
1738
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1739 1740
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1741
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1742 1743 1744
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1745
};
L
liuruilong 已提交
1746
#endif
E
eclipsess 已提交
1747

T
Tian 已提交
1748
#ifdef PRELU_OP
N
nhzlx 已提交
1749
template <typename Dtype>
T
Tian 已提交
1750
class PReluParam : public OpParam {
N
nhzlx 已提交
1751 1752 1753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1754 1755
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1756 1757
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1758
    DLOG << "PReluParam inputs before";
1759 1760
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1761
    framework::DDim dims = alpha_->dims();
1762
    out_ = OutFrom<GType>(outputs, *scope);
1763
    mode_ = GetStringAttr("mode", attrs);
1764
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1765
  }
1766 1767 1768
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1769
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1770

I
itminner 已提交
1771
 private:
1772 1773 1774
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1775
  std::string mode_;
T
Tian 已提交
1776 1777 1778
};
#endif

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1804
template <typename Dtype>
L
liuruilong 已提交
1805
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1806 1807 1808
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1809
 public:
L
liuruilong 已提交
1810
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1811 1812 1813 1814 1815 1816
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1817 1818 1819 1820
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1821
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1822

1823
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1824

1825
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1826

xiebaiyuan's avatar
xiebaiyuan 已提交
1827
  GType *Out() const { return out_; }
E
eclipsess 已提交
1828 1829 1830 1831 1832 1833 1834 1835

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1836
  GType *input_x_;
1837 1838
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1839
  GType *out_;
E
eclipsess 已提交
1840 1841 1842
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1843

Z
ZhenWang 已提交
1844
#ifdef PADDLE_MOBILE_FPGA
1845
 private:  // NOLINT
Z
zhangyang 已提交
1846
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1847 1848

 public:
Z
zhangyang 已提交
1849 1850
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1851
#endif
E
eclipsess 已提交
1852
};
1853 1854

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1855 1856
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1857
#endif
E
eclipsess 已提交
1858

N
nhzlx 已提交
1859
template <typename Dtype>
1860
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1861 1862 1863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1864
 public:
L
liuruilong 已提交
1865
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1866
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1867
                     Scope *scope)
1868
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1869
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1870
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1871
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1872
  }
1873
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1874 1875 1876

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1877
 protected:
1878
  GType *bias_;
W
wangliu 已提交
1879 1880 1881
  int axis_;
};

N
nhzlx 已提交
1882 1883
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1884

Z
zhangyang 已提交
1885
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1886 1887
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1888
 public:
L
liuruilong 已提交
1889
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1890
                         const VariableNameMap &outputs,
1891
                         const AttributeMap &attrs, Scope *scope)
1892
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1893 1894 1895
};
#endif

1896
#ifdef FUSION_CONVADDPRELU_OP
1897 1898 1899 1900
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1901 1902 1903 1904

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1905
                          const AttributeMap &attrs, Scope *scope)
1906
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1907
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1908
    mode_ = OpParam::GetStringAttr("mode", attrs);
1909
    framework::DDim dims = alpha_->dims();
1910
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1911
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1912
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1913
  }
1914
  const GType *InputAlpha() const { return alpha_; }
1915
  const std::string &Mode() const { return mode_; }
1916
  GType *Bias() const { return bias_; }
1917 1918 1919
  const int &Axis() const { return axis_; }

 protected:
1920
  GType *bias_;
1921
  int axis_;
1922
  GType *alpha_;
1923 1924 1925 1926 1927
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1928 1929 1930 1931
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1932 1933 1934 1935

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1936
                             const AttributeMap &attrs, Scope *scope)
1937
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1938 1939
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1940
    mode_ = OpParam::GetStringAttr("mode", attrs);
1941
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1942
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1943
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1944 1945 1946
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1947
    if (keyX1_ == keyOutput_) {
1948
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1949
    } else if (keyY1_ == keyOutput_) {
1950
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1951
    }
H
update  
hjchen2 已提交
1952
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1953
  }
1954
  const GType *InputAlpha() const { return alpha_; }
1955
  const std::string &Mode() const { return mode_; }
1956
  const GType *Bias1() const { return bias1_; }
1957

1958
  GType *Bias() const { return bias_; }
1959 1960 1961 1962

  const int &Axis() const { return axis_; }

 protected:
1963
  GType *bias_;
1964
  int axis_;
1965
  GType *alpha_;
1966
  std::string mode_;
1967
  GType *bias1_;
1968 1969 1970 1971 1972 1973
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1974
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1975
template <typename Dtype>
1976
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1977 1978 1979
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1980 1981 1982
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1983
                           const AttributeMap &attrs, Scope *scope)
1984
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1985
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1986
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1987 1988 1989 1990
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1991 1992
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
1993
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1994
  }
1995
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
1996 1997 1998

  const int &Axis() const { return axis_; }

1999
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2000

2001
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2002

2003
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2004

2005
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2006 2007 2008 2009 2010

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2011
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2012

2013
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2014

2015
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2016

2017
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2018 2019

 protected:
2020
  GType *bias_;
E
eclipsess 已提交
2021
  int axis_;
2022 2023 2024 2025
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2026 2027
  float epsilon_;
  float momentum_;
2028 2029
  GType *new_bias_;
  GType *new_scale_;
2030 2031 2032 2033 2034
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2035
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2036 2037 2038 2039 2040 2041
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2042
                           const AttributeMap &attrs, Scope *scope)
2043
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2044
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2045
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2046 2047 2048 2049
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2050 2051
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2052 2053 2054
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2055
    if (keyX_ == keyBNY_) {
2056
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2057
    } else if (keyY_ == keyBNY_) {
2058
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2059
    }
H
update  
hjchen2 已提交
2060
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2061
  }
2062
  GType *Bias() const { return bias_; }
2063 2064 2065

  const int &Axis() const { return axis_; }

2066
  const GType *InputBias() const { return input_bias_; }
2067

2068
  const GType *InputMean() const { return input_mean_; }
2069

2070
  const GType *InputScale() const { return input_scale_; }
2071

2072
  const GType *InputVariance() const { return input_variance_; }
2073 2074 2075 2076 2077

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2078
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2079

2080
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2081

2082
  const GType *NewScale() const { return new_scale_; }
2083

2084
  const GType *NewBias() const { return new_bias_; }
2085 2086

 protected:
2087
  GType *bias_;
2088
  int axis_;
2089 2090 2091 2092
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2093 2094
  float epsilon_;
  float momentum_;
2095 2096
  GType *new_bias_;
  GType *new_scale_;
2097 2098 2099
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2100
};
2101
#endif
E
eclipsess 已提交
2102

Z
zhangyang 已提交
2103
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2104
template <typename Dtype>
2105
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2106 2107 2108
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2109 2110 2111
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2112
                    Scope *scope)
2113
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2114 2115 2116 2117
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2118 2119
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2120
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2121 2122
  }

2123
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2124

2125
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2126

2127
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2128

2129
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2130 2131 2132 2133 2134

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2135
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2136

2137
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2138

2139
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2140

2141
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2142 2143

 protected:
2144 2145 2146 2147
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2148 2149
  float epsilon_;
  float momentum_;
2150 2151
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2152 2153 2154
};
#endif

2155
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2156
template <typename Dtype>
2157
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2158 2159 2160
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2161 2162 2163
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2164
                       const AttributeMap &attrs, Scope *scope)
2165
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2166
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2167
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2168 2169 2170 2171
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2172 2173
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2174
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2175
  }
2176
  GType *Bias() const { return bias_; }
2177 2178 2179

  const int &Axis() const { return axis_; }

2180
  const GType *InputBias() const { return input_bias_; }
2181

2182
  const GType *InputMean() const { return input_mean_; }
2183

2184
  const GType *InputScale() const { return input_scale_; }
2185

2186
  const GType *InputVariance() const { return input_variance_; }
2187 2188 2189 2190 2191

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2192
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2193

2194
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2195

2196
  const GType *NewScale() const { return new_scale_; }
2197

2198
  const GType *NewBias() const { return new_bias_; }
2199 2200

 protected:
2201
  GType *bias_;
2202
  int axis_;
2203 2204 2205 2206
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2207 2208
  float epsilon_;
  float momentum_;
2209 2210
  GType *new_bias_;
  GType *new_scale_;
2211
};
E
eclipsess 已提交
2212
#endif
Y
Yao,kun 已提交
2213

E
eclipsess 已提交
2214
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2215
template <typename Dtype>
2216
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2217 2218 2219
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2220 2221 2222
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2223
                          const AttributeMap &attrs, Scope *scope)
2224
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2225 2226 2227 2228
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2229 2230
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2231
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2232 2233
  }

2234
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2235

2236
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2237

2238
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2239

2240
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2241 2242 2243 2244 2245

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2246
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2247

2248
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2249

2250
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2251

2252
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2253 2254

 protected:
2255 2256 2257 2258
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2259 2260
  float epsilon_;
  float momentum_;
2261 2262
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2263 2264 2265 2266
};

#endif

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2283
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2284
template <typename Dtype>
2285
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2286 2287 2288
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2289 2290 2291
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2292
                        const AttributeMap &attrs, Scope *scope)
2293
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2294 2295 2296 2297
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2298 2299
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2300
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2301 2302
  }

2303
  const GType *InputBias() const { return input_bias_; }
2304

2305
  const GType *InputMean() const { return input_mean_; }
2306

2307
  const GType *InputScale() const { return input_scale_; }
2308

2309
  const GType *InputVariance() const { return input_variance_; }
2310 2311 2312 2313 2314

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2315
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2316

2317
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2318

2319
  const GType *NewScale() const { return new_scale_; }
2320

2321
  const GType *NewBias() const { return new_bias_; }
2322 2323

 protected:
2324 2325 2326 2327
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2328 2329
  float epsilon_;
  float momentum_;
2330 2331
  GType *new_bias_;
  GType *new_scale_;
2332 2333 2334
};
#endif

Y
Yao,kun 已提交
2335
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2336
template <typename Dtype>
Y
Yao,kun 已提交
2337
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2338 2339 2340
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2341 2342 2343
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2344 2345 2346 2347
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2348 2349 2350 2351 2352
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2353
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2354

E
eclipsess 已提交
2355
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2356 2357 2358 2359 2360 2361 2362 2363

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2364 2365
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2366 2367 2368 2369
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2370
#endif
Y
Yao,kun 已提交
2371

2372
#ifdef DROPOUT_OP
N
nhzlx 已提交
2373
template <typename Dtype>
Y
Yao,kun 已提交
2374
class DropoutParam : public OpParam {
N
nhzlx 已提交
2375 2376 2377
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2378 2379
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2380 2381 2382 2383
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2384 2385

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2386 2387
  }

2388
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2389

2390
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2391

Y
yangfei 已提交
2392 2393
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2394
 private:
2395 2396
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2397
  float dropout_prob_;
Y
Yao,kun 已提交
2398
};
2399
#endif
Y
Yao,kun 已提交
2400

N
nhzlx 已提交
2401
template <typename Dtype>
L
liuruilong 已提交
2402
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2403 2404 2405
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2406 2407 2408
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2409 2410 2411 2412
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2413
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2414
    if (outputs.count("Output")) {
2415
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2416
    }
L
liuruilong 已提交
2417 2418 2419 2420 2421 2422
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2423
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2424

2425
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2426

2427
  GType *Output() const { return output_; }
L
liuruilong 已提交
2428 2429 2430 2431 2432 2433 2434 2435 2436

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2446
 private:
2447 2448 2449
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2450 2451 2452 2453
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2454
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2455 2456 2457 2458 2459

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2460
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2461 2462 2463

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2464 2465 2466
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2467
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2468 2469 2470
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2471
#endif
L
liuruilong 已提交
2472
};
Z
zhangyang 已提交
2473

qnqinan's avatar
qnqinan 已提交
2474 2475 2476 2477 2478
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2479 2480

 public:
qnqinan's avatar
qnqinan 已提交
2481
  FusionDeconvAddParam(const VariableNameMap &inputs,
2482
                       const VariableNameMap &outputs,
2483
                       const AttributeMap &attrs, Scope *scope)
2484
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2485
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2486
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2487
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2488
  }
2489
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2490 2491 2492

  const int &Axis() const { return axis_; }

2493
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2494 2495

 protected:
2496
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2497
  int axis_;
2498
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2499 2500 2501 2502 2503 2504 2505
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2506 2507 2508 2509 2510 2511 2512 2513 2514
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2515
                         const AttributeMap &attrs, Scope *scope)
2516
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2517 2518 2519 2520 2521
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2522 2523 2524 2525 2526 2527 2528
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2572
                          const AttributeMap &attrs, Scope *scope)
2573
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2574 2575 2576 2577 2578
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2579 2580 2581 2582 2583 2584
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2628
                             const AttributeMap &attrs, Scope *scope)
2629
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2630 2631 2632 2633 2634
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2676

Z
zhangyang 已提交
2677 2678 2679 2680 2681
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2696 2697 2698 2699 2700 2701 2702 2703
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2704
    output_batch_reset_hidden_prev_ =
2705 2706 2707
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2708 2709
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2743 2744 2745 2746 2747 2748 2749
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2750 2751 2752 2753 2754 2755 2756 2757
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2758
    output_reset_hidden_prev_ =
2759 2760
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2789 2790 2791 2792 2793 2794 2795 2796
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2797 2798 2799 2800
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2801
    axis = GetAttr<int>("axis", attrs);
2802
  }
2803 2804
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2805
  const int &Axis() const { return axis; }
2806 2807

 private:
2808 2809
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2810
  int axis;
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2822 2823 2824 2825
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2826
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2827 2828 2829 2830 2831 2832
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2833
  }
2834
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2835 2836 2837 2838 2839
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2840 2841

 private:
2842
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2843
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2844
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2845 2846 2847
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2848 2849 2850 2851 2852 2853 2854 2855 2856
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2869 2870 2871 2872 2873
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2874 2875
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2876
  }
2877
  const GType *InputX() const { return input_x_; }
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
2910 2911
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2912 2913
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2914 2915

 private:
2916 2917 2918
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2919 2920
  int out_h_;
  int out_w_;
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2932 2933 2934 2935
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2936
  }
2937 2938
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2939 2940

 private:
2941 2942
  GType *input_;
  GType *out_;
2943 2944 2945
};
#endif

H
hjchen2 已提交
2946 2947 2948 2949 2950 2951 2952 2953
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2954 2955 2956 2957 2958
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2959 2960 2961 2962
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
2963 2964 2965
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2978 2979 2980 2981
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2982 2983 2984 2985 2986
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
2987 2988
  GType *input_;
  GType *output_;
H
hjchen2 已提交
2989 2990 2991 2992 2993
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2994
#ifdef QUANT_OP
2995
template <typename Dtype>
2996 2997 2998 2999 3000
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3001
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3002 3003 3004 3005
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3006 3007
    // online
    // scale = max(abs(x))
3008
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3009
    // offline
3010
    if (inputs.count("InScale")) {
3011
      offline_ = true;
3012
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3013 3014
    }
    // x = round(scale * x)
3015 3016
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3017
    }
3018 3019 3020 3021
  }

 public:
  // op input
3022
  GType *input_;
3023
  // op output
3024
  GType *output_;
3025
  GType *online_scale_;
3026
  // quantize offline scale
3027
  GType *offline_scale_;
3028 3029
  // if offine scale or not
  bool offline_ = false;
3030
  // round method type
3031 3032
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3033
};
3034
#endif
3035

3036
#ifdef DEQUANT_OP
3037
template <typename Dtype>
3038 3039 3040 3041 3042
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3043
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3044 3045 3046 3047 3048
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3049
    // dequantization is performed as x = x / static_scale / online_scale
3050 3051
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3052
    } else {
3053
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3054 3055 3056 3057 3058
    }
  }

 public:
  // op input
3059
  GType *input_;
3060
  // op output
3061
  GType *output_;
3062
  GType *activation_scale_;
3063 3064
  float weight_scale_;
};
3065
#endif
3066

3067 3068 3069 3070
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3071
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3072
template <typename Dtype>
3073
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3074 3075 3076 3077
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3078 3079
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3080
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3081 3082
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3083 3084 3085 3086
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3087 3088 3089 3090 3091
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3092 3093 3094 3095
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3096
  float epsilon_;
3097 3098 3099
};
#endif

3100 3101 3102 3103
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3104 3105 3106 3107 3108 3109 3110 3111
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3112
                          const AttributeMap &attrs, Scope *scope)
3113 3114 3115
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3116
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3117 3118 3119 3120 3121
  }

 public:
  // elementwise add
  int axis_;
3122
  GType *bias_;
3123 3124 3125
};
#endif

3126 3127 3128 3129 3130 3131 3132 3133 3134
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3135
                               const AttributeMap &attrs, Scope *scope)
3136 3137
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3138
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3139
    // offline
3140 3141
    if (inputs.count("InScale")) {
      offline_ = true;
3142
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3143 3144 3145 3146 3147 3148 3149 3150
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3151
  GType *online_scale_;
3152
  // quantize offline scale
3153
  GType *offline_scale_;
3154 3155
  // if offine scale or not
  bool offline_ = false;
3156 3157 3158 3159 3160 3161
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3162 3163 3164 3165 3166 3167 3168 3169 3170
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3171 3172 3173 3174 3175
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3199 3200 3201 3202
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3203 3204
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3205
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3216 3217 3218 3219 3220 3221 3222 3223
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3224 3225 3226 3227
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3228 3229
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3230
      input_y_ = InputYFrom<GType>(inputs, *scope);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3244 3245 3246 3247 3248 3249 3250 3251
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3252 3253 3254 3255 3256
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3268
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3269
template <typename Dtype>
Z
zhaojiaying01 已提交
3270
class LogicalBinaryParam : public OpParam {
3271 3272 3273 3274
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3275 3276
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3277 3278 3279 3280 3281
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3293
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3294 3295 3296

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3297
class LogicalUnaryParam : public OpParam {
3298 3299 3300 3301
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3302 3303
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3304 3305 3306 3307
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3319 3320 3321
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3322 3323 3324
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3325 3326 3327
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3328 3329
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3330 3331 3332
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3333 3334 3335
  }

 public:
H
hjchen2 已提交
3336 3337 3338
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3339 3340 3341 3342 3343 3344
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3345 3346 3347
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3348 3349 3350
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3351 3352
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3353 3354 3355
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3356 3357 3358
  }

 public:
H
hjchen2 已提交
3359 3360 3361
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3362 3363 3364
};
#endif

Z
zhaojiaying01 已提交
3365 3366 3367 3368 3369 3370 3371 3372
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3373 3374 3375 3376
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3396
                 const AttributeMap &attrs, Scope *scope)
3397
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3398 3399
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3400
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3401 3402 3403 3404
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3405
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3406 3407 3408 3409

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3410
  float step_;
Z
zhaojiaying01 已提交
3411 3412
};
#endif  // INCREMENT_OP
3413 3414 3415 3416 3417 3418 3419 3420
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3421 3422 3423 3424
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3425 3426 3427 3428 3429 3430 3431 3432 3433
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
H
Huie 已提交
3434 3435 3436 3437 3438
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3439

H
Huie 已提交
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3455 3456
}  // namespace operators
}  // namespace paddle_mobile