sched_fair.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
 *
 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *
 *  Interactivity improvements by Mike Galbraith
 *  (C) 2007 Mike Galbraith <efault@gmx.de>
 *
 *  Various enhancements by Dmitry Adamushko.
 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
 *
 *  Group scheduling enhancements by Srivatsa Vaddagiri
 *  Copyright IBM Corporation, 2007
 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
 *
 *  Scaled math optimizations by Thomas Gleixner
 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 19 20
 *
 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 22
 */

A
Arjan van de Ven 已提交
23 24
#include <linux/latencytop.h>

25
/*
26
 * Targeted preemption latency for CPU-bound tasks:
27
 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28
 *
29
 * NOTE: this latency value is not the same as the concept of
I
Ingo Molnar 已提交
30 31 32
 * 'timeslice length' - timeslices in CFS are of variable length
 * and have no persistent notion like in traditional, time-slice
 * based scheduling concepts.
33
 *
I
Ingo Molnar 已提交
34 35
 * (to see the precise effective timeslice length of your workload,
 *  run vmstat and monitor the context-switches (cs) field)
36
 */
I
Ingo Molnar 已提交
37
unsigned int sysctl_sched_latency = 20000000ULL;
38 39

/*
40
 * Minimal preemption granularity for CPU-bound tasks:
41
 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42
 */
43
unsigned int sysctl_sched_min_granularity = 4000000ULL;
44 45

/*
46 47
 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
 */
48
static unsigned int sched_nr_latency = 5;
49 50 51 52

/*
 * After fork, child runs first. (default) If set to 0 then
 * parent will (try to) run first.
53
 */
54
const_debug unsigned int sysctl_sched_child_runs_first = 1;
55

56 57 58 59 60 61 62 63
/*
 * sys_sched_yield() compat mode
 *
 * This option switches the agressive yield implementation of the
 * old scheduler back on.
 */
unsigned int __read_mostly sysctl_sched_compat_yield;

64 65
/*
 * SCHED_OTHER wake-up granularity.
66
 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 68 69 70 71
 *
 * This option delays the preemption effects of decoupled workloads
 * and reduces their over-scheduling. Synchronous workloads will still
 * have immediate wakeup/sleep latencies.
 */
72
unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73

74 75
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;

76 77
static const struct sched_class fair_sched_class;

78 79 80 81
/**************************************************************
 * CFS operations on generic schedulable entities:
 */

P
Peter Zijlstra 已提交
82 83 84 85 86
static inline struct task_struct *task_of(struct sched_entity *se)
{
	return container_of(se, struct task_struct, se);
}

87
#ifdef CONFIG_FAIR_GROUP_SCHED
88

89
/* cpu runqueue to which this cfs_rq is attached */
90 91
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
92
	return cfs_rq->rq;
93 94
}

95 96
/* An entity is a task if it doesn't "own" a runqueue */
#define entity_is_task(se)	(!se->my_q)
97

P
Peter Zijlstra 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/* Walk up scheduling entities hierarchy */
#define for_each_sched_entity(se) \
		for (; se; se = se->parent)

static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
{
	return p->se.cfs_rq;
}

/* runqueue on which this entity is (to be) queued */
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	return se->cfs_rq;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return grp->my_q;
}

/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
 * another cpu ('this_cpu')
 */
static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return cfs_rq->tg->cfs_rq[this_cpu];
}

/* Iterate thr' all leaf cfs_rq's on a runqueue */
#define for_each_leaf_cfs_rq(rq, cfs_rq) \
	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)

/* Do the two (enqueued) entities belong to the same group ? */
static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	if (se->cfs_rq == pse->cfs_rq)
		return 1;

	return 0;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return se->parent;
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
/* return depth at which a sched entity is present in the hierarchy */
static inline int depth_se(struct sched_entity *se)
{
	int depth = 0;

	for_each_sched_entity(se)
		depth++;

	return depth;
}

static void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
	int se_depth, pse_depth;

	/*
	 * preemption test can be made between sibling entities who are in the
	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
	 * both tasks until we find their ancestors who are siblings of common
	 * parent.
	 */

	/* First walk up until both entities are at same depth */
	se_depth = depth_se(*se);
	pse_depth = depth_se(*pse);

	while (se_depth > pse_depth) {
		se_depth--;
		*se = parent_entity(*se);
	}

	while (pse_depth > se_depth) {
		pse_depth--;
		*pse = parent_entity(*pse);
	}

	while (!is_same_group(*se, *pse)) {
		*se = parent_entity(*se);
		*pse = parent_entity(*pse);
	}
}

189
#else	/* CONFIG_FAIR_GROUP_SCHED */
190

191 192 193
static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
{
	return container_of(cfs_rq, struct rq, cfs);
194 195 196 197
}

#define entity_is_task(se)	1

P
Peter Zijlstra 已提交
198 199
#define for_each_sched_entity(se) \
		for (; se; se = NULL)
200

P
Peter Zijlstra 已提交
201
static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202
{
P
Peter Zijlstra 已提交
203
	return &task_rq(p)->cfs;
204 205
}

P
Peter Zijlstra 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
{
	struct task_struct *p = task_of(se);
	struct rq *rq = task_rq(p);

	return &rq->cfs;
}

/* runqueue "owned" by this group */
static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
{
	return NULL;
}

static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
{
	return &cpu_rq(this_cpu)->cfs;
}

#define for_each_leaf_cfs_rq(rq, cfs_rq) \
		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)

static inline int
is_same_group(struct sched_entity *se, struct sched_entity *pse)
{
	return 1;
}

static inline struct sched_entity *parent_entity(struct sched_entity *se)
{
	return NULL;
}

239 240 241 242 243
static inline void
find_matching_se(struct sched_entity **se, struct sched_entity **pse)
{
}

P
Peter Zijlstra 已提交
244 245
#endif	/* CONFIG_FAIR_GROUP_SCHED */

246 247 248 249 250

/**************************************************************
 * Scheduling class tree data structure manipulation methods:
 */

251
static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252
{
253 254
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta > 0)
255 256 257 258 259
		min_vruntime = vruntime;

	return min_vruntime;
}

260
static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
P
Peter Zijlstra 已提交
261 262 263 264 265 266 267 268
{
	s64 delta = (s64)(vruntime - min_vruntime);
	if (delta < 0)
		min_vruntime = vruntime;

	return min_vruntime;
}

269
static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270
{
271
	return se->vruntime - cfs_rq->min_vruntime;
272 273
}

274 275 276 277 278 279 280 281 282 283 284 285
static void update_min_vruntime(struct cfs_rq *cfs_rq)
{
	u64 vruntime = cfs_rq->min_vruntime;

	if (cfs_rq->curr)
		vruntime = cfs_rq->curr->vruntime;

	if (cfs_rq->rb_leftmost) {
		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
						   struct sched_entity,
						   run_node);

P
Peter Zijlstra 已提交
286
		if (!cfs_rq->curr)
287 288 289 290 291 292 293 294
			vruntime = se->vruntime;
		else
			vruntime = min_vruntime(vruntime, se->vruntime);
	}

	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
}

295 296 297
/*
 * Enqueue an entity into the rb-tree:
 */
298
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 300 301 302
{
	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
	struct rb_node *parent = NULL;
	struct sched_entity *entry;
303
	s64 key = entity_key(cfs_rq, se);
304 305 306 307 308 309 310 311 312 313 314 315
	int leftmost = 1;

	/*
	 * Find the right place in the rbtree:
	 */
	while (*link) {
		parent = *link;
		entry = rb_entry(parent, struct sched_entity, run_node);
		/*
		 * We dont care about collisions. Nodes with
		 * the same key stay together.
		 */
316
		if (key < entity_key(cfs_rq, entry)) {
317 318 319 320 321 322 323 324 325 326 327
			link = &parent->rb_left;
		} else {
			link = &parent->rb_right;
			leftmost = 0;
		}
	}

	/*
	 * Maintain a cache of leftmost tree entries (it is frequently
	 * used):
	 */
328
	if (leftmost)
I
Ingo Molnar 已提交
329
		cfs_rq->rb_leftmost = &se->run_node;
330 331 332 333 334

	rb_link_node(&se->run_node, parent, link);
	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
}

335
static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336
{
P
Peter Zijlstra 已提交
337 338 339 340 341 342
	if (cfs_rq->rb_leftmost == &se->run_node) {
		struct rb_node *next_node;

		next_node = rb_next(&se->run_node);
		cfs_rq->rb_leftmost = next_node;
	}
I
Ingo Molnar 已提交
343

344 345 346 347 348
	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
}

static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
{
349 350 351 352 353 354
	struct rb_node *left = cfs_rq->rb_leftmost;

	if (!left)
		return NULL;

	return rb_entry(left, struct sched_entity, run_node);
355 356
}

357
static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358
{
359
	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360

361 362
	if (!last)
		return NULL;
363 364

	return rb_entry(last, struct sched_entity, run_node);
365 366
}

367 368 369 370
/**************************************************************
 * Scheduling class statistics methods:
 */

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_SCHED_DEBUG
int sched_nr_latency_handler(struct ctl_table *table, int write,
		struct file *filp, void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);

	if (ret || !write)
		return ret;

	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
					sysctl_sched_min_granularity);

	return 0;
}
#endif
387

388
/*
389
 * delta /= w
390 391 392 393
 */
static inline unsigned long
calc_delta_fair(unsigned long delta, struct sched_entity *se)
{
394 395
	if (unlikely(se->load.weight != NICE_0_LOAD))
		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396 397 398 399

	return delta;
}

400 401 402 403 404 405 406 407
/*
 * The idea is to set a period in which each task runs once.
 *
 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
 * this period because otherwise the slices get too small.
 *
 * p = (nr <= nl) ? l : l*nr/nl
 */
408 409 410
static u64 __sched_period(unsigned long nr_running)
{
	u64 period = sysctl_sched_latency;
411
	unsigned long nr_latency = sched_nr_latency;
412 413

	if (unlikely(nr_running > nr_latency)) {
414
		period = sysctl_sched_min_granularity;
415 416 417 418 419 420
		period *= nr_running;
	}

	return period;
}

421 422 423 424
/*
 * We calculate the wall-time slice from the period by taking a part
 * proportional to the weight.
 *
425
 * s = p*P[w/rw]
426
 */
P
Peter Zijlstra 已提交
427
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428
{
M
Mike Galbraith 已提交
429
	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430

M
Mike Galbraith 已提交
431
	for_each_sched_entity(se) {
L
Lin Ming 已提交
432
		struct load_weight *load;
433
		struct load_weight lw;
L
Lin Ming 已提交
434 435 436

		cfs_rq = cfs_rq_of(se);
		load = &cfs_rq->load;
437

M
Mike Galbraith 已提交
438
		if (unlikely(!se->on_rq)) {
439
			lw = cfs_rq->load;
M
Mike Galbraith 已提交
440 441 442 443 444 445 446

			update_load_add(&lw, se->load.weight);
			load = &lw;
		}
		slice = calc_delta_mine(slice, se->load.weight, load);
	}
	return slice;
447 448
}

449
/*
450
 * We calculate the vruntime slice of a to be inserted task
451
 *
452
 * vs = s/w
453
 */
454
static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
455
{
456
	return calc_delta_fair(sched_slice(cfs_rq, se), se);
457 458
}

459 460 461 462 463
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
static inline void
I
Ingo Molnar 已提交
464 465
__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
	      unsigned long delta_exec)
466
{
467
	unsigned long delta_exec_weighted;
468

469
	schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
470 471

	curr->sum_exec_runtime += delta_exec;
472
	schedstat_add(cfs_rq, exec_clock, delta_exec);
473
	delta_exec_weighted = calc_delta_fair(delta_exec, curr);
I
Ingo Molnar 已提交
474
	curr->vruntime += delta_exec_weighted;
475
	update_min_vruntime(cfs_rq);
476 477
}

478
static void update_curr(struct cfs_rq *cfs_rq)
479
{
480
	struct sched_entity *curr = cfs_rq->curr;
I
Ingo Molnar 已提交
481
	u64 now = rq_of(cfs_rq)->clock;
482 483 484 485 486 487 488 489 490 491
	unsigned long delta_exec;

	if (unlikely(!curr))
		return;

	/*
	 * Get the amount of time the current task was running
	 * since the last time we changed load (this cannot
	 * overflow on 32 bits):
	 */
I
Ingo Molnar 已提交
492
	delta_exec = (unsigned long)(now - curr->exec_start);
P
Peter Zijlstra 已提交
493 494
	if (!delta_exec)
		return;
495

I
Ingo Molnar 已提交
496 497
	__update_curr(cfs_rq, curr, delta_exec);
	curr->exec_start = now;
498 499 500 501 502

	if (entity_is_task(curr)) {
		struct task_struct *curtask = task_of(curr);

		cpuacct_charge(curtask, delta_exec);
503
		account_group_exec_runtime(curtask, delta_exec);
504
	}
505 506 507
}

static inline void
508
update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
509
{
510
	schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
511 512 513 514 515
}

/*
 * Task is being enqueued - update stats:
 */
516
static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
517 518 519 520 521
{
	/*
	 * Are we enqueueing a waiting task? (for current tasks
	 * a dequeue/enqueue event is a NOP)
	 */
522
	if (se != cfs_rq->curr)
523
		update_stats_wait_start(cfs_rq, se);
524 525 526
}

static void
527
update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
528
{
529 530
	schedstat_set(se->wait_max, max(se->wait_max,
			rq_of(cfs_rq)->clock - se->wait_start));
531 532 533
	schedstat_set(se->wait_count, se->wait_count + 1);
	schedstat_set(se->wait_sum, se->wait_sum +
			rq_of(cfs_rq)->clock - se->wait_start);
I
Ingo Molnar 已提交
534
	schedstat_set(se->wait_start, 0);
535 536 537
}

static inline void
538
update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
539 540 541 542 543
{
	/*
	 * Mark the end of the wait period if dequeueing a
	 * waiting task:
	 */
544
	if (se != cfs_rq->curr)
545
		update_stats_wait_end(cfs_rq, se);
546 547 548 549 550 551
}

/*
 * We are picking a new current task - update its stats:
 */
static inline void
552
update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 554 555 556
{
	/*
	 * We are starting a new run period:
	 */
557
	se->exec_start = rq_of(cfs_rq)->clock;
558 559 560 561 562 563
}

/**************************************************
 * Scheduling class queueing methods:
 */

564 565 566 567 568 569 570 571 572 573 574 575 576
#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
static void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
	cfs_rq->task_weight += weight;
}
#else
static inline void
add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
{
}
#endif

577 578 579 580
static void
account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_add(&cfs_rq->load, se->load.weight);
581 582
	if (!parent_entity(se))
		inc_cpu_load(rq_of(cfs_rq), se->load.weight);
583
	if (entity_is_task(se)) {
584
		add_cfs_task_weight(cfs_rq, se->load.weight);
585 586
		list_add(&se->group_node, &cfs_rq->tasks);
	}
587 588 589 590 591 592 593 594
	cfs_rq->nr_running++;
	se->on_rq = 1;
}

static void
account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	update_load_sub(&cfs_rq->load, se->load.weight);
595 596
	if (!parent_entity(se))
		dec_cpu_load(rq_of(cfs_rq), se->load.weight);
597
	if (entity_is_task(se)) {
598
		add_cfs_task_weight(cfs_rq, -se->load.weight);
599 600
		list_del_init(&se->group_node);
	}
601 602 603 604
	cfs_rq->nr_running--;
	se->on_rq = 0;
}

605
static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 607 608
{
#ifdef CONFIG_SCHEDSTATS
	if (se->sleep_start) {
609
		u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
A
Arjan van de Ven 已提交
610
		struct task_struct *tsk = task_of(se);
611 612 613 614 615 616 617 618 619

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->sleep_max))
			se->sleep_max = delta;

		se->sleep_start = 0;
		se->sum_sleep_runtime += delta;
A
Arjan van de Ven 已提交
620 621

		account_scheduler_latency(tsk, delta >> 10, 1);
622 623
	}
	if (se->block_start) {
624
		u64 delta = rq_of(cfs_rq)->clock - se->block_start;
A
Arjan van de Ven 已提交
625
		struct task_struct *tsk = task_of(se);
626 627 628 629 630 631 632 633 634

		if ((s64)delta < 0)
			delta = 0;

		if (unlikely(delta > se->block_max))
			se->block_max = delta;

		se->block_start = 0;
		se->sum_sleep_runtime += delta;
I
Ingo Molnar 已提交
635 636 637 638 639 640 641

		/*
		 * Blocking time is in units of nanosecs, so shift by 20 to
		 * get a milliseconds-range estimation of the amount of
		 * time that the task spent sleeping:
		 */
		if (unlikely(prof_on == SLEEP_PROFILING)) {
I
Ingo Molnar 已提交
642

I
Ingo Molnar 已提交
643 644 645
			profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
				     delta >> 20);
		}
A
Arjan van de Ven 已提交
646
		account_scheduler_latency(tsk, delta >> 10, 0);
647 648 649 650
	}
#endif
}

P
Peter Zijlstra 已提交
651 652 653 654 655 656 657 658 659 660 661 662 663
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
#ifdef CONFIG_SCHED_DEBUG
	s64 d = se->vruntime - cfs_rq->min_vruntime;

	if (d < 0)
		d = -d;

	if (d > 3*sysctl_sched_latency)
		schedstat_inc(cfs_rq, nr_spread_over);
#endif
}

664 665 666
static void
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
{
667
	u64 vruntime = cfs_rq->min_vruntime;
P
Peter Zijlstra 已提交
668

669 670 671 672 673 674
	/*
	 * The 'current' period is already promised to the current tasks,
	 * however the extra weight of the new task will slow them down a
	 * little, place the new task so that it fits in the slot that
	 * stays open at the end.
	 */
P
Peter Zijlstra 已提交
675
	if (initial && sched_feat(START_DEBIT))
676
		vruntime += sched_vslice(cfs_rq, se);
677

I
Ingo Molnar 已提交
678
	if (!initial) {
679
		/* sleeps upto a single latency don't count. */
680 681 682 683
		if (sched_feat(NEW_FAIR_SLEEPERS)) {
			unsigned long thresh = sysctl_sched_latency;

			/*
684 685 686 687
			 * Convert the sleeper threshold into virtual time.
			 * SCHED_IDLE is a special sub-class.  We care about
			 * fairness only relative to other SCHED_IDLE tasks,
			 * all of which have the same weight.
688
			 */
689 690
			if (sched_feat(NORMALIZED_SLEEPER) &&
					task_of(se)->policy != SCHED_IDLE)
691 692 693 694
				thresh = calc_delta_fair(thresh, se);

			vruntime -= thresh;
		}
695

696 697
		/* ensure we never gain time by being placed backwards. */
		vruntime = max_vruntime(se->vruntime, vruntime);
698 699
	}

P
Peter Zijlstra 已提交
700
	se->vruntime = vruntime;
701 702
}

703
static void
704
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
705 706
{
	/*
707
	 * Update run-time statistics of the 'current'.
708
	 */
709
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
710
	account_entity_enqueue(cfs_rq, se);
711

I
Ingo Molnar 已提交
712
	if (wakeup) {
713
		place_entity(cfs_rq, se, 0);
714
		enqueue_sleeper(cfs_rq, se);
I
Ingo Molnar 已提交
715
	}
716

717
	update_stats_enqueue(cfs_rq, se);
P
Peter Zijlstra 已提交
718
	check_spread(cfs_rq, se);
719 720
	if (se != cfs_rq->curr)
		__enqueue_entity(cfs_rq, se);
721 722
}

P
Peter Zijlstra 已提交
723
static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
P
Peter Zijlstra 已提交
724 725 726 727 728 729 730 731
{
	if (cfs_rq->last == se)
		cfs_rq->last = NULL;

	if (cfs_rq->next == se)
		cfs_rq->next = NULL;
}

P
Peter Zijlstra 已提交
732 733 734 735 736 737
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
	for_each_sched_entity(se)
		__clear_buddies(cfs_rq_of(se), se);
}

738
static void
739
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
740
{
741 742 743 744 745
	/*
	 * Update run-time statistics of the 'current'.
	 */
	update_curr(cfs_rq);

746
	update_stats_dequeue(cfs_rq, se);
747
	if (sleep) {
P
Peter Zijlstra 已提交
748
#ifdef CONFIG_SCHEDSTATS
749 750 751 752
		if (entity_is_task(se)) {
			struct task_struct *tsk = task_of(se);

			if (tsk->state & TASK_INTERRUPTIBLE)
753
				se->sleep_start = rq_of(cfs_rq)->clock;
754
			if (tsk->state & TASK_UNINTERRUPTIBLE)
755
				se->block_start = rq_of(cfs_rq)->clock;
756
		}
757
#endif
P
Peter Zijlstra 已提交
758 759
	}

P
Peter Zijlstra 已提交
760
	clear_buddies(cfs_rq, se);
P
Peter Zijlstra 已提交
761

762
	if (se != cfs_rq->curr)
763 764
		__dequeue_entity(cfs_rq, se);
	account_entity_dequeue(cfs_rq, se);
765
	update_min_vruntime(cfs_rq);
766 767 768 769 770
}

/*
 * Preempt the current task with a newly woken task if needed:
 */
771
static void
I
Ingo Molnar 已提交
772
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
773
{
774 775
	unsigned long ideal_runtime, delta_exec;

P
Peter Zijlstra 已提交
776
	ideal_runtime = sched_slice(cfs_rq, curr);
777
	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
778
	if (delta_exec > ideal_runtime) {
779
		resched_task(rq_of(cfs_rq)->curr);
780 781 782 783 784 785
		/*
		 * The current task ran long enough, ensure it doesn't get
		 * re-elected due to buddy favours.
		 */
		clear_buddies(cfs_rq, curr);
	}
786 787
}

788
static void
789
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
790
{
791 792 793 794 795 796 797 798 799 800 801
	/* 'current' is not kept within the tree. */
	if (se->on_rq) {
		/*
		 * Any task has to be enqueued before it get to execute on
		 * a CPU. So account for the time it spent waiting on the
		 * runqueue.
		 */
		update_stats_wait_end(cfs_rq, se);
		__dequeue_entity(cfs_rq, se);
	}

802
	update_stats_curr_start(cfs_rq, se);
803
	cfs_rq->curr = se;
I
Ingo Molnar 已提交
804 805 806 807 808 809
#ifdef CONFIG_SCHEDSTATS
	/*
	 * Track our maximum slice length, if the CPU's load is at
	 * least twice that of our own weight (i.e. dont track it
	 * when there are only lesser-weight tasks around):
	 */
810
	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
I
Ingo Molnar 已提交
811 812 813 814
		se->slice_max = max(se->slice_max,
			se->sum_exec_runtime - se->prev_sum_exec_runtime);
	}
#endif
815
	se->prev_sum_exec_runtime = se->sum_exec_runtime;
816 817
}

818 819 820
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);

821
static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
822
{
823 824
	struct sched_entity *se = __pick_next_entity(cfs_rq);

P
Peter Zijlstra 已提交
825 826
	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
		return cfs_rq->next;
827

P
Peter Zijlstra 已提交
828 829 830 831
	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
		return cfs_rq->last;

	return se;
832 833
}

834
static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
835 836 837 838 839 840
{
	/*
	 * If still on the runqueue then deactivate_task()
	 * was not called and update_curr() has to be done:
	 */
	if (prev->on_rq)
841
		update_curr(cfs_rq);
842

P
Peter Zijlstra 已提交
843
	check_spread(cfs_rq, prev);
844
	if (prev->on_rq) {
845
		update_stats_wait_start(cfs_rq, prev);
846 847 848
		/* Put 'current' back into the tree. */
		__enqueue_entity(cfs_rq, prev);
	}
849
	cfs_rq->curr = NULL;
850 851
}

P
Peter Zijlstra 已提交
852 853
static void
entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
854 855
{
	/*
856
	 * Update run-time statistics of the 'current'.
857
	 */
858
	update_curr(cfs_rq);
859

P
Peter Zijlstra 已提交
860 861 862 863 864
#ifdef CONFIG_SCHED_HRTICK
	/*
	 * queued ticks are scheduled to match the slice, so don't bother
	 * validating it and just reschedule.
	 */
865 866 867 868
	if (queued) {
		resched_task(rq_of(cfs_rq)->curr);
		return;
	}
P
Peter Zijlstra 已提交
869 870 871 872 873 874 875 876
	/*
	 * don't let the period tick interfere with the hrtick preemption
	 */
	if (!sched_feat(DOUBLE_TICK) &&
			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
		return;
#endif

877
	if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
I
Ingo Molnar 已提交
878
		check_preempt_tick(cfs_rq, curr);
879 880 881 882 883 884
}

/**************************************************
 * CFS operations on tasks:
 */

P
Peter Zijlstra 已提交
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
#ifdef CONFIG_SCHED_HRTICK
static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
	struct sched_entity *se = &p->se;
	struct cfs_rq *cfs_rq = cfs_rq_of(se);

	WARN_ON(task_rq(p) != rq);

	if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
		u64 slice = sched_slice(cfs_rq, se);
		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
		s64 delta = slice - ran;

		if (delta < 0) {
			if (rq->curr == p)
				resched_task(p);
			return;
		}

		/*
		 * Don't schedule slices shorter than 10000ns, that just
		 * doesn't make sense. Rely on vruntime for fairness.
		 */
908
		if (rq->curr != p)
909
			delta = max_t(s64, 10000LL, delta);
P
Peter Zijlstra 已提交
910

911
		hrtick_start(rq, delta);
P
Peter Zijlstra 已提交
912 913
	}
}
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929

/*
 * called from enqueue/dequeue and updates the hrtick when the
 * current task is from our class and nr_running is low enough
 * to matter.
 */
static void hrtick_update(struct rq *rq)
{
	struct task_struct *curr = rq->curr;

	if (curr->sched_class != &fair_sched_class)
		return;

	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
		hrtick_start_fair(rq, curr);
}
930
#else /* !CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
931 932 933 934
static inline void
hrtick_start_fair(struct rq *rq, struct task_struct *p)
{
}
935 936 937 938

static inline void hrtick_update(struct rq *rq)
{
}
P
Peter Zijlstra 已提交
939 940
#endif

941 942 943 944 945
/*
 * The enqueue_task method is called before nr_running is
 * increased. Here we update the fair scheduling stats and
 * then put the task into the rbtree:
 */
946
static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
947 948
{
	struct cfs_rq *cfs_rq;
949
	struct sched_entity *se = &p->se;
950 951

	for_each_sched_entity(se) {
952
		if (se->on_rq)
953 954
			break;
		cfs_rq = cfs_rq_of(se);
955
		enqueue_entity(cfs_rq, se, wakeup);
956
		wakeup = 1;
957
	}
P
Peter Zijlstra 已提交
958

959
	hrtick_update(rq);
960 961 962 963 964 965 966
}

/*
 * The dequeue_task method is called before nr_running is
 * decreased. We remove the task from the rbtree and
 * update the fair scheduling stats:
 */
967
static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
968 969
{
	struct cfs_rq *cfs_rq;
970
	struct sched_entity *se = &p->se;
971 972 973

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
974
		dequeue_entity(cfs_rq, se, sleep);
975
		/* Don't dequeue parent if it has other entities besides us */
976
		if (cfs_rq->load.weight)
977
			break;
978
		sleep = 1;
979
	}
P
Peter Zijlstra 已提交
980

981
	hrtick_update(rq);
982 983 984
}

/*
985 986 987
 * sched_yield() support is very simple - we dequeue and enqueue.
 *
 * If compat_yield is turned on then we requeue to the end of the tree.
988
 */
989
static void yield_task_fair(struct rq *rq)
990
{
991 992 993
	struct task_struct *curr = rq->curr;
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
	struct sched_entity *rightmost, *se = &curr->se;
994 995

	/*
996 997 998 999 1000
	 * Are we the only task in the tree?
	 */
	if (unlikely(cfs_rq->nr_running == 1))
		return;

P
Peter Zijlstra 已提交
1001 1002
	clear_buddies(cfs_rq, se);

1003
	if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1004
		update_rq_clock(rq);
1005
		/*
1006
		 * Update run-time statistics of the 'current'.
1007
		 */
D
Dmitry Adamushko 已提交
1008
		update_curr(cfs_rq);
1009 1010 1011 1012 1013

		return;
	}
	/*
	 * Find the rightmost entry in the rbtree:
1014
	 */
D
Dmitry Adamushko 已提交
1015
	rightmost = __pick_last_entity(cfs_rq);
1016 1017 1018
	/*
	 * Already in the rightmost position?
	 */
1019
	if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1020 1021 1022 1023
		return;

	/*
	 * Minimally necessary key value to be last in the tree:
D
Dmitry Adamushko 已提交
1024 1025
	 * Upon rescheduling, sched_class::put_prev_task() will place
	 * 'current' within the tree based on its new key value.
1026
	 */
1027
	se->vruntime = rightmost->vruntime + 1;
1028 1029
}

1030 1031 1032 1033 1034
/*
 * wake_idle() will wake a task on an idle cpu if task->cpu is
 * not idle and an idle cpu is available.  The span of cpus to
 * search starts with cpus closest then further out as needed,
 * so we always favor a closer, idle cpu.
1035
 * Domains may include CPUs that are not usable for migration,
1036
 * hence we need to mask them out (cpu_active_mask)
1037 1038 1039 1040 1041 1042 1043 1044
 *
 * Returns the CPU we should wake onto.
 */
#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
static int wake_idle(int cpu, struct task_struct *p)
{
	struct sched_domain *sd;
	int i;
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	unsigned int chosen_wakeup_cpu;
	int this_cpu;

	/*
	 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
	 * are idle and this is not a kernel thread and this task's affinity
	 * allows it to be moved to preferred cpu, then just move!
	 */

	this_cpu = smp_processor_id();
	chosen_wakeup_cpu =
		cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;

	if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
		idle_cpu(cpu) && idle_cpu(this_cpu) &&
		p->mm && !(p->flags & PF_KTHREAD) &&
		cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
		return chosen_wakeup_cpu;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	/*
	 * If it is idle, then it is the best cpu to run this task.
	 *
	 * This cpu is also the best, if it has more than one task already.
	 * Siblings must be also busy(in most cases) as they didn't already
	 * pickup the extra load from this cpu and hence we need not check
	 * sibling runqueue info. This will avoid the checks and cache miss
	 * penalities associated with that.
	 */
1073
	if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1074 1075 1076
		return cpu;

	for_each_domain(cpu, sd) {
1077 1078 1079
		if ((sd->flags & SD_WAKE_IDLE)
		    || ((sd->flags & SD_WAKE_IDLE_FAR)
			&& !task_hot(p, task_rq(p)->clock, sd))) {
1080 1081 1082
			for_each_cpu_and(i, sched_domain_span(sd),
					 &p->cpus_allowed) {
				if (cpu_active(i) && idle_cpu(i)) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
					if (i != task_cpu(p)) {
						schedstat_inc(p,
						       se.nr_wakeups_idle);
					}
					return i;
				}
			}
		} else {
			break;
		}
	}
	return cpu;
}
1096
#else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1097 1098 1099 1100 1101 1102 1103
static inline int wake_idle(int cpu, struct task_struct *p)
{
	return cpu;
}
#endif

#ifdef CONFIG_SMP
1104

1105
#ifdef CONFIG_FAIR_GROUP_SCHED
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
/*
 * effective_load() calculates the load change as seen from the root_task_group
 *
 * Adding load to a group doesn't make a group heavier, but can cause movement
 * of group shares between cpus. Assuming the shares were perfectly aligned one
 * can calculate the shift in shares.
 *
 * The problem is that perfectly aligning the shares is rather expensive, hence
 * we try to avoid doing that too often - see update_shares(), which ratelimits
 * this change.
 *
 * We compensate this by not only taking the current delta into account, but
 * also considering the delta between when the shares were last adjusted and
 * now.
 *
 * We still saw a performance dip, some tracing learned us that between
 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
 * significantly. Therefore try to bias the error in direction of failing
 * the affine wakeup.
 *
 */
1127 1128
static long effective_load(struct task_group *tg, int cpu,
		long wl, long wg)
1129
{
P
Peter Zijlstra 已提交
1130
	struct sched_entity *se = tg->se[cpu];
1131 1132 1133 1134

	if (!tg->parent)
		return wl;

1135 1136 1137 1138 1139 1140 1141
	/*
	 * By not taking the decrease of shares on the other cpu into
	 * account our error leans towards reducing the affine wakeups.
	 */
	if (!wl && sched_feat(ASYM_EFF_LOAD))
		return wl;

P
Peter Zijlstra 已提交
1142
	for_each_sched_entity(se) {
1143
		long S, rw, s, a, b;
1144 1145 1146 1147 1148 1149 1150 1151 1152
		long more_w;

		/*
		 * Instead of using this increment, also add the difference
		 * between when the shares were last updated and now.
		 */
		more_w = se->my_q->load.weight - se->my_q->rq_weight;
		wl += more_w;
		wg += more_w;
P
Peter Zijlstra 已提交
1153 1154 1155

		S = se->my_q->tg->shares;
		s = se->my_q->shares;
1156
		rw = se->my_q->rq_weight;
1157

1158 1159
		a = S*(rw + wl);
		b = S*rw + s*wg;
P
Peter Zijlstra 已提交
1160

1161 1162 1163 1164 1165
		wl = s*(a-b);

		if (likely(b))
			wl /= b;

1166 1167 1168 1169 1170 1171 1172
		/*
		 * Assume the group is already running and will
		 * thus already be accounted for in the weight.
		 *
		 * That is, moving shares between CPUs, does not
		 * alter the group weight.
		 */
P
Peter Zijlstra 已提交
1173 1174
		wg = 0;
	}
1175

P
Peter Zijlstra 已提交
1176
	return wl;
1177
}
P
Peter Zijlstra 已提交
1178

1179
#else
P
Peter Zijlstra 已提交
1180

1181 1182
static inline unsigned long effective_load(struct task_group *tg, int cpu,
		unsigned long wl, unsigned long wg)
P
Peter Zijlstra 已提交
1183
{
1184
	return wl;
1185
}
P
Peter Zijlstra 已提交
1186

1187 1188
#endif

1189
static int
1190
wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
I
Ingo Molnar 已提交
1191 1192
	    struct task_struct *p, int prev_cpu, int this_cpu, int sync,
	    int idx, unsigned long load, unsigned long this_load,
1193 1194
	    unsigned int imbalance)
{
1195 1196
	struct task_struct *curr = this_rq->curr;
	struct task_group *tg;
1197 1198
	unsigned long tl = this_load;
	unsigned long tl_per_task;
1199
	unsigned long weight;
1200
	int balanced;
1201

1202
	if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1203 1204
		return 0;

1205 1206 1207 1208
	if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
			p->se.avg_overlap > sysctl_sched_migration_cost))
		sync = 0;

1209 1210 1211 1212 1213
	/*
	 * If sync wakeup then subtract the (maximum possible)
	 * effect of the currently running task from the load
	 * of the current CPU:
	 */
1214 1215 1216 1217 1218 1219 1220
	if (sync) {
		tg = task_group(current);
		weight = current->se.load.weight;

		tl += effective_load(tg, this_cpu, -weight, -weight);
		load += effective_load(tg, prev_cpu, 0, -weight);
	}
1221

1222 1223
	tg = task_group(p);
	weight = p->se.load.weight;
1224

1225 1226
	balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
		imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1227

1228
	/*
I
Ingo Molnar 已提交
1229 1230 1231
	 * If the currently running task will sleep within
	 * a reasonable amount of time then attract this newly
	 * woken task:
1232
	 */
1233 1234
	if (sync && balanced)
		return 1;
1235 1236 1237 1238

	schedstat_inc(p, se.nr_wakeups_affine_attempts);
	tl_per_task = cpu_avg_load_per_task(this_cpu);

1239 1240
	if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
			tl_per_task)) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		/*
		 * This domain has SD_WAKE_AFFINE and
		 * p is cache cold in this domain, and
		 * there is no bad imbalance.
		 */
		schedstat_inc(this_sd, ttwu_move_affine);
		schedstat_inc(p, se.nr_wakeups_affine);

		return 1;
	}
	return 0;
}

1254 1255 1256
static int select_task_rq_fair(struct task_struct *p, int sync)
{
	struct sched_domain *sd, *this_sd = NULL;
1257
	int prev_cpu, this_cpu, new_cpu;
1258
	unsigned long load, this_load;
1259
	struct rq *this_rq;
1260 1261
	unsigned int imbalance;
	int idx;
1262

1263 1264
	prev_cpu	= task_cpu(p);
	this_cpu	= smp_processor_id();
I
Ingo Molnar 已提交
1265
	this_rq		= cpu_rq(this_cpu);
1266
	new_cpu		= prev_cpu;
1267

1268 1269
	if (prev_cpu == this_cpu)
		goto out;
1270 1271 1272 1273
	/*
	 * 'this_sd' is the first domain that both
	 * this_cpu and prev_cpu are present in:
	 */
1274
	for_each_domain(this_cpu, sd) {
1275
		if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1276 1277 1278 1279 1280
			this_sd = sd;
			break;
		}
	}

1281
	if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1282
		goto out;
1283 1284 1285 1286

	/*
	 * Check for affine wakeup and passive balancing possibilities.
	 */
1287
	if (!this_sd)
1288
		goto out;
1289

1290 1291 1292 1293
	idx = this_sd->wake_idx;

	imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;

1294
	load = source_load(prev_cpu, idx);
1295 1296
	this_load = target_load(this_cpu, idx);

1297
	if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
I
Ingo Molnar 已提交
1298 1299 1300
				     load, this_load, imbalance))
		return this_cpu;

1301 1302 1303 1304 1305 1306 1307 1308
	/*
	 * Start passive balancing when half the imbalance_pct
	 * limit is reached.
	 */
	if (this_sd->flags & SD_WAKE_BALANCE) {
		if (imbalance*this_load <= 100*load) {
			schedstat_inc(this_sd, ttwu_move_balance);
			schedstat_inc(p, se.nr_wakeups_passive);
I
Ingo Molnar 已提交
1309
			return this_cpu;
1310 1311 1312
		}
	}

1313
out:
1314 1315 1316 1317
	return wake_idle(new_cpu, p);
}
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
/*
 * Adaptive granularity
 *
 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
 * with the limit of wakeup_gran -- when it never does a wakeup.
 *
 * So the smaller avg_wakeup is the faster we want this task to preempt,
 * but we don't want to treat the preemptee unfairly and therefore allow it
 * to run for at least the amount of time we'd like to run.
 *
 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
 *
 * NOTE: we use *nr_running to scale with load, this nicely matches the
 *       degrading latency on load.
 */
static unsigned long
adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
{
	u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
	u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
	u64 gran = 0;

	if (this_run < expected_wakeup)
		gran = expected_wakeup - this_run;

	return min_t(s64, gran, sysctl_sched_wakeup_granularity);
}

static unsigned long
wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1348 1349 1350
{
	unsigned long gran = sysctl_sched_wakeup_granularity;

P
Peter Zijlstra 已提交
1351 1352 1353
	if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
		gran = adaptive_gran(curr, se);

1354
	/*
P
Peter Zijlstra 已提交
1355 1356
	 * Since its curr running now, convert the gran from real-time
	 * to virtual-time in his units.
1357
	 */
P
Peter Zijlstra 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	if (sched_feat(ASYM_GRAN)) {
		/*
		 * By using 'se' instead of 'curr' we penalize light tasks, so
		 * they get preempted easier. That is, if 'se' < 'curr' then
		 * the resulting gran will be larger, therefore penalizing the
		 * lighter, if otoh 'se' > 'curr' then the resulting gran will
		 * be smaller, again penalizing the lighter task.
		 *
		 * This is especially important for buddies when the leftmost
		 * task is higher priority than the buddy.
		 */
		if (unlikely(se->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, se);
	} else {
		if (unlikely(curr->load.weight != NICE_0_LOAD))
			gran = calc_delta_fair(gran, curr);
	}
1375 1376 1377 1378

	return gran;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
/*
 * Should 'se' preempt 'curr'.
 *
 *             |s1
 *        |s2
 *   |s3
 *         g
 *      |<--->|c
 *
 *  w(c, s1) = -1
 *  w(c, s2) =  0
 *  w(c, s3) =  1
 *
 */
static int
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
{
	s64 gran, vdiff = curr->vruntime - se->vruntime;

	if (vdiff <= 0)
		return -1;

P
Peter Zijlstra 已提交
1401
	gran = wakeup_gran(curr, se);
1402 1403 1404 1405 1406 1407
	if (vdiff > gran)
		return 1;

	return 0;
}

1408 1409
static void set_last_buddy(struct sched_entity *se)
{
1410 1411 1412 1413
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->last = se;
	}
1414 1415 1416 1417
}

static void set_next_buddy(struct sched_entity *se)
{
1418 1419 1420 1421
	if (likely(task_of(se)->policy != SCHED_IDLE)) {
		for_each_sched_entity(se)
			cfs_rq_of(se)->next = se;
	}
1422 1423
}

1424 1425 1426
/*
 * Preempt the current task with a newly woken task if needed:
 */
1427
static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1428 1429
{
	struct task_struct *curr = rq->curr;
1430
	struct sched_entity *se = &curr->se, *pse = &p->se;
1431
	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1432

1433
	update_curr(cfs_rq);
P
Peter Zijlstra 已提交
1434

1435
	if (unlikely(rt_prio(p->prio))) {
1436 1437 1438
		resched_task(curr);
		return;
	}
1439

P
Peter Zijlstra 已提交
1440 1441 1442
	if (unlikely(p->sched_class != &fair_sched_class))
		return;

I
Ingo Molnar 已提交
1443 1444 1445
	if (unlikely(se == pse))
		return;

P
Peter Zijlstra 已提交
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	/*
	 * Only set the backward buddy when the current task is still on the
	 * rq. This can happen when a wakeup gets interleaved with schedule on
	 * the ->pre_schedule() or idle_balance() point, either of which can
	 * drop the rq lock.
	 *
	 * Also, during early boot the idle thread is in the fair class, for
	 * obvious reasons its a bad idea to schedule back to the idle thread.
	 */
	if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1456 1457
		set_last_buddy(se);
	set_next_buddy(pse);
P
Peter Zijlstra 已提交
1458

1459 1460 1461 1462 1463 1464 1465
	/*
	 * We can come here with TIF_NEED_RESCHED already set from new task
	 * wake up path.
	 */
	if (test_tsk_need_resched(curr))
		return;

1466
	/*
1467
	 * Batch and idle tasks do not preempt (their preemption is driven by
1468 1469
	 * the tick):
	 */
1470
	if (unlikely(p->policy != SCHED_NORMAL))
1471
		return;
1472

1473 1474 1475
	/* Idle tasks are by definition preempted by everybody. */
	if (unlikely(curr->policy == SCHED_IDLE)) {
		resched_task(curr);
1476
		return;
1477
	}
1478

1479 1480
	if (!sched_feat(WAKEUP_PREEMPT))
		return;
1481

1482 1483 1484
	if (sched_feat(WAKEUP_OVERLAP) && (sync ||
			(se->avg_overlap < sysctl_sched_migration_cost &&
			 pse->avg_overlap < sysctl_sched_migration_cost))) {
1485 1486 1487 1488
		resched_task(curr);
		return;
	}

1489 1490
	find_matching_se(&se, &pse);

1491
	BUG_ON(!pse);
1492

1493 1494
	if (wakeup_preempt_entity(se, pse) == 1)
		resched_task(curr);
1495 1496
}

1497
static struct task_struct *pick_next_task_fair(struct rq *rq)
1498
{
P
Peter Zijlstra 已提交
1499
	struct task_struct *p;
1500 1501 1502 1503 1504 1505 1506
	struct cfs_rq *cfs_rq = &rq->cfs;
	struct sched_entity *se;

	if (unlikely(!cfs_rq->nr_running))
		return NULL;

	do {
1507
		se = pick_next_entity(cfs_rq);
1508 1509 1510 1511
		/*
		 * If se was a buddy, clear it so that it will have to earn
		 * the favour again.
		 */
P
Peter Zijlstra 已提交
1512
		__clear_buddies(cfs_rq, se);
1513
		set_next_entity(cfs_rq, se);
1514 1515 1516
		cfs_rq = group_cfs_rq(se);
	} while (cfs_rq);

P
Peter Zijlstra 已提交
1517 1518 1519 1520
	p = task_of(se);
	hrtick_start_fair(rq, p);

	return p;
1521 1522 1523 1524 1525
}

/*
 * Account for a descheduled task:
 */
1526
static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1527 1528 1529 1530 1531 1532
{
	struct sched_entity *se = &prev->se;
	struct cfs_rq *cfs_rq;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
1533
		put_prev_entity(cfs_rq, se);
1534 1535 1536
	}
}

1537
#ifdef CONFIG_SMP
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
/**************************************************
 * Fair scheduling class load-balancing methods:
 */

/*
 * Load-balancing iterator. Note: while the runqueue stays locked
 * during the whole iteration, the current task might be
 * dequeued so the iterator has to be dequeue-safe. Here we
 * achieve that by always pre-iterating before returning
 * the current task:
 */
A
Alexey Dobriyan 已提交
1549
static struct task_struct *
1550
__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1551
{
D
Dhaval Giani 已提交
1552 1553
	struct task_struct *p = NULL;
	struct sched_entity *se;
1554

1555 1556 1557
	if (next == &cfs_rq->tasks)
		return NULL;

1558 1559 1560
	se = list_entry(next, struct sched_entity, group_node);
	p = task_of(se);
	cfs_rq->balance_iterator = next->next;
1561

1562 1563 1564 1565 1566 1567 1568
	return p;
}

static struct task_struct *load_balance_start_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1569
	return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1570 1571 1572 1573 1574 1575
}

static struct task_struct *load_balance_next_fair(void *arg)
{
	struct cfs_rq *cfs_rq = arg;

1576
	return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1577 1578
}

1579 1580 1581 1582 1583
static unsigned long
__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		unsigned long max_load_move, struct sched_domain *sd,
		enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
		struct cfs_rq *cfs_rq)
1584
{
1585
	struct rq_iterator cfs_rq_iterator;
1586

1587 1588 1589
	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;
	cfs_rq_iterator.arg = cfs_rq;
1590

1591 1592 1593
	return balance_tasks(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &cfs_rq_iterator);
1594 1595
}

1596
#ifdef CONFIG_FAIR_GROUP_SCHED
P
Peter Williams 已提交
1597
static unsigned long
1598
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1599
		  unsigned long max_load_move,
1600 1601
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
1602 1603
{
	long rem_load_move = max_load_move;
1604 1605
	int busiest_cpu = cpu_of(busiest);
	struct task_group *tg;
1606

1607
	rcu_read_lock();
1608
	update_h_load(busiest_cpu);
1609

1610
	list_for_each_entry_rcu(tg, &task_groups, list) {
1611
		struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1612 1613
		unsigned long busiest_h_load = busiest_cfs_rq->h_load;
		unsigned long busiest_weight = busiest_cfs_rq->load.weight;
S
Srivatsa Vaddagiri 已提交
1614
		u64 rem_load, moved_load;
1615

1616 1617 1618
		/*
		 * empty group
		 */
1619
		if (!busiest_cfs_rq->task_weight)
1620 1621
			continue;

S
Srivatsa Vaddagiri 已提交
1622 1623
		rem_load = (u64)rem_load_move * busiest_weight;
		rem_load = div_u64(rem_load, busiest_h_load + 1);
1624

1625
		moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1626
				rem_load, sd, idle, all_pinned, this_best_prio,
1627
				tg->cfs_rq[busiest_cpu]);
1628

1629
		if (!moved_load)
1630 1631
			continue;

1632
		moved_load *= busiest_h_load;
S
Srivatsa Vaddagiri 已提交
1633
		moved_load = div_u64(moved_load, busiest_weight + 1);
1634

1635 1636
		rem_load_move -= moved_load;
		if (rem_load_move < 0)
1637 1638
			break;
	}
1639
	rcu_read_unlock();
1640

P
Peter Williams 已提交
1641
	return max_load_move - rem_load_move;
1642
}
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
#else
static unsigned long
load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		  unsigned long max_load_move,
		  struct sched_domain *sd, enum cpu_idle_type idle,
		  int *all_pinned, int *this_best_prio)
{
	return __load_balance_fair(this_rq, this_cpu, busiest,
			max_load_move, sd, idle, all_pinned,
			this_best_prio, &busiest->cfs);
}
#endif
1655

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static int
move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle)
{
	struct cfs_rq *busy_cfs_rq;
	struct rq_iterator cfs_rq_iterator;

	cfs_rq_iterator.start = load_balance_start_fair;
	cfs_rq_iterator.next = load_balance_next_fair;

	for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
		/*
		 * pass busy_cfs_rq argument into
		 * load_balance_[start|next]_fair iterators
		 */
		cfs_rq_iterator.arg = busy_cfs_rq;
		if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
				       &cfs_rq_iterator))
		    return 1;
	}

	return 0;
}
1679
#endif /* CONFIG_SMP */
1680

1681 1682 1683
/*
 * scheduler tick hitting a task of our scheduling class:
 */
P
Peter Zijlstra 已提交
1684
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1685 1686 1687 1688 1689 1690
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se = &curr->se;

	for_each_sched_entity(se) {
		cfs_rq = cfs_rq_of(se);
P
Peter Zijlstra 已提交
1691
		entity_tick(cfs_rq, se, queued);
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	}
}

/*
 * Share the fairness runtime between parent and child, thus the
 * total amount of pressure for CPU stays equal - new tasks
 * get a chance to run but frequent forkers are not allowed to
 * monopolize the CPU. Note: the parent runqueue is locked,
 * the child is not running yet.
 */
1702
static void task_new_fair(struct rq *rq, struct task_struct *p)
1703 1704
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);
1705
	struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1706
	int this_cpu = smp_processor_id();
1707 1708 1709

	sched_info_queued(p);

1710
	update_curr(cfs_rq);
1711
	place_entity(cfs_rq, se, 1);
1712

1713
	/* 'curr' will be NULL if the child belongs to a different group */
1714
	if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1715
			curr && curr->vruntime < se->vruntime) {
D
Dmitry Adamushko 已提交
1716
		/*
1717 1718 1719
		 * Upon rescheduling, sched_class::put_prev_task() will place
		 * 'current' within the tree based on its new key value.
		 */
1720
		swap(curr->vruntime, se->vruntime);
1721
		resched_task(rq->curr);
1722
	}
1723

1724
	enqueue_task_fair(rq, p, 0);
1725 1726
}

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
/*
 * Priority of the task has changed. Check to see if we preempt
 * the current task.
 */
static void prio_changed_fair(struct rq *rq, struct task_struct *p,
			      int oldprio, int running)
{
	/*
	 * Reschedule if we are currently running on this runqueue and
	 * our priority decreased, or if we are not currently running on
	 * this runqueue and our priority is higher than the current's
	 */
	if (running) {
		if (p->prio > oldprio)
			resched_task(rq->curr);
	} else
1743
		check_preempt_curr(rq, p, 0);
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
}

/*
 * We switched to the sched_fair class.
 */
static void switched_to_fair(struct rq *rq, struct task_struct *p,
			     int running)
{
	/*
	 * We were most likely switched from sched_rt, so
	 * kick off the schedule if running, otherwise just see
	 * if we can still preempt the current task.
	 */
	if (running)
		resched_task(rq->curr);
	else
1760
		check_preempt_curr(rq, p, 0);
1761 1762
}

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
/* Account for a task changing its policy or group.
 *
 * This routine is mostly called to set cfs_rq->curr field when a task
 * migrates between groups/classes.
 */
static void set_curr_task_fair(struct rq *rq)
{
	struct sched_entity *se = &rq->curr->se;

	for_each_sched_entity(se)
		set_next_entity(cfs_rq_of(se), se);
}

P
Peter Zijlstra 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
#ifdef CONFIG_FAIR_GROUP_SCHED
static void moved_group_fair(struct task_struct *p)
{
	struct cfs_rq *cfs_rq = task_cfs_rq(p);

	update_curr(cfs_rq);
	place_entity(cfs_rq, &p->se, 1);
}
#endif

1786 1787 1788
/*
 * All the scheduling class methods:
 */
1789 1790
static const struct sched_class fair_sched_class = {
	.next			= &idle_sched_class,
1791 1792 1793 1794
	.enqueue_task		= enqueue_task_fair,
	.dequeue_task		= dequeue_task_fair,
	.yield_task		= yield_task_fair,

I
Ingo Molnar 已提交
1795
	.check_preempt_curr	= check_preempt_wakeup,
1796 1797 1798 1799

	.pick_next_task		= pick_next_task_fair,
	.put_prev_task		= put_prev_task_fair,

1800
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1801 1802
	.select_task_rq		= select_task_rq_fair,

1803
	.load_balance		= load_balance_fair,
1804
	.move_one_task		= move_one_task_fair,
1805
#endif
1806

1807
	.set_curr_task          = set_curr_task_fair,
1808 1809
	.task_tick		= task_tick_fair,
	.task_new		= task_new_fair,
1810 1811 1812

	.prio_changed		= prio_changed_fair,
	.switched_to		= switched_to_fair,
P
Peter Zijlstra 已提交
1813 1814 1815 1816

#ifdef CONFIG_FAIR_GROUP_SCHED
	.moved_group		= moved_group_fair,
#endif
1817 1818 1819
};

#ifdef CONFIG_SCHED_DEBUG
1820
static void print_cfs_stats(struct seq_file *m, int cpu)
1821 1822 1823
{
	struct cfs_rq *cfs_rq;

1824
	rcu_read_lock();
1825
	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1826
		print_cfs_rq(m, cpu, cfs_rq);
1827
	rcu_read_unlock();
1828 1829
}
#endif