sched.c 194.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

158
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
159

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168
#ifdef CONFIG_CGROUP_SCHED
169 170
	struct cgroup_subsys_state css;
#endif
171 172

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
173 174 175 176 177
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
178 179 180 181 182 183 184 185
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	u64 rt_runtime;
#endif
186

187
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
188
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
189 190
};

191
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
192 193 194 195 196
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

197 198
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 200 201 202 203
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
204

P
Peter Zijlstra 已提交
205 206
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
207
#endif
P
Peter Zijlstra 已提交
208

209
/* task_group_lock serializes add/remove of task groups and also changes to
210 211
 * a task group's cpu shares.
 */
212
static DEFINE_SPINLOCK(task_group_lock);
213

214 215 216
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
227
/* Default task group.
I
Ingo Molnar 已提交
228
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
229
 */
230
struct task_group init_task_group = {
231
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
232
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
233
	.cfs_rq = init_cfs_rq_p,
234
#endif
P
Peter Zijlstra 已提交
235

236
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
237 238
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
239
#endif
240
};
S
Srivatsa Vaddagiri 已提交
241 242

/* return group to which a task belongs */
243
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
244
{
245
	struct task_group *tg;
246

247
#ifdef CONFIG_USER_SCHED
248
	tg = p->user->tg;
249
#elif defined(CONFIG_CGROUP_SCHED)
250 251
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
252
#else
I
Ingo Molnar 已提交
253
	tg = &init_task_group;
254
#endif
255
	return tg;
S
Srivatsa Vaddagiri 已提交
256 257 258
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
259
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
260
{
261
#ifdef CONFIG_FAIR_GROUP_SCHED
262 263
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
264
#endif
P
Peter Zijlstra 已提交
265

266
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
267 268
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
269
#endif
S
Srivatsa Vaddagiri 已提交
270 271
}

272 273 274 275 276 277 278 279 280 281
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
282 283
#else

P
Peter Zijlstra 已提交
284
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 286
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
287

288
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
289

I
Ingo Molnar 已提交
290 291 292 293 294 295
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
296
	u64 min_vruntime;
I
Ingo Molnar 已提交
297 298 299 300 301 302 303 304

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
305 306 307

	unsigned long nr_spread_over;

308
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
309 310
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
311 312
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
313 314 315 316 317 318
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
319 320
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
321 322
#endif
};
L
Linus Torvalds 已提交
323

I
Ingo Molnar 已提交
324 325 326
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
327
	unsigned long rt_nr_running;
328
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
329 330
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
331
#ifdef CONFIG_SMP
332
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
333
	int overloaded;
P
Peter Zijlstra 已提交
334
#endif
P
Peter Zijlstra 已提交
335
	int rt_throttled;
P
Peter Zijlstra 已提交
336
	u64 rt_time;
P
Peter Zijlstra 已提交
337

338
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
339 340
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
341 342 343 344 345
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
346 347
};

G
Gregory Haskins 已提交
348 349 350 351
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
352 353
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
354 355 356 357 358 359 360 361
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
362

I
Ingo Molnar 已提交
363
	/*
364 365 366 367
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
368
	atomic_t rto_count;
G
Gregory Haskins 已提交
369 370
};

371 372 373 374
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
375 376 377 378
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
379 380 381 382 383 384 385
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
386
struct rq {
387 388
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
389 390 391 392 393 394

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
395 396
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397
	unsigned char idle_at_tick;
398 399 400
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
401 402
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
403 404 405 406
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
407 408
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
409
	int rt_throttled;
P
Peter Zijlstra 已提交
410

I
Ingo Molnar 已提交
411
#ifdef CONFIG_FAIR_GROUP_SCHED
412 413
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
414 415
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
416
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

427
	struct task_struct *curr, *idle;
428
	unsigned long next_balance;
L
Linus Torvalds 已提交
429
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
430 431 432 433

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

434
	unsigned int clock_warps, clock_overflows, clock_underflows;
435 436
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
437
	u64 tick_timestamp;
I
Ingo Molnar 已提交
438

L
Linus Torvalds 已提交
439 440 441
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
442
	struct root_domain *rd;
L
Linus Torvalds 已提交
443 444 445 446 447
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
448 449
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
450

451
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
452 453 454
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
455 456 457 458 459 460
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
461 462 463 464 465
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
466 467 468 469
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
470 471

	/* schedule() stats */
472 473 474
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
475 476

	/* try_to_wake_up() stats */
477 478
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
479 480

	/* BKL stats */
481
	unsigned int bkl_count;
L
Linus Torvalds 已提交
482
#endif
483
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
484 485
};

486
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
487

I
Ingo Molnar 已提交
488 489 490 491 492
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

493 494 495 496 497 498 499 500 501
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
502
/*
I
Ingo Molnar 已提交
503 504
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
505
 */
I
Ingo Molnar 已提交
506
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
507 508 509 510 511 512
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
513 514 515
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
516 517 518 519 520 521 522 523 524 525
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
526 527 528 529 530
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
531 532 533 534 535 536 537 538 539 540
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
541
}
I
Ingo Molnar 已提交
542

I
Ingo Molnar 已提交
543 544 545 546
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
547 548
}

N
Nick Piggin 已提交
549 550
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
552 553 554 555
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
556 557
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
558 559 560 561 562 563

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
594
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
595 596
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
597 598
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
P
Peter Zijlstra 已提交
599 600
	SCHED_FEAT_HRTICK		= 32,
	SCHED_FEAT_DOUBLE_TICK		= 64,
I
Ingo Molnar 已提交
601 602 603
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
604
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
605
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
606 607
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
P
Peter Zijlstra 已提交
608 609 610
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
611 612 613

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

614 615 616 617 618 619
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
620
/*
P
Peter Zijlstra 已提交
621
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
622 623
 * default: 1s
 */
P
Peter Zijlstra 已提交
624
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
625

626 627
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
628 629 630 631 632
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
633 634

/*
P
Peter Zijlstra 已提交
635
 * single value that denotes runtime == period, ie unlimited time.
P
Peter Zijlstra 已提交
636
 */
P
Peter Zijlstra 已提交
637
#define RUNTIME_INF	((u64)~0ULL)
P
Peter Zijlstra 已提交
638

639 640 641 642 643 644 645 646
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
647
	struct rq *rq;
648

649 650 651 652
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
653 654 655 656 657 658
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
659
	now = rq->clock;
660
	local_irq_restore(flags);
661 662 663

	return now;
}
P
Paul E. McKenney 已提交
664
EXPORT_SYMBOL_GPL(cpu_clock);
665

L
Linus Torvalds 已提交
666
#ifndef prepare_arch_switch
667 668 669 670 671 672
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

673 674 675 676 677
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

678
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
679
static inline int task_running(struct rq *rq, struct task_struct *p)
680
{
681
	return task_current(rq, p);
682 683
}

684
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
685 686 687
{
}

688
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
689
{
690 691 692 693
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
694 695 696 697 698 699 700
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

701 702 703 704
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
705
static inline int task_running(struct rq *rq, struct task_struct *p)
706 707 708 709
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
710
	return task_current(rq, p);
711 712 713
#endif
}

714
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

731
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732 733 734 735 736 737 738 739 740 741 742 743
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
744
#endif
745 746
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
747

748 749 750 751
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
752
static inline struct rq *__task_rq_lock(struct task_struct *p)
753 754
	__acquires(rq->lock)
{
755 756 757 758 759
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
760 761 762 763
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
764 765
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
766
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
767 768
 * explicitly disabling preemption.
 */
769
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
770 771
	__acquires(rq->lock)
{
772
	struct rq *rq;
L
Linus Torvalds 已提交
773

774 775 776 777 778 779
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
780 781 782 783
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
784
static void __task_rq_unlock(struct rq *rq)
785 786 787 788 789
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

790
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
791 792 793 794 795 796
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
797
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
798
 */
A
Alexey Dobriyan 已提交
799
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
800 801
	__acquires(rq->lock)
{
802
	struct rq *rq;
L
Linus Torvalds 已提交
803 804 805 806 807 808 809 810

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

811
/*
812
 * We are going deep-idle (irqs are disabled):
813
 */
814
void sched_clock_idle_sleep_event(void)
815
{
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
832

833 834 835 836 837 838 839 840 841 842 843
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
844
	touch_softlockup_watchdog();
845
}
846
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
847

P
Peter Zijlstra 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1028
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1029 1030 1031 1032 1033
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1034
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1035 1036
		return;

P
Peter Zijlstra 已提交
1037
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1060
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1061 1062
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1063
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1064 1065 1066
}
#endif

1067 1068 1069 1070 1071 1072 1073 1074
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1075 1076 1077
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1078
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1079

1080
static unsigned long
1081 1082 1083 1084 1085 1086
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1087
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1088 1089 1090 1091 1092

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1093
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1094
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1095 1096
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1097
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1098

1099
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1100 1101 1102 1103 1104 1105 1106 1107
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1108
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1109 1110 1111 1112
{
	lw->weight += inc;
}

1113
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1114 1115 1116 1117
{
	lw->weight -= dec;
}

1118 1119 1120 1121
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1122
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1123 1124 1125 1126
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1138 1139 1140
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1141 1142
 */
static const int prio_to_weight[40] = {
1143 1144 1145 1146 1147 1148 1149 1150
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1151 1152
};

1153 1154 1155 1156 1157 1158 1159
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1160
static const u32 prio_to_wmult[40] = {
1161 1162 1163 1164 1165 1166 1167 1168
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1169
};
1170

I
Ingo Molnar 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1196

1197 1198 1199 1200 1201 1202
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1203 1204 1205 1206 1207 1208 1209
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1210 1211
#include "sched_stats.h"
#include "sched_idletask.c"
1212 1213
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1214 1215 1216 1217 1218 1219
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1231 1232
{
	rq->nr_running++;
1233
	inc_load(rq, p);
1234 1235
}

1236
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1237 1238
{
	rq->nr_running--;
1239
	dec_load(rq, p);
1240 1241
}

1242 1243 1244
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1245 1246 1247 1248
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1249

I
Ingo Molnar 已提交
1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1258

I
Ingo Molnar 已提交
1259 1260
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1261 1262
}

1263
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1264
{
I
Ingo Molnar 已提交
1265
	sched_info_queued(p);
1266
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1267
	p->se.on_rq = 1;
1268 1269
}

1270
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1271
{
1272
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1273
	p->se.on_rq = 0;
1274 1275
}

1276
/*
I
Ingo Molnar 已提交
1277
 * __normal_prio - return the priority that is based on the static prio
1278 1279 1280
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1281
	return p->static_prio;
1282 1283
}

1284 1285 1286 1287 1288 1289 1290
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1291
static inline int normal_prio(struct task_struct *p)
1292 1293 1294
{
	int prio;

1295
	if (task_has_rt_policy(p))
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1309
static int effective_prio(struct task_struct *p)
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1322
/*
I
Ingo Molnar 已提交
1323
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1324
 */
I
Ingo Molnar 已提交
1325
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1326
{
1327
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1328
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1329

1330
	enqueue_task(rq, p, wakeup);
1331
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1332 1333 1334 1335 1336
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1337
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1338
{
1339
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1340 1341
		rq->nr_uninterruptible++;

1342
	dequeue_task(rq, p, sleep);
1343
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348 1349
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1350
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1351 1352 1353 1354
{
	return cpu_curr(task_cpu(p)) == p;
}

1355 1356 1357
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1358
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1359 1360 1361 1362
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1363
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1364
#ifdef CONFIG_SMP
1365 1366 1367 1368 1369 1370
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1371 1372
	task_thread_info(p)->cpu = cpu;
#endif
1373 1374
}

1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1387
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1388

1389 1390 1391
/*
 * Is this task likely cache-hot:
 */
1392
static int
1393 1394 1395 1396 1397 1398 1399
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1400 1401 1402 1403 1404
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1405 1406 1407 1408 1409 1410
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1411
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1412
{
I
Ingo Molnar 已提交
1413 1414
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1415 1416
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1417
	u64 clock_offset;
I
Ingo Molnar 已提交
1418 1419

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1420 1421 1422 1423

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1424 1425 1426 1427
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1428 1429 1430 1431 1432
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1433
#endif
1434 1435
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1436 1437

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1438 1439
}

1440
struct migration_req {
L
Linus Torvalds 已提交
1441 1442
	struct list_head list;

1443
	struct task_struct *task;
L
Linus Torvalds 已提交
1444 1445 1446
	int dest_cpu;

	struct completion done;
1447
};
L
Linus Torvalds 已提交
1448 1449 1450 1451 1452

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1453
static int
1454
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1455
{
1456
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1462
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1463 1464 1465 1466 1467 1468 1469 1470
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1471

L
Linus Torvalds 已提交
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1484
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1485 1486
{
	unsigned long flags;
I
Ingo Molnar 已提交
1487
	int running, on_rq;
1488
	struct rq *rq;
L
Linus Torvalds 已提交
1489

1490 1491 1492 1493 1494 1495 1496 1497
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1498

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1512

1513 1514 1515 1516 1517 1518 1519 1520 1521
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1533

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1547

1548 1549 1550 1551 1552 1553 1554
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1570
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1582 1583
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1584 1585 1586 1587
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1588
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1589
{
1590
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1591
	unsigned long total = weighted_cpuload(cpu);
1592

1593
	if (type == 0)
I
Ingo Molnar 已提交
1594
		return total;
1595

I
Ingo Molnar 已提交
1596
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1597 1598 1599
}

/*
1600 1601
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1602
 */
A
Alexey Dobriyan 已提交
1603
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1604
{
1605
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1606
	unsigned long total = weighted_cpuload(cpu);
1607

N
Nick Piggin 已提交
1608
	if (type == 0)
I
Ingo Molnar 已提交
1609
		return total;
1610

I
Ingo Molnar 已提交
1611
	return max(rq->cpu_load[type-1], total);
1612 1613 1614 1615 1616
}

/*
 * Return the average load per task on the cpu's run queue
 */
1617
static unsigned long cpu_avg_load_per_task(int cpu)
1618
{
1619
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1620
	unsigned long total = weighted_cpuload(cpu);
1621 1622
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1623
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1624 1625
}

N
Nick Piggin 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1643 1644
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1645
			continue;
1646

N
Nick Piggin 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1663 1664
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1665 1666 1667 1668 1669 1670 1671 1672

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1673
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1674 1675 1676 1677 1678 1679 1680

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1681
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1682
 */
I
Ingo Molnar 已提交
1683 1684
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1685
{
1686
	cpumask_t tmp;
N
Nick Piggin 已提交
1687 1688 1689 1690
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1691 1692 1693 1694
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1695
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1721

1722
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1723 1724 1725
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1726 1727
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1728 1729
		if (tmp->flags & flag)
			sd = tmp;
1730
	}
N
Nick Piggin 已提交
1731 1732 1733 1734

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1735 1736 1737 1738 1739 1740
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1741 1742 1743

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1744 1745 1746 1747
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1748

1749
		new_cpu = find_idlest_cpu(group, t, cpu);
1750 1751 1752 1753 1754
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1755

1756
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1788
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1789
{
1790
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1791 1792
	unsigned long flags;
	long old_state;
1793
	struct rq *rq;
L
Linus Torvalds 已提交
1794

1795
	smp_wmb();
L
Linus Torvalds 已提交
1796 1797 1798 1799 1800
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1801
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1802 1803 1804
		goto out_running;

	cpu = task_cpu(p);
1805
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1806 1807 1808 1809 1810 1811
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1812 1813 1814
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1815 1816 1817 1818 1819 1820
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1821
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1822 1823 1824 1825 1826 1827
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1843 1844
out_activate:
#endif /* CONFIG_SMP */
1845 1846 1847 1848 1849 1850 1851 1852 1853
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1854
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1855
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1856
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1857 1858 1859 1860
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1861 1862 1863 1864
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1865 1866 1867 1868 1869 1870
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1871
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1872
{
1873
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1874 1875 1876
}
EXPORT_SYMBOL(wake_up_process);

1877
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1878 1879 1880 1881 1882 1883 1884
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1885 1886 1887 1888 1889 1890 1891
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1892
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1893 1894 1895

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1896 1897 1898 1899 1900 1901
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1902
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1903
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1904
#endif
N
Nick Piggin 已提交
1905

P
Peter Zijlstra 已提交
1906
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1907
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1908

1909 1910 1911 1912
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1913 1914 1915 1916 1917 1918 1919
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1934
	set_task_cpu(p, cpu);
1935 1936 1937 1938 1939

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1940 1941
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1942

1943
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1944
	if (likely(sched_info_on()))
1945
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1946
#endif
1947
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1948 1949
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1950
#ifdef CONFIG_PREEMPT
1951
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1952
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1953
#endif
N
Nick Piggin 已提交
1954
	put_cpu();
L
Linus Torvalds 已提交
1955 1956 1957 1958 1959 1960 1961 1962 1963
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1964
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1965 1966
{
	unsigned long flags;
I
Ingo Molnar 已提交
1967
	struct rq *rq;
L
Linus Torvalds 已提交
1968 1969

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1970
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1971
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1972 1973 1974

	p->prio = effective_prio(p);

1975
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1976
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1977 1978
	} else {
		/*
I
Ingo Molnar 已提交
1979 1980
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1981
		 */
1982
		p->sched_class->task_new(rq, p);
1983
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1984
	}
I
Ingo Molnar 已提交
1985
	check_preempt_curr(rq, p);
1986 1987 1988 1989
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
1990
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1991 1992
}

1993 1994 1995
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1996 1997
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
1998 1999 2000 2001 2002 2003 2004 2005 2006
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2007
 * @notifier: notifier struct to unregister
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2051 2052 2053
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2054
 * @prev: the current task that is being switched out
2055 2056 2057 2058 2059 2060 2061 2062 2063
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2064 2065 2066
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2067
{
2068
	fire_sched_out_preempt_notifiers(prev, next);
2069 2070 2071 2072
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2073 2074
/**
 * finish_task_switch - clean up after a task-switch
2075
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2076 2077
 * @prev: the thread we just switched away from.
 *
2078 2079 2080 2081
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2082 2083
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2084
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2085 2086 2087
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2088
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2089 2090 2091
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2092
	long prev_state;
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2098
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2099 2100
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2101
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2102 2103 2104 2105 2106
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2107
	prev_state = prev->state;
2108 2109
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2110 2111 2112 2113
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2114

2115
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2116 2117
	if (mm)
		mmdrop(mm);
2118
	if (unlikely(prev_state == TASK_DEAD)) {
2119 2120 2121
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2122
		 */
2123
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2124
		put_task_struct(prev);
2125
	}
L
Linus Torvalds 已提交
2126 2127 2128 2129 2130 2131
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2132
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2133 2134
	__releases(rq->lock)
{
2135 2136
	struct rq *rq = this_rq();

2137 2138 2139 2140 2141
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2142
	if (current->set_child_tid)
2143
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2144 2145 2146 2147 2148 2149
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2150
static inline void
2151
context_switch(struct rq *rq, struct task_struct *prev,
2152
	       struct task_struct *next)
L
Linus Torvalds 已提交
2153
{
I
Ingo Molnar 已提交
2154
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2155

2156
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2157 2158
	mm = next->mm;
	oldmm = prev->active_mm;
2159 2160 2161 2162 2163 2164 2165
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2166
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2173
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2174 2175 2176
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2177 2178 2179 2180 2181 2182 2183
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2184
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2185
#endif
L
Linus Torvalds 已提交
2186 2187 2188 2189

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2190 2191 2192 2193 2194 2195 2196
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2220
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2235 2236
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2237

2238
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244 2245 2246 2247
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2248
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2269
/*
I
Ingo Molnar 已提交
2270 2271
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2272
 */
I
Ingo Molnar 已提交
2273
static void update_cpu_load(struct rq *this_rq)
2274
{
2275
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2288 2289 2290 2291 2292 2293 2294
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2295 2296
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2297 2298
}

I
Ingo Molnar 已提交
2299 2300
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2307
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2308 2309 2310
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2311
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2312 2313 2314 2315
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2316
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2317 2318 2319 2320 2321 2322 2323
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2324 2325
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2326 2327 2328 2329 2330 2331 2332 2333
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2334
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2348
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2349 2350 2351 2352
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2353 2354
	int ret = 0;

2355 2356 2357 2358 2359
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2360
	if (unlikely(!spin_trylock(&busiest->lock))) {
2361
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2362 2363 2364
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2365
			ret = 1;
L
Linus Torvalds 已提交
2366 2367 2368
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2369
	return ret;
L
Linus Torvalds 已提交
2370 2371 2372 2373 2374
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2375
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2376 2377
 * the cpu_allowed mask is restored.
 */
2378
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2379
{
2380
	struct migration_req req;
L
Linus Torvalds 已提交
2381
	unsigned long flags;
2382
	struct rq *rq;
L
Linus Torvalds 已提交
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2393

L
Linus Torvalds 已提交
2394 2395 2396 2397 2398
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2399

L
Linus Torvalds 已提交
2400 2401 2402 2403 2404 2405 2406
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2407 2408
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2409 2410 2411 2412
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2413
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2414
	put_cpu();
N
Nick Piggin 已提交
2415 2416
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2417 2418 2419 2420 2421 2422
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2423 2424
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2425
{
2426
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2427
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2428
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2429 2430 2431 2432
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2433
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2434 2435 2436 2437 2438
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2439
static
2440
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2441
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2442
		     int *all_pinned)
L
Linus Torvalds 已提交
2443 2444 2445 2446 2447 2448 2449
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2450 2451
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2452
		return 0;
2453
	}
2454 2455
	*all_pinned = 0;

2456 2457
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2458
		return 0;
2459
	}
L
Linus Torvalds 已提交
2460

2461 2462 2463 2464 2465 2466
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2467 2468
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2469
#ifdef CONFIG_SCHEDSTATS
2470
		if (task_hot(p, rq->clock, sd)) {
2471
			schedstat_inc(sd, lb_hot_gained[idle]);
2472 2473
			schedstat_inc(p, se.nr_forced_migrations);
		}
2474 2475 2476 2477
#endif
		return 1;
	}

2478 2479
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2480
		return 0;
2481
	}
L
Linus Torvalds 已提交
2482 2483 2484
	return 1;
}

2485 2486 2487 2488 2489
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2490
{
2491
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2492 2493
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2494

2495
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2496 2497
		goto out;

2498 2499
	pinned = 1;

L
Linus Torvalds 已提交
2500
	/*
I
Ingo Molnar 已提交
2501
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2502
	 */
I
Ingo Molnar 已提交
2503 2504
	p = iterator->start(iterator->arg);
next:
2505
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2506
		goto out;
2507
	/*
2508
	 * To help distribute high priority tasks across CPUs we don't
2509 2510 2511
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2512 2513
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2514
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2515 2516 2517
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2518 2519
	}

I
Ingo Molnar 已提交
2520
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2521
	pulled++;
I
Ingo Molnar 已提交
2522
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2523

2524
	/*
2525
	 * We only want to steal up to the prescribed amount of weighted load.
2526
	 */
2527
	if (rem_load_move > 0) {
2528 2529
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2530 2531
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2532 2533 2534
	}
out:
	/*
2535
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2536 2537 2538 2539
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2540 2541 2542

	if (all_pinned)
		*all_pinned = pinned;
2543 2544

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2545 2546
}

I
Ingo Molnar 已提交
2547
/*
P
Peter Williams 已提交
2548 2549 2550
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2551 2552 2553 2554
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2555
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2556 2557 2558
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2559
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2560
	unsigned long total_load_moved = 0;
2561
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2562 2563

	do {
P
Peter Williams 已提交
2564 2565
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2566
				max_load_move - total_load_moved,
2567
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2568
		class = class->next;
P
Peter Williams 已提交
2569
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2570

P
Peter Williams 已提交
2571 2572 2573
	return total_load_moved > 0;
}

2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2610
	const struct sched_class *class;
P
Peter Williams 已提交
2611 2612

	for (class = sched_class_highest; class; class = class->next)
2613
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2614 2615 2616
			return 1;

	return 0;
I
Ingo Molnar 已提交
2617 2618
}

L
Linus Torvalds 已提交
2619 2620
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2621 2622
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2623 2624 2625
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2626 2627
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2628 2629 2630
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2631
	unsigned long max_pull;
2632 2633
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2634
	int load_idx, group_imb = 0;
2635 2636 2637 2638 2639 2640
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2641 2642

	max_load = this_load = total_load = total_pwr = 0;
2643 2644
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2645
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2646
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2647
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2648 2649 2650
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2651 2652

	do {
2653
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2654 2655
		int local_group;
		int i;
2656
		int __group_imb = 0;
2657
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2658
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2659 2660 2661

		local_group = cpu_isset(this_cpu, group->cpumask);

2662 2663 2664
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2665
		/* Tally up the load of all CPUs in the group */
2666
		sum_weighted_load = sum_nr_running = avg_load = 0;
2667 2668
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2669 2670

		for_each_cpu_mask(i, group->cpumask) {
2671 2672 2673 2674 2675 2676
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2677

2678
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2679 2680
				*sd_idle = 0;

L
Linus Torvalds 已提交
2681
			/* Bias balancing toward cpus of our domain */
2682 2683 2684 2685 2686 2687
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2688
				load = target_load(i, load_idx);
2689
			} else {
N
Nick Piggin 已提交
2690
				load = source_load(i, load_idx);
2691 2692 2693 2694 2695
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2696 2697

			avg_load += load;
2698
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2699
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2700 2701
		}

2702 2703 2704
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2705 2706
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2707
		 */
2708 2709
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2710 2711 2712 2713
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2714
		total_load += avg_load;
2715
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2716 2717

		/* Adjust by relative CPU power of the group */
2718 2719
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2720

2721 2722 2723
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2724
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2725

L
Linus Torvalds 已提交
2726 2727 2728
		if (local_group) {
			this_load = avg_load;
			this = group;
2729 2730 2731
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2732
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2733 2734
			max_load = avg_load;
			busiest = group;
2735 2736
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2737
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2738
		}
2739 2740 2741 2742 2743 2744

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2745 2746 2747
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2748 2749 2750 2751 2752 2753 2754 2755 2756

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2757
		/*
2758 2759
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2760 2761
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2762
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2763
			goto group_next;
2764

I
Ingo Molnar 已提交
2765
		/*
2766
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2767 2768 2769 2770 2771
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2772 2773
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2774 2775
			group_min = group;
			min_nr_running = sum_nr_running;
2776 2777
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2778
		}
2779

I
Ingo Molnar 已提交
2780
		/*
2781
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2793
		}
2794 2795
group_next:
#endif
L
Linus Torvalds 已提交
2796 2797 2798
		group = group->next;
	} while (group != sd->groups);

2799
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2800 2801 2802 2803 2804 2805 2806 2807
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2808
	busiest_load_per_task /= busiest_nr_running;
2809 2810 2811
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817 2818 2819
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2820
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2821 2822
	 * appear as very large values with unsigned longs.
	 */
2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2835 2836

	/* Don't want to pull so many tasks that a group would go idle */
2837
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2838

L
Linus Torvalds 已提交
2839
	/* How much load to actually move to equalise the imbalance */
2840 2841
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2842 2843
			/ SCHED_LOAD_SCALE;

2844 2845 2846 2847 2848 2849
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2850
	if (*imbalance < busiest_load_per_task) {
2851
		unsigned long tmp, pwr_now, pwr_move;
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2863

I
Ingo Molnar 已提交
2864 2865
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2866
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2867 2868 2869 2870 2871 2872 2873 2874 2875
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2876 2877 2878 2879
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2880 2881 2882
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2883 2884
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2885
		if (max_load > tmp)
2886
			pwr_move += busiest->__cpu_power *
2887
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2888 2889

		/* Amount of load we'd add */
2890
		if (max_load * busiest->__cpu_power <
2891
				busiest_load_per_task * SCHED_LOAD_SCALE)
2892 2893
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2894
		else
2895 2896 2897 2898
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2899 2900 2901
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2902 2903
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908
	}

	return busiest;

out_balanced:
2909
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2910
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2911
		goto ret;
L
Linus Torvalds 已提交
2912

2913 2914 2915 2916 2917
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2918
ret:
L
Linus Torvalds 已提交
2919 2920 2921 2922 2923 2924 2925
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2926
static struct rq *
I
Ingo Molnar 已提交
2927
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2928
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2929
{
2930
	struct rq *busiest = NULL, *rq;
2931
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2932 2933 2934
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2935
		unsigned long wl;
2936 2937 2938 2939

		if (!cpu_isset(i, *cpus))
			continue;

2940
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2941
		wl = weighted_cpuload(i);
2942

I
Ingo Molnar 已提交
2943
		if (rq->nr_running == 1 && wl > imbalance)
2944
			continue;
L
Linus Torvalds 已提交
2945

I
Ingo Molnar 已提交
2946 2947
		if (wl > max_load) {
			max_load = wl;
2948
			busiest = rq;
L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954
		}
	}

	return busiest;
}

2955 2956 2957 2958 2959 2960
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2961 2962 2963 2964
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2965
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2966
			struct sched_domain *sd, enum cpu_idle_type idle,
2967
			int *balance)
L
Linus Torvalds 已提交
2968
{
P
Peter Williams 已提交
2969
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2970 2971
	struct sched_group *group;
	unsigned long imbalance;
2972
	struct rq *busiest;
2973
	cpumask_t cpus = CPU_MASK_ALL;
2974
	unsigned long flags;
N
Nick Piggin 已提交
2975

2976 2977 2978
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2979
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2980
	 * portraying it as CPU_NOT_IDLE.
2981
	 */
I
Ingo Molnar 已提交
2982
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2983
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2984
		sd_idle = 1;
L
Linus Torvalds 已提交
2985

2986
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2987

2988 2989
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2990 2991
				   &cpus, balance);

2992
	if (*balance == 0)
2993 2994
		goto out_balanced;

L
Linus Torvalds 已提交
2995 2996 2997 2998 2999
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3000
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3001 3002 3003 3004 3005
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3006
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3007 3008 3009

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3010
	ld_moved = 0;
L
Linus Torvalds 已提交
3011 3012 3013 3014
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3015
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3016 3017
		 * correctly treated as an imbalance.
		 */
3018
		local_irq_save(flags);
N
Nick Piggin 已提交
3019
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3020
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3021
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3022
		double_rq_unlock(this_rq, busiest);
3023
		local_irq_restore(flags);
3024

3025 3026 3027
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3028
		if (ld_moved && this_cpu != smp_processor_id())
3029 3030
			resched_cpu(this_cpu);

3031
		/* All tasks on this runqueue were pinned by CPU affinity */
3032 3033 3034 3035
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3036
			goto out_balanced;
3037
		}
L
Linus Torvalds 已提交
3038
	}
3039

P
Peter Williams 已提交
3040
	if (!ld_moved) {
L
Linus Torvalds 已提交
3041 3042 3043 3044 3045
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3046
			spin_lock_irqsave(&busiest->lock, flags);
3047 3048 3049 3050 3051

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3052
				spin_unlock_irqrestore(&busiest->lock, flags);
3053 3054 3055 3056
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3057 3058 3059
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3060
				active_balance = 1;
L
Linus Torvalds 已提交
3061
			}
3062
			spin_unlock_irqrestore(&busiest->lock, flags);
3063
			if (active_balance)
L
Linus Torvalds 已提交
3064 3065 3066 3067 3068 3069
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3070
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3071
		}
3072
	} else
L
Linus Torvalds 已提交
3073 3074
		sd->nr_balance_failed = 0;

3075
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3076 3077
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3078 3079 3080 3081 3082 3083 3084 3085 3086
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3087 3088
	}

P
Peter Williams 已提交
3089
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3090
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3091
		return -1;
P
Peter Williams 已提交
3092
	return ld_moved;
L
Linus Torvalds 已提交
3093 3094 3095 3096

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3097
	sd->nr_balance_failed = 0;
3098 3099

out_one_pinned:
L
Linus Torvalds 已提交
3100
	/* tune up the balancing interval */
3101 3102
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3103 3104
		sd->balance_interval *= 2;

3105
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3106
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3107
		return -1;
L
Linus Torvalds 已提交
3108 3109 3110 3111 3112 3113 3114
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3115
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3116 3117
 * this_rq is locked.
 */
3118
static int
3119
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3120 3121
{
	struct sched_group *group;
3122
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3123
	unsigned long imbalance;
P
Peter Williams 已提交
3124
	int ld_moved = 0;
N
Nick Piggin 已提交
3125
	int sd_idle = 0;
3126
	int all_pinned = 0;
3127
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3128

3129 3130 3131 3132
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3133
	 * portraying it as CPU_NOT_IDLE.
3134 3135 3136
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3137
		sd_idle = 1;
L
Linus Torvalds 已提交
3138

3139
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3140
redo:
I
Ingo Molnar 已提交
3141
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3142
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3143
	if (!group) {
I
Ingo Molnar 已提交
3144
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3145
		goto out_balanced;
L
Linus Torvalds 已提交
3146 3147
	}

I
Ingo Molnar 已提交
3148
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3149
				&cpus);
N
Nick Piggin 已提交
3150
	if (!busiest) {
I
Ingo Molnar 已提交
3151
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3152
		goto out_balanced;
L
Linus Torvalds 已提交
3153 3154
	}

N
Nick Piggin 已提交
3155 3156
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3157
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3158

P
Peter Williams 已提交
3159
	ld_moved = 0;
3160 3161 3162
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3163 3164
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3165
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3166 3167
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3168
		spin_unlock(&busiest->lock);
3169

3170
		if (unlikely(all_pinned)) {
3171 3172 3173 3174
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3175 3176
	}

P
Peter Williams 已提交
3177
	if (!ld_moved) {
I
Ingo Molnar 已提交
3178
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3179 3180
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3181 3182
			return -1;
	} else
3183
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3184

P
Peter Williams 已提交
3185
	return ld_moved;
3186 3187

out_balanced:
I
Ingo Molnar 已提交
3188
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3189
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3190
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3191
		return -1;
3192
	sd->nr_balance_failed = 0;
3193

3194
	return 0;
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3201
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3202 3203
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3204 3205
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3206 3207

	for_each_domain(this_cpu, sd) {
3208 3209 3210 3211 3212 3213
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3214
			/* If we've pulled tasks over stop searching: */
3215
			pulled_task = load_balance_newidle(this_cpu,
3216 3217 3218 3219 3220 3221 3222
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3223
	}
I
Ingo Molnar 已提交
3224
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3225 3226 3227 3228 3229
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3230
	}
L
Linus Torvalds 已提交
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3241
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3242
{
3243
	int target_cpu = busiest_rq->push_cpu;
3244 3245
	struct sched_domain *sd;
	struct rq *target_rq;
3246

3247
	/* Is there any task to move? */
3248 3249 3250 3251
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3252 3253

	/*
3254
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3255
	 * we need to fix it. Originally reported by
3256
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3257
	 */
3258
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3259

3260 3261
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3262 3263
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3264 3265

	/* Search for an sd spanning us and the target CPU. */
3266
	for_each_domain(target_cpu, sd) {
3267
		if ((sd->flags & SD_LOAD_BALANCE) &&
3268
		    cpu_isset(busiest_cpu, sd->span))
3269
				break;
3270
	}
3271

3272
	if (likely(sd)) {
3273
		schedstat_inc(sd, alb_count);
3274

P
Peter Williams 已提交
3275 3276
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3277 3278 3279 3280
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3281
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3282 3283
}

3284 3285 3286
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3287
	cpumask_t cpu_mask;
3288 3289 3290 3291 3292
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3293
/*
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3304
 *
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3361 3362 3363 3364 3365
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3366
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3367
{
3368 3369
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3370 3371
	unsigned long interval;
	struct sched_domain *sd;
3372
	/* Earliest time when we have to do rebalance again */
3373
	unsigned long next_balance = jiffies + 60*HZ;
3374
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3375

3376
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3377 3378 3379 3380
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3381
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3382 3383 3384 3385 3386 3387
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3388 3389 3390
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3391

3392 3393 3394 3395 3396
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3397
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3398
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3399 3400
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3401 3402 3403
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3404
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3405
			}
3406
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3407
		}
3408 3409 3410
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3411
		if (time_after(next_balance, sd->last_balance + interval)) {
3412
			next_balance = sd->last_balance + interval;
3413 3414
			update_next_balance = 1;
		}
3415 3416 3417 3418 3419 3420 3421 3422

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3423
	}
3424 3425 3426 3427 3428 3429 3430 3431

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3432 3433 3434 3435 3436 3437 3438 3439 3440
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3441 3442 3443 3444
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3445

I
Ingo Molnar 已提交
3446
	rebalance_domains(this_cpu, idle);
3447 3448 3449 3450 3451 3452 3453

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3454 3455
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3456 3457 3458 3459
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3460
		cpu_clear(this_cpu, cpus);
3461 3462 3463 3464 3465 3466 3467 3468 3469
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3470
			rebalance_domains(balance_cpu, CPU_IDLE);
3471 3472

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3473 3474
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3487
static inline void trigger_load_balance(struct rq *rq, int cpu)
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3539
}
I
Ingo Molnar 已提交
3540 3541 3542

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3543 3544 3545
/*
 * on UP we do not need to balance between CPUs:
 */
3546
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3547 3548
{
}
I
Ingo Molnar 已提交
3549

L
Linus Torvalds 已提交
3550 3551 3552 3553 3554 3555 3556
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3557 3558
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3559
 */
3560
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3561 3562
{
	unsigned long flags;
3563 3564
	u64 ns, delta_exec;
	struct rq *rq;
3565

3566 3567
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3568
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3569 3570
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3571 3572 3573 3574
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3575

L
Linus Torvalds 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3599 3600 3601 3602 3603
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3604
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3638
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3639 3640
	cputime64_t tmp;

3641 3642
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3643

L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650 3651
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3652
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3653
		cpustat->system = cputime64_add(cpustat->system, tmp);
3654
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3655 3656 3657 3658 3659 3660 3661
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3673 3674 3675 3676 3677 3678 3679 3680 3681
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3682
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3683 3684 3685 3686 3687 3688 3689

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3690
	} else
L
Linus Torvalds 已提交
3691 3692 3693
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3705
	struct task_struct *curr = rq->curr;
3706
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3707 3708

	spin_lock(&rq->lock);
3709
	__update_rq_clock(rq);
3710 3711 3712
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3713
	if (unlikely(rq->clock < next_tick)) {
3714
		rq->clock = next_tick;
3715 3716
		rq->clock_underflows++;
	}
3717
	rq->tick_timestamp = rq->clock;
3718
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3719 3720
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3721
	spin_unlock(&rq->lock);
3722

3723
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3724 3725
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3726
#endif
L
Linus Torvalds 已提交
3727 3728 3729 3730
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3731
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3732 3733 3734 3735
{
	/*
	 * Underflow?
	 */
3736 3737
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3738 3739 3740 3741
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3742 3743
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3744 3745 3746
}
EXPORT_SYMBOL(add_preempt_count);

3747
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3748 3749 3750 3751
{
	/*
	 * Underflow?
	 */
3752 3753
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3754 3755 3756
	/*
	 * Is the spinlock portion underflowing?
	 */
3757 3758 3759 3760
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3761 3762 3763 3764 3765 3766 3767
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3768
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3769
 */
I
Ingo Molnar 已提交
3770
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3771
{
3772 3773 3774 3775 3776
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3777 3778 3779
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3780 3781 3782 3783 3784

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3785
}
L
Linus Torvalds 已提交
3786

I
Ingo Molnar 已提交
3787 3788 3789 3790 3791
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3792
	/*
I
Ingo Molnar 已提交
3793
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3794 3795 3796
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3797 3798 3799
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3800 3801
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3802
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3803 3804
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3805 3806
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3807 3808
	}
#endif
I
Ingo Molnar 已提交
3809 3810 3811 3812 3813 3814
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3815
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3816
{
3817
	const struct sched_class *class;
I
Ingo Molnar 已提交
3818
	struct task_struct *p;
L
Linus Torvalds 已提交
3819 3820

	/*
I
Ingo Molnar 已提交
3821 3822
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3823
	 */
I
Ingo Molnar 已提交
3824
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3825
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3826 3827
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3828 3829
	}

I
Ingo Molnar 已提交
3830 3831
	class = sched_class_highest;
	for ( ; ; ) {
3832
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3833 3834 3835 3836 3837 3838 3839 3840 3841
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3842

I
Ingo Molnar 已提交
3843 3844 3845 3846 3847 3848
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
3849
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3865

P
Peter Zijlstra 已提交
3866 3867
	hrtick_clear(rq);

3868 3869 3870 3871
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3872
	__update_rq_clock(rq);
3873 3874
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3875 3876 3877

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3878
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3879
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3880
		} else {
3881
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3882
		}
I
Ingo Molnar 已提交
3883
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3884 3885
	}

3886 3887 3888 3889
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3890

I
Ingo Molnar 已提交
3891
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3892 3893
		idle_balance(cpu, rq);

3894
	prev->sched_class->put_prev_task(rq, prev);
3895
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3896 3897

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3898

L
Linus Torvalds 已提交
3899 3900 3901 3902 3903
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3904
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3905 3906 3907 3908 3909 3910
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3911 3912 3913
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3914 3915 3916
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3917
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3918

L
Linus Torvalds 已提交
3919 3920 3921 3922 3923 3924 3925 3926
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3927
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3928
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3929 3930 3931 3932 3933 3934 3935
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3936

L
Linus Torvalds 已提交
3937 3938
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3939
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3940
	 */
N
Nick Piggin 已提交
3941
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3942 3943
		return;

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3957

3958 3959 3960 3961 3962 3963
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3964 3965 3966 3967
}
EXPORT_SYMBOL(preempt_schedule);

/*
3968
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3969 3970 3971 3972 3973 3974 3975 3976 3977
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3978

3979
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3980 3981
	BUG_ON(ti->preempt_count || !irqs_disabled());

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3997

3998 3999 4000 4001 4002 4003
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4004 4005 4006 4007
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4008 4009
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4010
{
4011
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4012 4013 4014 4015
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4016 4017
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4018 4019 4020
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4021
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4022 4023 4024 4025 4026
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4027
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4028

4029
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4030 4031
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4032
		if (curr->func(curr, mode, sync, key) &&
4033
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4034 4035 4036 4037 4038 4039 4040 4041 4042
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4043
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4044
 */
4045
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4046
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4059
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4065
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4077
void
I
Ingo Molnar 已提交
4078
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4095
void complete(struct completion *x)
L
Linus Torvalds 已提交
4096 4097 4098 4099 4100
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4101
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4102 4103 4104 4105
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4106
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4107 4108 4109 4110 4111
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4112
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4113 4114 4115 4116
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4117 4118
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4119 4120 4121 4122 4123 4124 4125
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4126 4127 4128 4129
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4130 4131 4132 4133
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4139
				return timeout;
L
Linus Torvalds 已提交
4140 4141 4142 4143 4144 4145 4146 4147
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4148 4149
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4150 4151 4152 4153
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4154
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4155
	spin_unlock_irq(&x->wait.lock);
4156 4157
	return timeout;
}
L
Linus Torvalds 已提交
4158

4159
void __sched wait_for_completion(struct completion *x)
4160 4161
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4162
}
4163
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4164

4165
unsigned long __sched
4166
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4167
{
4168
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4169
}
4170
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4171

4172
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4173
{
4174 4175 4176 4177
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4178
}
4179
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4180

4181
unsigned long __sched
4182 4183
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4184
{
4185
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4186
}
4187
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4188

M
Matthew Wilcox 已提交
4189 4190 4191 4192 4193 4194 4195 4196 4197
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4198 4199
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4200
{
I
Ingo Molnar 已提交
4201 4202 4203 4204
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4205

4206
	__set_current_state(state);
L
Linus Torvalds 已提交
4207

4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4222 4223 4224
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4225
long __sched
I
Ingo Molnar 已提交
4226
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4227
{
4228
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4229 4230 4231
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4232
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4233
{
4234
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4235 4236 4237
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4238
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4239
{
4240
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4241 4242 4243
}
EXPORT_SYMBOL(sleep_on_timeout);

4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4256
void rt_mutex_setprio(struct task_struct *p, int prio)
4257 4258
{
	unsigned long flags;
4259
	int oldprio, on_rq, running;
4260
	struct rq *rq;
4261
	const struct sched_class *prev_class = p->sched_class;
4262 4263 4264 4265

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4266
	update_rq_clock(rq);
4267

4268
	oldprio = p->prio;
I
Ingo Molnar 已提交
4269
	on_rq = p->se.on_rq;
4270
	running = task_current(rq, p);
4271
	if (on_rq) {
4272
		dequeue_task(rq, p, 0);
4273 4274 4275
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4276 4277 4278 4279 4280 4281

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4282 4283
	p->prio = prio;

I
Ingo Molnar 已提交
4284
	if (on_rq) {
4285 4286
		if (running)
			p->sched_class->set_curr_task(rq);
4287

4288
		enqueue_task(rq, p, 0);
4289 4290

		check_class_changed(rq, p, prev_class, oldprio, running);
4291 4292 4293 4294 4295 4296
	}
	task_rq_unlock(rq, &flags);
}

#endif

4297
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4298
{
I
Ingo Molnar 已提交
4299
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4300
	unsigned long flags;
4301
	struct rq *rq;
L
Linus Torvalds 已提交
4302 4303 4304 4305 4306 4307 4308 4309

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4310
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4311 4312 4313 4314
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4315
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4316
	 */
4317
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4318 4319 4320
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4321
	on_rq = p->se.on_rq;
4322
	if (on_rq) {
4323
		dequeue_task(rq, p, 0);
4324 4325
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4326 4327

	p->static_prio = NICE_TO_PRIO(nice);
4328
	set_load_weight(p);
4329 4330 4331
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4332

I
Ingo Molnar 已提交
4333
	if (on_rq) {
4334
		enqueue_task(rq, p, 0);
4335
		inc_load(rq, p);
L
Linus Torvalds 已提交
4336
		/*
4337 4338
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4339
		 */
4340
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4348 4349 4350 4351 4352
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4353
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4354
{
4355 4356
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4357

M
Matt Mackall 已提交
4358 4359 4360 4361
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4373
	long nice, retval;
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4380 4381
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4391 4392 4393
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4412
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4421
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4422 4423 4424
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4425
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4440
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445 4446 4447 4448
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4449
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4450
{
4451
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4452 4453 4454
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4455 4456
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4457
{
I
Ingo Molnar 已提交
4458
	BUG_ON(p->se.on_rq);
4459

L
Linus Torvalds 已提交
4460
	p->policy = policy;
I
Ingo Molnar 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4473
	p->rt_priority = prio;
4474 4475 4476
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4477
	set_load_weight(p);
L
Linus Torvalds 已提交
4478 4479 4480
}

/**
4481
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4482 4483 4484
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4485
 *
4486
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4487
 */
I
Ingo Molnar 已提交
4488 4489
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4490
{
4491
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4492
	unsigned long flags;
4493
	const struct sched_class *prev_class = p->sched_class;
4494
	struct rq *rq;
L
Linus Torvalds 已提交
4495

4496 4497
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4498 4499 4500 4501 4502
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4503 4504
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4505
		return -EINVAL;
L
Linus Torvalds 已提交
4506 4507
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4508 4509
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4510 4511
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4512
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4513
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4514
		return -EINVAL;
4515
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4516 4517
		return -EINVAL;

4518 4519 4520 4521
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4522
		if (rt_policy(policy)) {
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4539 4540 4541 4542 4543 4544
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4545

4546 4547 4548 4549 4550
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4551

4552 4553 4554 4555 4556 4557 4558 4559 4560
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
	if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4561 4562 4563
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4564 4565 4566 4567 4568
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4569 4570 4571 4572
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4573
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4574 4575 4576
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4577 4578
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4579 4580
		goto recheck;
	}
I
Ingo Molnar 已提交
4581
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4582
	on_rq = p->se.on_rq;
4583
	running = task_current(rq, p);
4584
	if (on_rq) {
4585
		deactivate_task(rq, p, 0);
4586 4587 4588
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4589

L
Linus Torvalds 已提交
4590
	oldprio = p->prio;
I
Ingo Molnar 已提交
4591
	__setscheduler(rq, p, policy, param->sched_priority);
4592

I
Ingo Molnar 已提交
4593
	if (on_rq) {
4594 4595
		if (running)
			p->sched_class->set_curr_task(rq);
4596

I
Ingo Molnar 已提交
4597
		activate_task(rq, p, 0);
4598 4599

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4600
	}
4601 4602 4603
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4604 4605
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4606 4607 4608 4609
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4610 4611
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4612 4613 4614
{
	struct sched_param lparam;
	struct task_struct *p;
4615
	int retval;
L
Linus Torvalds 已提交
4616 4617 4618 4619 4620

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4621 4622 4623

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4624
	p = find_process_by_pid(pid);
4625 4626 4627
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4628

L
Linus Torvalds 已提交
4629 4630 4631 4632 4633 4634 4635 4636 4637
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4638 4639
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4640
{
4641 4642 4643 4644
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4664
	struct task_struct *p;
4665
	int retval;
L
Linus Torvalds 已提交
4666 4667

	if (pid < 0)
4668
		return -EINVAL;
L
Linus Torvalds 已提交
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4690
	struct task_struct *p;
4691
	int retval;
L
Linus Torvalds 已提交
4692 4693

	if (!param || pid < 0)
4694
		return -EINVAL;
L
Linus Torvalds 已提交
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4724 4725
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4726

4727
	get_online_cpus();
L
Linus Torvalds 已提交
4728 4729 4730 4731 4732
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4733
		put_online_cpus();
L
Linus Torvalds 已提交
4734 4735 4736 4737 4738
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4739
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4750 4751 4752 4753
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4754 4755
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4756
 again:
L
Linus Torvalds 已提交
4757 4758
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4771 4772
out_unlock:
	put_task_struct(p);
4773
	put_online_cpus();
L
Linus Torvalds 已提交
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4814
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4815 4816 4817
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4818
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4819 4820
EXPORT_SYMBOL(cpu_online_map);

4821
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4822
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4823 4824 4825 4826
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4827
	struct task_struct *p;
L
Linus Torvalds 已提交
4828 4829
	int retval;

4830
	get_online_cpus();
L
Linus Torvalds 已提交
4831 4832 4833 4834 4835 4836 4837
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4838 4839 4840 4841
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4842
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4843 4844 4845

out_unlock:
	read_unlock(&tasklist_lock);
4846
	put_online_cpus();
L
Linus Torvalds 已提交
4847

4848
	return retval;
L
Linus Torvalds 已提交
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4879 4880
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4881 4882 4883
 */
asmlinkage long sys_sched_yield(void)
{
4884
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4885

4886
	schedstat_inc(rq, yld_count);
4887
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4888 4889 4890 4891 4892 4893

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4894
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4895 4896 4897 4898 4899 4900 4901 4902
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4903
static void __cond_resched(void)
L
Linus Torvalds 已提交
4904
{
4905 4906 4907
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4908 4909 4910 4911 4912
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4913 4914 4915 4916 4917 4918 4919
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4920 4921
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4922
{
4923 4924
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4925 4926 4927 4928 4929
		__cond_resched();
		return 1;
	}
	return 0;
}
4930 4931
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4932 4933 4934 4935 4936

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4937
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4938 4939 4940
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4941
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4942
{
N
Nick Piggin 已提交
4943
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
4944 4945
	int ret = 0;

N
Nick Piggin 已提交
4946
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4947
		spin_unlock(lock);
N
Nick Piggin 已提交
4948 4949 4950 4951
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4952
		ret = 1;
L
Linus Torvalds 已提交
4953 4954
		spin_lock(lock);
	}
J
Jan Kara 已提交
4955
	return ret;
L
Linus Torvalds 已提交
4956 4957 4958 4959 4960 4961 4962
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4963
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4964
		local_bh_enable();
L
Linus Torvalds 已提交
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4976
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4987
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4988 4989 4990 4991 4992 4993 4994
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4995
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4996

4997
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4998 4999 5000
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5001
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5002 5003 5004 5005 5006
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5007
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5008 5009
	long ret;

5010
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5011 5012 5013
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5014
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5035
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5036
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5060
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5061
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5078
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5079
	unsigned int time_slice;
5080
	int retval;
L
Linus Torvalds 已提交
5081 5082 5083
	struct timespec t;

	if (pid < 0)
5084
		return -EINVAL;
L
Linus Torvalds 已提交
5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5096 5097 5098 5099 5100 5101
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5102
		time_slice = DEF_TIMESLICE;
5103
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5104 5105 5106 5107 5108
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5109 5110
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5111 5112
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5113
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5114
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5115 5116
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5117

L
Linus Torvalds 已提交
5118 5119 5120 5121 5122
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5123
static const char stat_nam[] = "RSDTtZX";
5124

5125
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5126 5127
{
	unsigned long free = 0;
5128
	unsigned state;
L
Linus Torvalds 已提交
5129 5130

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5131
	printk(KERN_INFO "%-13.13s %c", p->comm,
5132
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5133
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5134
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5135
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5136
	else
I
Ingo Molnar 已提交
5137
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5138 5139
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5140
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5141
	else
I
Ingo Molnar 已提交
5142
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5143 5144 5145
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5146
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5147 5148
		while (!*n)
			n++;
5149
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5150 5151
	}
#endif
5152
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5153
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5154

5155
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5156 5157
}

I
Ingo Molnar 已提交
5158
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5159
{
5160
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5161

5162 5163 5164
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5165
#else
5166 5167
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5168 5169 5170 5171 5172 5173 5174 5175
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5176
		if (!state_filter || (p->state & state_filter))
5177
			sched_show_task(p);
L
Linus Torvalds 已提交
5178 5179
	} while_each_thread(g, p);

5180 5181
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5182 5183 5184
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5185
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5186 5187 5188 5189 5190
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5191 5192
}

I
Ingo Molnar 已提交
5193 5194
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5195
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5196 5197
}

5198 5199 5200 5201 5202 5203 5204 5205
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5206
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5207
{
5208
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5209 5210
	unsigned long flags;

I
Ingo Molnar 已提交
5211 5212 5213
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5214
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5215
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5216
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5217 5218 5219

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5220 5221 5222
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5223 5224 5225
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5226
	task_thread_info(idle)->preempt_count = 0;
5227

I
Ingo Molnar 已提交
5228 5229 5230 5231
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5269 5270 5271 5272
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5273
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5292
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5293 5294
 * call is not atomic; no spinlocks may be held.
 */
5295
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5296
{
5297
	struct migration_req req;
L
Linus Torvalds 已提交
5298
	unsigned long flags;
5299
	struct rq *rq;
5300
	int ret = 0;
L
Linus Torvalds 已提交
5301 5302 5303 5304 5305 5306 5307

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5308 5309 5310
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5311
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5312
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5313 5314
	}

L
Linus Torvalds 已提交
5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5329

L
Linus Torvalds 已提交
5330 5331 5332 5333 5334
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5335
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5342 5343
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5344
 */
5345
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5346
{
5347
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5348
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5349 5350

	if (unlikely(cpu_is_offline(dest_cpu)))
5351
		return ret;
L
Linus Torvalds 已提交
5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5364
	on_rq = p->se.on_rq;
5365
	if (on_rq)
5366
		deactivate_task(rq_src, p, 0);
5367

L
Linus Torvalds 已提交
5368
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5369 5370 5371
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5372
	}
5373
	ret = 1;
L
Linus Torvalds 已提交
5374 5375
out:
	double_rq_unlock(rq_src, rq_dest);
5376
	return ret;
L
Linus Torvalds 已提交
5377 5378 5379 5380 5381 5382 5383
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5384
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5385 5386
{
	int cpu = (long)data;
5387
	struct rq *rq;
L
Linus Torvalds 已提交
5388 5389 5390 5391 5392 5393

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5394
		struct migration_req *req;
L
Linus Torvalds 已提交
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5417
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5418 5419
		list_del_init(head->next);

N
Nick Piggin 已提交
5420 5421 5422
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5452
/*
5453
 * Figure out where task on dead CPU should go, use force if necessary.
5454 5455
 * NOTE: interrupts should be disabled by the caller
 */
5456
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5457
{
5458
	unsigned long flags;
L
Linus Torvalds 已提交
5459
	cpumask_t mask;
5460 5461
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5462

5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5475 5476 5477 5478 5479
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5480
			 * cpuset_cpus_allowed() will not block. It must be
5481 5482
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5483
			rq = task_rq_lock(p, &flags);
5484
			p->cpus_allowed = cpus_allowed;
5485 5486
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5487

5488 5489 5490 5491 5492
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5493
			if (p->mm && printk_ratelimit()) {
5494 5495
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5496 5497
					task_pid_nr(p), p->comm, dead_cpu);
			}
5498
		}
5499
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5500 5501 5502 5503 5504 5505 5506 5507 5508
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5509
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5510
{
5511
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5525
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5526

5527
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5528

5529 5530
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5531 5532
			continue;

5533 5534 5535
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5536

5537
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5538 5539
}

I
Ingo Molnar 已提交
5540 5541
/*
 * Schedules idle task to be the next runnable task on current CPU.
5542 5543
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5544 5545 5546
 */
void sched_idle_next(void)
{
5547
	int this_cpu = smp_processor_id();
5548
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5549 5550 5551 5552
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5553
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5554

5555 5556 5557
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5558 5559 5560
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5561
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5562

5563 5564
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5565 5566 5567 5568

	spin_unlock_irqrestore(&rq->lock, flags);
}

5569 5570
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5584
/* called under rq->lock with disabled interrupts */
5585
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5586
{
5587
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5588 5589

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5590
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5591 5592

	/* Cannot have done final schedule yet: would have vanished. */
5593
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5594

5595
	get_task_struct(p);
L
Linus Torvalds 已提交
5596 5597 5598

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5599
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5600 5601
	 * fine.
	 */
5602
	spin_unlock_irq(&rq->lock);
5603
	move_task_off_dead_cpu(dead_cpu, p);
5604
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5605

5606
	put_task_struct(p);
L
Linus Torvalds 已提交
5607 5608 5609 5610 5611
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5612
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5613
	struct task_struct *next;
5614

I
Ingo Molnar 已提交
5615 5616 5617
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5618
		update_rq_clock(rq);
5619
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5620 5621 5622
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5623

L
Linus Torvalds 已提交
5624 5625 5626 5627
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5628 5629 5630
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5631 5632
	{
		.procname	= "sched_domain",
5633
		.mode		= 0555,
5634
	},
I
Ingo Molnar 已提交
5635
	{0, },
5636 5637 5638
};

static struct ctl_table sd_ctl_root[] = {
5639
	{
5640
		.ctl_name	= CTL_KERN,
5641
		.procname	= "kernel",
5642
		.mode		= 0555,
5643 5644
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5645
	{0, },
5646 5647 5648 5649 5650
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5651
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5652 5653 5654 5655

	return entry;
}

5656 5657
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5658
	struct ctl_table *entry;
5659

5660 5661 5662
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5663
	 * will always be set. In the lowest directory the names are
5664 5665 5666
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5667 5668
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5669 5670 5671
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5672 5673 5674 5675 5676

	kfree(*tablep);
	*tablep = NULL;
}

5677
static void
5678
set_table_entry(struct ctl_table *entry,
5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5692
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5693

5694 5695 5696
	if (table == NULL)
		return NULL;

5697
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5698
		sizeof(long), 0644, proc_doulongvec_minmax);
5699
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5700
		sizeof(long), 0644, proc_doulongvec_minmax);
5701
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5702
		sizeof(int), 0644, proc_dointvec_minmax);
5703
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5704
		sizeof(int), 0644, proc_dointvec_minmax);
5705
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5706
		sizeof(int), 0644, proc_dointvec_minmax);
5707
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5708
		sizeof(int), 0644, proc_dointvec_minmax);
5709
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5710
		sizeof(int), 0644, proc_dointvec_minmax);
5711
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5712
		sizeof(int), 0644, proc_dointvec_minmax);
5713
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5714
		sizeof(int), 0644, proc_dointvec_minmax);
5715
	set_table_entry(&table[9], "cache_nice_tries",
5716 5717
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5718
	set_table_entry(&table[10], "flags", &sd->flags,
5719
		sizeof(int), 0644, proc_dointvec_minmax);
5720
	/* &table[11] is terminator */
5721 5722 5723 5724

	return table;
}

5725
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5726 5727 5728 5729 5730 5731 5732 5733 5734
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5735 5736
	if (table == NULL)
		return NULL;
5737 5738 5739 5740 5741

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5742
		entry->mode = 0555;
5743 5744 5745 5746 5747 5748 5749 5750
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5751
static void register_sched_domain_sysctl(void)
5752 5753 5754 5755 5756
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5757 5758 5759
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5760 5761 5762
	if (entry == NULL)
		return;

5763
	for_each_online_cpu(i) {
5764 5765
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5766
		entry->mode = 0555;
5767
		entry->child = sd_alloc_ctl_cpu_table(i);
5768
		entry++;
5769
	}
5770 5771

	WARN_ON(sd_sysctl_header);
5772 5773
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5774

5775
/* may be called multiple times per register */
5776 5777
static void unregister_sched_domain_sysctl(void)
{
5778 5779
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5780
	sd_sysctl_header = NULL;
5781 5782
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5783
}
5784
#else
5785 5786 5787 5788
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5789 5790 5791 5792
{
}
#endif

L
Linus Torvalds 已提交
5793 5794 5795 5796
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5797 5798
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5799 5800
{
	struct task_struct *p;
5801
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5802
	unsigned long flags;
5803
	struct rq *rq;
L
Linus Torvalds 已提交
5804 5805

	switch (action) {
5806

L
Linus Torvalds 已提交
5807
	case CPU_UP_PREPARE:
5808
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5809
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5810 5811 5812 5813 5814
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5815
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5816 5817 5818
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5819

L
Linus Torvalds 已提交
5820
	case CPU_ONLINE:
5821
	case CPU_ONLINE_FROZEN:
5822
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5823
		wake_up_process(cpu_rq(cpu)->migration_thread);
G
Gregory Haskins 已提交
5824 5825 5826 5827 5828 5829 5830 5831 5832

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5833
		break;
5834

L
Linus Torvalds 已提交
5835 5836
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5837
	case CPU_UP_CANCELED_FROZEN:
5838 5839
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5840
		/* Unbind it from offline cpu so it can run. Fall thru. */
5841 5842
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5843 5844 5845
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5846

L
Linus Torvalds 已提交
5847
	case CPU_DEAD:
5848
	case CPU_DEAD_FROZEN:
5849
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5850 5851 5852 5853 5854
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5855
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5856
		update_rq_clock(rq);
5857
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5858
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5859 5860
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5861
		migrate_dead_tasks(cpu);
5862
		spin_unlock_irq(&rq->lock);
5863
		cpuset_unlock();
L
Linus Torvalds 已提交
5864 5865 5866
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5867 5868 5869 5870 5871
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5872 5873
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5874 5875
			struct migration_req *req;

L
Linus Torvalds 已提交
5876
			req = list_entry(rq->migration_queue.next,
5877
					 struct migration_req, list);
L
Linus Torvalds 已提交
5878 5879 5880 5881 5882
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893

	case CPU_DOWN_PREPARE:
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5894 5895 5896 5897 5898 5899 5900 5901
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5902
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5903 5904 5905 5906
	.notifier_call = migration_call,
	.priority = 10
};

5907
void __init migration_init(void)
L
Linus Torvalds 已提交
5908 5909
{
	void *cpu = (void *)(long)smp_processor_id();
5910
	int err;
5911 5912

	/* Start one for the boot CPU: */
5913 5914
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5915 5916 5917 5918 5919 5920
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5921 5922 5923 5924 5925

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5926
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5927 5928

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5929
{
I
Ingo Molnar 已提交
5930 5931 5932
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5933

I
Ingo Molnar 已提交
5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5945 5946
	}

I
Ingo Molnar 已提交
5947 5948 5949 5950 5951 5952 5953 5954 5955 5956
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5957

I
Ingo Molnar 已提交
5958
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5959
	do {
I
Ingo Molnar 已提交
5960 5961 5962
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5963 5964 5965
			break;
		}

I
Ingo Molnar 已提交
5966 5967 5968 5969 5970 5971
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5972

I
Ingo Molnar 已提交
5973 5974 5975 5976 5977
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5978

I
Ingo Molnar 已提交
5979 5980 5981 5982 5983
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5984

I
Ingo Molnar 已提交
5985
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5986

I
Ingo Molnar 已提交
5987 5988
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5989

I
Ingo Molnar 已提交
5990 5991 5992
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5993

I
Ingo Molnar 已提交
5994 5995
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5996

I
Ingo Molnar 已提交
5997 5998 5999 6000 6001
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6002

I
Ingo Molnar 已提交
6003 6004 6005
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6006

I
Ingo Molnar 已提交
6007 6008 6009 6010
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6011

I
Ingo Molnar 已提交
6012 6013 6014 6015 6016
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6017 6018
		level++;
		sd = sd->parent;
6019
		if (!sd)
I
Ingo Molnar 已提交
6020 6021
			break;
	}
L
Linus Torvalds 已提交
6022 6023
}
#else
6024
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6025 6026
#endif

6027
static int sd_degenerate(struct sched_domain *sd)
6028 6029 6030 6031 6032 6033 6034 6035
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6036 6037 6038
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6052 6053
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6072 6073 6074
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6075 6076 6077 6078 6079 6080 6081
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6092
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6093 6094
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6095
		}
G
Gregory Haskins 已提交
6096

6097 6098 6099
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6100 6101 6102 6103 6104 6105 6106
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6107 6108 6109 6110
	cpu_set(rq->cpu, rd->span);
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);

I
Ingo Molnar 已提交
6111
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6112 6113
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6114
	}
G
Gregory Haskins 已提交
6115 6116 6117 6118

	spin_unlock_irqrestore(&rq->lock, flags);
}

6119
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6120 6121 6122
{
	memset(rd, 0, sizeof(*rd));

6123 6124
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6125 6126 6127 6128
}

static void init_defrootdomain(void)
{
6129
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6130 6131 6132
	atomic_set(&def_root_domain.refcount, 1);
}

6133
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6134 6135 6136 6137 6138 6139 6140
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6141
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6142 6143 6144 6145

	return rd;
}

L
Linus Torvalds 已提交
6146
/*
I
Ingo Molnar 已提交
6147
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6148 6149
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6150 6151
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6152
{
6153
	struct rq *rq = cpu_rq(cpu);
6154 6155 6156 6157 6158 6159 6160
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6161
		if (sd_parent_degenerate(tmp, parent)) {
6162
			tmp->parent = parent->parent;
6163 6164 6165
			if (parent->parent)
				parent->parent->child = tmp;
		}
6166 6167
	}

6168
	if (sd && sd_degenerate(sd)) {
6169
		sd = sd->parent;
6170 6171 6172
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6173 6174 6175

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6176
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6177
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6178 6179 6180
}

/* cpus with isolated domains */
6181
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6196
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6197 6198

/*
6199 6200 6201 6202
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6203 6204 6205 6206 6207
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6208
static void
6209 6210 6211
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6212 6213 6214 6215 6216 6217
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6218 6219
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6220 6221 6222 6223 6224 6225
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6226
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6227 6228

		for_each_cpu_mask(j, span) {
6229
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6244
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6245

6246
#ifdef CONFIG_NUMA
6247

6248 6249 6250 6251 6252
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6253
 * Find the next node to include in a given scheduling domain. Simply
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6293
 * Given a node, construct a good cpumask for its sched_domain to span. It
6294 6295 6296 6297 6298 6299
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6300 6301
	cpumask_t span, nodemask;
	int i;
6302 6303 6304 6305 6306 6307 6308 6309 6310 6311

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6312

6313 6314 6315 6316 6317 6318 6319 6320
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6321
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6322

6323
/*
6324
 * SMT sched-domains:
6325
 */
L
Linus Torvalds 已提交
6326 6327
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6328
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6329

I
Ingo Molnar 已提交
6330 6331
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6332
{
6333 6334
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6335 6336 6337 6338
	return cpu;
}
#endif

6339 6340 6341
/*
 * multi-core sched-domains:
 */
6342 6343
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6344
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6345 6346 6347
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6348 6349
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6350
{
6351
	int group;
6352
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6353
	cpus_and(mask, mask, *cpu_map);
6354 6355 6356 6357
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6358 6359
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6360 6361
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6362
{
6363 6364
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6365 6366 6367 6368
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6369
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6370
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6371

I
Ingo Molnar 已提交
6372 6373
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6374
{
6375
	int group;
6376
#ifdef CONFIG_SCHED_MC
6377
	cpumask_t mask = cpu_coregroup_map(cpu);
6378
	cpus_and(mask, mask, *cpu_map);
6379
	group = first_cpu(mask);
6380
#elif defined(CONFIG_SCHED_SMT)
6381
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6382
	cpus_and(mask, mask, *cpu_map);
6383
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6384
#else
6385
	group = cpu;
L
Linus Torvalds 已提交
6386
#endif
6387 6388 6389
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6390 6391 6392 6393
}

#ifdef CONFIG_NUMA
/*
6394 6395 6396
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6397
 */
6398
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6399
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6400

6401
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6402
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6403

6404 6405
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6406
{
6407 6408 6409 6410 6411 6412 6413 6414 6415
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6416
}
6417

6418 6419 6420 6421 6422 6423 6424
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6425 6426 6427
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6428

6429 6430 6431 6432 6433 6434 6435 6436
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6437

6438 6439 6440 6441
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6442
}
L
Linus Torvalds 已提交
6443 6444
#endif

6445
#ifdef CONFIG_NUMA
6446 6447 6448
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6449
	int cpu, i;
6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6480 6481 6482 6483 6484
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6485

6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6512 6513
	sd->groups->__cpu_power = 0;

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6524
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6525 6526 6527 6528 6529 6530 6531 6532
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6533
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6534 6535 6536 6537
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6538
/*
6539 6540
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6541
 */
6542
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6543 6544
{
	int i;
G
Gregory Haskins 已提交
6545
	struct root_domain *rd;
6546 6547
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6548
	int sd_allnodes = 0;
6549 6550 6551 6552

	/*
	 * Allocate the per-node list of sched groups
	 */
6553
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6554
				    GFP_KERNEL);
6555 6556
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6557
		return -ENOMEM;
6558 6559 6560
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6561

6562
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6563 6564 6565 6566 6567
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6568
	/*
6569
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6570
	 */
6571
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6572 6573 6574
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6575
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6576 6577

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6578 6579
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6580 6581 6582
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6583
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6584
			p = sd;
6585
			sd_allnodes = 1;
6586 6587 6588
		} else
			p = NULL;

L
Linus Torvalds 已提交
6589 6590
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6591 6592
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6593 6594
		if (p)
			p->child = sd;
6595
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6596 6597 6598 6599 6600 6601 6602
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6603 6604
		if (p)
			p->child = sd;
6605
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6606

6607 6608 6609 6610 6611 6612 6613
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6614
		p->child = sd;
6615
		cpu_to_core_group(i, cpu_map, &sd->groups);
6616 6617
#endif

L
Linus Torvalds 已提交
6618 6619 6620 6621
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6622
		sd->span = per_cpu(cpu_sibling_map, i);
6623
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6624
		sd->parent = p;
6625
		p->child = sd;
6626
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6627 6628 6629 6630 6631
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6632
	for_each_cpu_mask(i, *cpu_map) {
6633
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6634
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6635 6636 6637
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6638 6639
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6640 6641 6642
	}
#endif

6643 6644 6645 6646 6647 6648 6649
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6650 6651
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6652 6653 6654
	}
#endif

L
Linus Torvalds 已提交
6655 6656 6657 6658
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6659
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6660 6661 6662
		if (cpus_empty(nodemask))
			continue;

6663
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6664 6665 6666 6667
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6668
	if (sd_allnodes)
I
Ingo Molnar 已提交
6669 6670
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6681 6682
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6683
			continue;
6684
		}
6685 6686 6687 6688

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6689
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6690 6691 6692 6693 6694
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6695 6696 6697
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6698

6699 6700 6701
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6702
		sg->__cpu_power = 0;
6703
		sg->cpumask = nodemask;
6704
		sg->next = sg;
6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6723 6724
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6725 6726 6727
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6728
				goto error;
6729
			}
6730
			sg->__cpu_power = 0;
6731
			sg->cpumask = tmp;
6732
			sg->next = prev->next;
6733 6734 6735 6736 6737
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6738 6739 6740
#endif

	/* Calculate CPU power for physical packages and nodes */
6741
#ifdef CONFIG_SCHED_SMT
6742
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6743 6744
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6745
		init_sched_groups_power(i, sd);
6746
	}
L
Linus Torvalds 已提交
6747
#endif
6748
#ifdef CONFIG_SCHED_MC
6749
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6750 6751
		struct sched_domain *sd = &per_cpu(core_domains, i);

6752
		init_sched_groups_power(i, sd);
6753 6754
	}
#endif
6755

6756
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6757 6758
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6759
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6760 6761
	}

6762
#ifdef CONFIG_NUMA
6763 6764
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6765

6766 6767
	if (sd_allnodes) {
		struct sched_group *sg;
6768

6769
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6770 6771
		init_numa_sched_groups_power(sg);
	}
6772 6773
#endif

L
Linus Torvalds 已提交
6774
	/* Attach the domains */
6775
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6776 6777 6778
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6779 6780
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6781 6782 6783
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6784
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6785
	}
6786 6787 6788

	return 0;

6789
#ifdef CONFIG_NUMA
6790 6791 6792
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6793
#endif
L
Linus Torvalds 已提交
6794
}
P
Paul Jackson 已提交
6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6806
/*
I
Ingo Molnar 已提交
6807
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6808 6809
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6810
 */
6811
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6812
{
6813 6814
	int err;

P
Paul Jackson 已提交
6815 6816 6817 6818 6819
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6820
	err = build_sched_domains(doms_cur);
6821
	register_sched_domain_sysctl();
6822 6823

	return err;
6824 6825 6826
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6827
{
6828
	free_sched_groups(cpu_map);
6829
}
L
Linus Torvalds 已提交
6830

6831 6832 6833 6834
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6835
static void detach_destroy_domains(const cpumask_t *cpu_map)
6836 6837 6838
{
	int i;

6839 6840
	unregister_sched_domain_sysctl();

6841
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6842
		cpu_attach_domain(NULL, &def_root_domain, i);
6843 6844 6845 6846
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6847 6848
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6849
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6850 6851 6852 6853
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6854 6855 6856
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6857 6858 6859
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6860 6861
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6872 6873
	lock_doms_cur();

6874 6875 6876
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6912 6913

	register_sched_domain_sysctl();
6914 6915

	unlock_doms_cur();
P
Paul Jackson 已提交
6916 6917
}

6918
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6919
static int arch_reinit_sched_domains(void)
6920 6921 6922
{
	int err;

6923
	get_online_cpus();
6924 6925
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6926
	put_online_cpus();
6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6953 6954
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6955 6956 6957
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6958 6959
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6960 6961 6962 6963 6964 6965 6966
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6967 6968
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6969 6970 6971
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6992 6993
#endif

L
Linus Torvalds 已提交
6994
/*
I
Ingo Molnar 已提交
6995
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6996
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6997
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6998 6999 7000 7001 7002 7003 7004
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7005
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7006
	case CPU_DOWN_PREPARE:
7007
	case CPU_DOWN_PREPARE_FROZEN:
7008
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7009 7010 7011
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7012
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7013
	case CPU_DOWN_FAILED:
7014
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7015
	case CPU_ONLINE:
7016
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7017
	case CPU_DEAD:
7018
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7019 7020 7021 7022 7023 7024 7025 7026 7027
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7028
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7029 7030 7031 7032 7033 7034

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7035 7036
	cpumask_t non_isolated_cpus;

7037
	get_online_cpus();
7038
	arch_init_sched_domains(&cpu_online_map);
7039
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7040 7041
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7042
	put_online_cpus();
L
Linus Torvalds 已提交
7043 7044
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7045 7046 7047 7048

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7049
	sched_init_granularity();
L
Linus Torvalds 已提交
7050 7051 7052 7053
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7054
	sched_init_granularity();
L
Linus Torvalds 已提交
7055 7056 7057 7058 7059 7060 7061 7062 7063 7064
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7065
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7066 7067 7068 7069 7070
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7071
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7072 7073
}

P
Peter Zijlstra 已提交
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7087
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7088 7089
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7090 7091 7092 7093 7094 7095 7096
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7097

7098
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7099
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7100 7101
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7102 7103
}

P
Peter Zijlstra 已提交
7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7122
#endif
P
Peter Zijlstra 已提交
7123

7124
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7144 7145
void __init sched_init(void)
{
7146
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7147 7148
	int i, j;

G
Gregory Haskins 已提交
7149 7150 7151 7152
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7153
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7154 7155 7156
	list_add(&init_task_group.list, &task_groups);
#endif

7157
	for_each_possible_cpu(i) {
7158
		struct rq *rq;
L
Linus Torvalds 已提交
7159 7160 7161

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7162
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7163
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7164 7165
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7166
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7167
#ifdef CONFIG_FAIR_GROUP_SCHED
7168
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7169 7170 7171 7172 7173
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7174 7175
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7176 7177
		init_task_group.rt_runtime =
			sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7178 7179 7180 7181
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7182
#endif
P
Peter Zijlstra 已提交
7183
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7184
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7185

I
Ingo Molnar 已提交
7186 7187
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7188
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7189
		rq->sd = NULL;
G
Gregory Haskins 已提交
7190
		rq->rd = NULL;
L
Linus Torvalds 已提交
7191
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7192
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7193
		rq->push_cpu = 0;
7194
		rq->cpu = i;
L
Linus Torvalds 已提交
7195 7196
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7197
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7198
#endif
P
Peter Zijlstra 已提交
7199
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7200
		atomic_set(&rq->nr_iowait, 0);
7201
		highest_cpu = i;
L
Linus Torvalds 已提交
7202 7203
	}

7204
	set_load_weight(&init_task);
7205

7206 7207 7208 7209
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7210
#ifdef CONFIG_SMP
7211
	nr_cpu_ids = highest_cpu + 1;
7212 7213 7214
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7215 7216 7217 7218
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7232 7233 7234 7235
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7236 7237

	scheduler_running = 1;
L
Linus Torvalds 已提交
7238 7239 7240 7241 7242
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7243
#ifdef in_atomic
L
Linus Torvalds 已提交
7244 7245 7246 7247 7248 7249 7250
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7251
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7252 7253 7254
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7255
		debug_show_held_locks(current);
7256 7257
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7258 7259 7260 7261 7262 7263 7264 7265
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7280 7281
void normalize_rt_tasks(void)
{
7282
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7283
	unsigned long flags;
7284
	struct rq *rq;
L
Linus Torvalds 已提交
7285

7286
	read_lock_irqsave(&tasklist_lock, flags);
7287
	do_each_thread(g, p) {
7288 7289 7290 7291 7292 7293
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7294 7295
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7296 7297 7298
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7299
#endif
I
Ingo Molnar 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7309
			continue;
I
Ingo Molnar 已提交
7310
		}
L
Linus Torvalds 已提交
7311

7312
		spin_lock(&p->pi_lock);
7313
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7314

7315
		normalize_task(rq, p);
7316

7317
		__task_rq_unlock(rq);
7318
		spin_unlock(&p->pi_lock);
7319 7320
	} while_each_thread(g, p);

7321
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7322 7323 7324
}

#endif /* CONFIG_MAGIC_SYSRQ */
7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7343
struct task_struct *curr_task(int cpu)
7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7354 7355
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7356 7357 7358 7359 7360 7361 7362
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7363
void set_curr_task(int cpu, struct task_struct *p)
7364 7365 7366 7367 7368
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7369

7370
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7371

7372 7373
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7388
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7389 7390 7391
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7392
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7393 7394
	int i;

7395
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7396 7397
	if (!tg->cfs_rq)
		goto err;
7398
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7399 7400
	if (!tg->se)
		goto err;
7401 7402

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7403 7404

	for_each_possible_cpu(i) {
7405
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7406

P
Peter Zijlstra 已提交
7407 7408
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7409 7410 7411
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7412 7413
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7414 7415 7416
		if (!se)
			goto err;

7417
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7453 7454 7455
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->rt_runtime = 0;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7490 7491 7492 7493
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7494

P
Peter Zijlstra 已提交
7495 7496 7497 7498
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7499

P
Peter Zijlstra 已提交
7500
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7501 7502
	}

7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7562
	spin_lock_irqsave(&task_group_lock, flags);
7563
	for_each_possible_cpu(i) {
7564 7565
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7566
	}
P
Peter Zijlstra 已提交
7567
	list_add_rcu(&tg->list, &task_groups);
7568
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7569

7570
	return tg;
S
Srivatsa Vaddagiri 已提交
7571 7572

err:
P
Peter Zijlstra 已提交
7573
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7574 7575 7576
	return ERR_PTR(-ENOMEM);
}

7577
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7578
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7579 7580
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7581
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7582 7583
}

7584
/* Destroy runqueue etc associated with a task group */
7585
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7586
{
7587
	unsigned long flags;
7588
	int i;
S
Srivatsa Vaddagiri 已提交
7589

7590
	spin_lock_irqsave(&task_group_lock, flags);
7591
	for_each_possible_cpu(i) {
7592 7593
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7594
	}
P
Peter Zijlstra 已提交
7595
	list_del_rcu(&tg->list);
7596
	spin_unlock_irqrestore(&task_group_lock, flags);
7597 7598

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7599
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7600 7601
}

7602
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7603 7604 7605
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7606 7607
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7608 7609 7610 7611 7612 7613 7614 7615 7616
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7617
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7618 7619
	on_rq = tsk->se.on_rq;

7620
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7621
		dequeue_task(rq, tsk, 0);
7622 7623 7624
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7625

P
Peter Zijlstra 已提交
7626
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7627

P
Peter Zijlstra 已提交
7628 7629 7630 7631 7632
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7633 7634 7635
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7636
		enqueue_task(rq, tsk, 0);
7637
	}
S
Srivatsa Vaddagiri 已提交
7638 7639 7640 7641

	task_rq_unlock(rq, &flags);
}

7642
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7643 7644 7645 7646 7647 7648
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7649
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7650 7651

	on_rq = se->on_rq;
7652
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7653 7654 7655 7656 7657
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7658
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7659
		enqueue_entity(cfs_rq, se, 0);
7660 7661

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7662 7663
}

7664 7665
static DEFINE_MUTEX(shares_mutex);

7666
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7667 7668
{
	int i;
7669
	unsigned long flags;
7670

7671 7672 7673 7674 7675 7676 7677 7678
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7679
	mutex_lock(&shares_mutex);
7680
	if (tg->shares == shares)
7681
		goto done;
S
Srivatsa Vaddagiri 已提交
7682

7683
	spin_lock_irqsave(&task_group_lock, flags);
7684 7685
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7686
	spin_unlock_irqrestore(&task_group_lock, flags);
7687 7688 7689 7690 7691 7692 7693 7694

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7695
	tg->shares = shares;
7696
	for_each_possible_cpu(i)
7697
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7698

7699 7700 7701 7702
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7703
	spin_lock_irqsave(&task_group_lock, flags);
7704 7705
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7706
	spin_unlock_irqrestore(&task_group_lock, flags);
7707
done:
7708
	mutex_unlock(&shares_mutex);
7709
	return 0;
S
Srivatsa Vaddagiri 已提交
7710 7711
}

7712 7713 7714 7715
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7716
#endif
7717

7718
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7719
/*
P
Peter Zijlstra 已提交
7720
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7721
 */
P
Peter Zijlstra 已提交
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

	runtime *= (1ULL << 16);
	div64_64(runtime, period);
	return runtime;
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7735 7736 7737
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7738 7739 7740 7741
	unsigned long global_ratio =
		to_ratio(sysctl_sched_rt_period,
			 sysctl_sched_rt_runtime < 0 ?
				RUNTIME_INF : sysctl_sched_rt_runtime);
P
Peter Zijlstra 已提交
7742 7743

	rcu_read_lock();
P
Peter Zijlstra 已提交
7744 7745 7746
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7747

P
Peter Zijlstra 已提交
7748 7749 7750
		total += to_ratio(period, tgi->rt_runtime);
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7751

P
Peter Zijlstra 已提交
7752
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7753 7754
}

P
Peter Zijlstra 已提交
7755
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
P
Peter Zijlstra 已提交
7756
{
P
Peter Zijlstra 已提交
7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776
	u64 rt_runtime, rt_period;
	int err = 0;

	rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us == -1)
		rt_runtime = rt_period;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
	if (rt_runtime_us == -1)
		rt_runtime = RUNTIME_INF;
	tg->rt_runtime = rt_runtime;
 unlock:
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7777 7778
}

P
Peter Zijlstra 已提交
7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

	if (tg->rt_runtime == RUNTIME_INF)
		return -1;

	rt_runtime_us = tg->rt_runtime;
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7790 7791
#endif
#endif	/* CONFIG_GROUP_SCHED */
7792

7793
#ifdef CONFIG_CGROUP_SCHED
7794 7795

/* return corresponding task_group object of a cgroup */
7796
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7797
{
7798 7799
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7800 7801 7802
}

static struct cgroup_subsys_state *
7803
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7804 7805 7806
{
	struct task_group *tg;

7807
	if (!cgrp->parent) {
7808
		/* This is early initialization for the top cgroup */
7809
		init_task_group.css.cgroup = cgrp;
7810 7811 7812 7813
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7814
	if (cgrp->parent->parent)
7815 7816 7817 7818 7819 7820 7821
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7822
	tg->css.cgroup = cgrp;
7823 7824 7825 7826

	return &tg->css;
}

I
Ingo Molnar 已提交
7827 7828
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7829
{
7830
	struct task_group *tg = cgroup_tg(cgrp);
7831 7832 7833 7834

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7835 7836 7837
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7838
{
7839 7840 7841 7842 7843
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
		return -EINVAL;
#else
7844 7845 7846
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7847
#endif
7848 7849 7850 7851 7852

	return 0;
}

static void
7853
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7854 7855 7856 7857 7858
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7859
#ifdef CONFIG_FAIR_GROUP_SCHED
7860 7861
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7862
{
7863
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7864 7865
}

7866
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7867
{
7868
	struct task_group *tg = cgroup_tg(cgrp);
7869 7870 7871

	return (u64) tg->shares;
}
7872
#endif
7873

7874
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7875 7876 7877 7878
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
7879
{
P
Peter Zijlstra 已提交
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
7906 7907
}

P
Peter Zijlstra 已提交
7908 7909 7910 7911
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
7912
{
P
Peter Zijlstra 已提交
7913 7914 7915
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
7916

P
Peter Zijlstra 已提交
7917
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
7918
}
7919
#endif
P
Peter Zijlstra 已提交
7920

7921
static struct cftype cpu_files[] = {
7922
#ifdef CONFIG_FAIR_GROUP_SCHED
7923 7924 7925 7926 7927
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7928 7929
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7930
	{
P
Peter Zijlstra 已提交
7931 7932 7933
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7934
	},
7935
#endif
7936 7937 7938 7939
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7940
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7941 7942 7943
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7944 7945 7946 7947 7948 7949 7950
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7951 7952 7953
	.early_init	= 1,
};

7954
#endif	/* CONFIG_CGROUP_SCHED */
7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8007 8008
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */