sched.c 194.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

158
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
159

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168
#ifdef CONFIG_CGROUP_SCHED
169 170
	struct cgroup_subsys_state css;
#endif
171 172

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
173 174 175 176 177
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
	unsigned long shares;
178 179 180 181 182 183 184 185
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	u64 rt_runtime;
#endif
186

187
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
188
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
189 190
};

191
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
192 193 194 195 196
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

197 198
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 200 201 202 203
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
204

P
Peter Zijlstra 已提交
205 206
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
207
#endif
P
Peter Zijlstra 已提交
208

209
/* task_group_lock serializes add/remove of task groups and also changes to
210 211
 * a task group's cpu shares.
 */
212
static DEFINE_SPINLOCK(task_group_lock);
213

214 215 216
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

217 218 219 220 221 222 223 224 225 226
#ifdef CONFIG_FAIR_GROUP_SCHED
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
227
/* Default task group.
I
Ingo Molnar 已提交
228
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
229
 */
230
struct task_group init_task_group = {
231
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
232
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
233
	.cfs_rq = init_cfs_rq_p,
234
#endif
P
Peter Zijlstra 已提交
235

236
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
237 238
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
239
#endif
240
};
S
Srivatsa Vaddagiri 已提交
241 242

/* return group to which a task belongs */
243
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
244
{
245
	struct task_group *tg;
246

247
#ifdef CONFIG_USER_SCHED
248
	tg = p->user->tg;
249
#elif defined(CONFIG_CGROUP_SCHED)
250 251
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
252
#else
I
Ingo Molnar 已提交
253
	tg = &init_task_group;
254
#endif
255
	return tg;
S
Srivatsa Vaddagiri 已提交
256 257 258
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
259
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
260
{
261
#ifdef CONFIG_FAIR_GROUP_SCHED
262 263
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
264
#endif
P
Peter Zijlstra 已提交
265

266
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
267 268
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
269
#endif
S
Srivatsa Vaddagiri 已提交
270 271
}

272 273 274 275 276 277 278 279 280 281
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
282 283
#else

P
Peter Zijlstra 已提交
284
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 286
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
287

288
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
289

I
Ingo Molnar 已提交
290 291 292 293 294 295
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
296
	u64 min_vruntime;
I
Ingo Molnar 已提交
297 298 299 300 301 302 303 304

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
305 306 307

	unsigned long nr_spread_over;

308
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
309 310
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
311 312
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
313 314 315 316 317 318
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
319 320
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
321 322
#endif
};
L
Linus Torvalds 已提交
323

I
Ingo Molnar 已提交
324 325 326
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
327
	unsigned long rt_nr_running;
328
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
329 330
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
331
#ifdef CONFIG_SMP
332
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
333
	int overloaded;
P
Peter Zijlstra 已提交
334
#endif
P
Peter Zijlstra 已提交
335
	int rt_throttled;
P
Peter Zijlstra 已提交
336
	u64 rt_time;
P
Peter Zijlstra 已提交
337

338
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
339 340
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
341 342 343 344 345
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
346 347
};

G
Gregory Haskins 已提交
348 349 350 351
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
352 353
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
354 355 356 357 358 359 360 361
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
362

I
Ingo Molnar 已提交
363
	/*
364 365 366 367
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
368
	atomic_t rto_count;
G
Gregory Haskins 已提交
369 370
};

371 372 373 374
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
375 376 377 378
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
379 380 381 382 383 384 385
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
386
struct rq {
387 388
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
389 390 391 392 393 394

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
395 396
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397
	unsigned char idle_at_tick;
398 399 400
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
401 402
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
403 404 405 406
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
407 408
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
409
	int rt_throttled;
P
Peter Zijlstra 已提交
410

I
Ingo Molnar 已提交
411
#ifdef CONFIG_FAIR_GROUP_SCHED
412 413
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
414 415
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
416
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
417 418 419 420 421 422 423 424 425 426
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

427
	struct task_struct *curr, *idle;
428
	unsigned long next_balance;
L
Linus Torvalds 已提交
429
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
430 431 432 433

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

434
	unsigned int clock_warps, clock_overflows, clock_underflows;
435 436
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
437
	u64 tick_timestamp;
I
Ingo Molnar 已提交
438

L
Linus Torvalds 已提交
439 440 441
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
442
	struct root_domain *rd;
L
Linus Torvalds 已提交
443 444 445 446 447
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
448 449
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
450

451
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
452 453 454
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
455 456 457 458 459 460
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
461 462 463 464 465
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
466 467 468 469
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
470 471

	/* schedule() stats */
472 473 474
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
475 476

	/* try_to_wake_up() stats */
477 478
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
479 480

	/* BKL stats */
481
	unsigned int bkl_count;
L
Linus Torvalds 已提交
482
#endif
483
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
484 485
};

486
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
487

I
Ingo Molnar 已提交
488 489 490 491 492
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

493 494 495 496 497 498 499 500 501
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
502
/*
I
Ingo Molnar 已提交
503 504
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
505
 */
I
Ingo Molnar 已提交
506
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
507 508 509 510 511 512
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
513 514 515
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
516 517 518 519 520 521 522 523 524 525
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
526 527 528 529 530
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
531 532 533 534 535 536 537 538 539 540
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
541
}
I
Ingo Molnar 已提交
542

I
Ingo Molnar 已提交
543 544 545 546
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
547 548
}

N
Nick Piggin 已提交
549 550
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
552 553 554 555
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
556 557
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
558 559 560 561 562 563

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
594
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
595 596
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
597 598
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
P
Peter Zijlstra 已提交
599 600
	SCHED_FEAT_HRTICK		= 32,
	SCHED_FEAT_DOUBLE_TICK		= 64,
I
Ingo Molnar 已提交
601 602 603
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
604
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
605
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
606 607
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
P
Peter Zijlstra 已提交
608 609 610
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
611 612 613

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

614 615 616 617 618 619
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
620
/*
P
Peter Zijlstra 已提交
621
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
622 623
 * default: 1s
 */
P
Peter Zijlstra 已提交
624
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
625

626 627
static __read_mostly int scheduler_running;

P
Peter Zijlstra 已提交
628 629 630 631 632
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
633 634

/*
P
Peter Zijlstra 已提交
635
 * single value that denotes runtime == period, ie unlimited time.
P
Peter Zijlstra 已提交
636
 */
P
Peter Zijlstra 已提交
637
#define RUNTIME_INF	((u64)~0ULL)
P
Peter Zijlstra 已提交
638

639 640 641 642 643 644 645 646
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
647
	struct rq *rq;
648

649 650 651 652
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
653 654 655 656 657 658
	if (unlikely(!scheduler_running))
		return 0;

	local_irq_save(flags);
	rq = cpu_rq(cpu);
	update_rq_clock(rq);
I
Ingo Molnar 已提交
659
	now = rq->clock;
660
	local_irq_restore(flags);
661 662 663

	return now;
}
P
Paul E. McKenney 已提交
664
EXPORT_SYMBOL_GPL(cpu_clock);
665

L
Linus Torvalds 已提交
666
#ifndef prepare_arch_switch
667 668 669 670 671 672
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

673 674 675 676 677
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

678
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
679
static inline int task_running(struct rq *rq, struct task_struct *p)
680
{
681
	return task_current(rq, p);
682 683
}

684
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
685 686 687
{
}

688
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
689
{
690 691 692 693
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
694 695 696 697 698 699 700
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

701 702 703 704
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
705
static inline int task_running(struct rq *rq, struct task_struct *p)
706 707 708 709
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
710
	return task_current(rq, p);
711 712 713
#endif
}

714
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

731
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
732 733 734 735 736 737 738 739 740 741 742 743
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
744
#endif
745 746
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
747

748 749 750 751
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
752
static inline struct rq *__task_rq_lock(struct task_struct *p)
753 754
	__acquires(rq->lock)
{
755 756 757 758 759
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
760 761 762 763
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
764 765
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
766
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
767 768
 * explicitly disabling preemption.
 */
769
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
770 771
	__acquires(rq->lock)
{
772
	struct rq *rq;
L
Linus Torvalds 已提交
773

774 775 776 777 778 779
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
780 781 782 783
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
784
static void __task_rq_unlock(struct rq *rq)
785 786 787 788 789
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

790
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
791 792 793 794 795 796
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
797
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
798
 */
A
Alexey Dobriyan 已提交
799
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
800 801
	__acquires(rq->lock)
{
802
	struct rq *rq;
L
Linus Torvalds 已提交
803 804 805 806 807 808 809 810

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

811
/*
812
 * We are going deep-idle (irqs are disabled):
813
 */
814
void sched_clock_idle_sleep_event(void)
815
{
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
832

833 834 835 836 837 838 839 840 841 842 843
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
844
	touch_softlockup_watchdog();
845
}
846
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
847

P
Peter Zijlstra 已提交
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1028
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1029 1030 1031 1032 1033
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1034
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1035 1036
		return;

P
Peter Zijlstra 已提交
1037
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1060
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1061 1062
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1063
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1064 1065 1066
}
#endif

1067 1068 1069 1070 1071 1072 1073 1074
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1075 1076 1077
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1078
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1079

1080
static unsigned long
1081 1082 1083 1084 1085 1086
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1087
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1088 1089 1090 1091 1092

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1093
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1094
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1095 1096
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1097
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1098

1099
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1100 1101 1102 1103 1104 1105 1106 1107
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1108
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1109 1110
{
	lw->weight += inc;
I
Ingo Molnar 已提交
1111
	lw->inv_weight = 0;
1112 1113
}

1114
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1115 1116
{
	lw->weight -= dec;
I
Ingo Molnar 已提交
1117
	lw->inv_weight = 0;
1118 1119
}

1120 1121 1122 1123
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1124
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1125 1126 1127 1128
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1140 1141 1142
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1143 1144
 */
static const int prio_to_weight[40] = {
1145 1146 1147 1148 1149 1150 1151 1152
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1153 1154
};

1155 1156 1157 1158 1159 1160 1161
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1162
static const u32 prio_to_wmult[40] = {
1163 1164 1165 1166 1167 1168 1169 1170
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1171
};
1172

I
Ingo Molnar 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1198

1199 1200 1201 1202 1203 1204
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1205 1206 1207 1208 1209 1210 1211
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1212 1213
#include "sched_stats.h"
#include "sched_idletask.c"
1214 1215
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1216 1217 1218 1219 1220 1221
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
static inline void inc_load(struct rq *rq, const struct task_struct *p)
{
	update_load_add(&rq->load, p->se.load.weight);
}

static inline void dec_load(struct rq *rq, const struct task_struct *p)
{
	update_load_sub(&rq->load, p->se.load.weight);
}

static void inc_nr_running(struct task_struct *p, struct rq *rq)
1233 1234
{
	rq->nr_running++;
1235
	inc_load(rq, p);
1236 1237
}

1238
static void dec_nr_running(struct task_struct *p, struct rq *rq)
1239 1240
{
	rq->nr_running--;
1241
	dec_load(rq, p);
1242 1243
}

1244 1245 1246
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1247 1248 1249 1250
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1251

I
Ingo Molnar 已提交
1252 1253 1254 1255 1256 1257 1258 1259
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1260

I
Ingo Molnar 已提交
1261 1262
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1263 1264
}

1265
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1266
{
I
Ingo Molnar 已提交
1267
	sched_info_queued(p);
1268
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1269
	p->se.on_rq = 1;
1270 1271
}

1272
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1273
{
1274
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1275
	p->se.on_rq = 0;
1276 1277
}

1278
/*
I
Ingo Molnar 已提交
1279
 * __normal_prio - return the priority that is based on the static prio
1280 1281 1282
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1283
	return p->static_prio;
1284 1285
}

1286 1287 1288 1289 1290 1291 1292
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1293
static inline int normal_prio(struct task_struct *p)
1294 1295 1296
{
	int prio;

1297
	if (task_has_rt_policy(p))
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1311
static int effective_prio(struct task_struct *p)
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1324
/*
I
Ingo Molnar 已提交
1325
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1326
 */
I
Ingo Molnar 已提交
1327
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1328
{
1329
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1330
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1331

1332
	enqueue_task(rq, p, wakeup);
1333
	inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1334 1335 1336 1337 1338
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1339
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1340
{
1341
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1342 1343
		rq->nr_uninterruptible++;

1344
	dequeue_task(rq, p, sleep);
1345
	dec_nr_running(p, rq);
L
Linus Torvalds 已提交
1346 1347 1348 1349 1350 1351
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1352
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1353 1354 1355 1356
{
	return cpu_curr(task_cpu(p)) == p;
}

1357 1358 1359
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1360
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1361 1362 1363 1364
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1365
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1366
#ifdef CONFIG_SMP
1367 1368 1369 1370 1371 1372
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1373 1374
	task_thread_info(p)->cpu = cpu;
#endif
1375 1376
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1389
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1390

1391 1392 1393
/*
 * Is this task likely cache-hot:
 */
1394
static int
1395 1396 1397 1398 1399 1400 1401
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1402 1403 1404 1405 1406
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1407 1408 1409 1410 1411 1412
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1413
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1414
{
I
Ingo Molnar 已提交
1415 1416
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1417 1418
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1419
	u64 clock_offset;
I
Ingo Molnar 已提交
1420 1421

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1422 1423 1424 1425

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1426 1427 1428 1429
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1430 1431 1432 1433 1434
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1435
#endif
1436 1437
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1438 1439

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1440 1441
}

1442
struct migration_req {
L
Linus Torvalds 已提交
1443 1444
	struct list_head list;

1445
	struct task_struct *task;
L
Linus Torvalds 已提交
1446 1447 1448
	int dest_cpu;

	struct completion done;
1449
};
L
Linus Torvalds 已提交
1450 1451 1452 1453 1454

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1455
static int
1456
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1457
{
1458
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1459 1460 1461 1462 1463

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1464
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469 1470 1471 1472
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1473

L
Linus Torvalds 已提交
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1486
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1487 1488
{
	unsigned long flags;
I
Ingo Molnar 已提交
1489
	int running, on_rq;
1490
	struct rq *rq;
L
Linus Torvalds 已提交
1491

1492 1493 1494 1495 1496 1497 1498 1499
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1500

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1514

1515 1516 1517 1518 1519 1520 1521 1522 1523
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1549

1550 1551 1552 1553 1554 1555 1556
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1572
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1584 1585
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1586 1587 1588 1589
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1590
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1591
{
1592
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1593
	unsigned long total = weighted_cpuload(cpu);
1594

1595
	if (type == 0)
I
Ingo Molnar 已提交
1596
		return total;
1597

I
Ingo Molnar 已提交
1598
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1599 1600 1601
}

/*
1602 1603
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1604
 */
A
Alexey Dobriyan 已提交
1605
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1606
{
1607
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1608
	unsigned long total = weighted_cpuload(cpu);
1609

N
Nick Piggin 已提交
1610
	if (type == 0)
I
Ingo Molnar 已提交
1611
		return total;
1612

I
Ingo Molnar 已提交
1613
	return max(rq->cpu_load[type-1], total);
1614 1615 1616 1617 1618
}

/*
 * Return the average load per task on the cpu's run queue
 */
1619
static unsigned long cpu_avg_load_per_task(int cpu)
1620
{
1621
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1622
	unsigned long total = weighted_cpuload(cpu);
1623 1624
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1625
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1626 1627
}

N
Nick Piggin 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1645 1646
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1647
			continue;
1648

N
Nick Piggin 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1665 1666
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1667 1668 1669 1670 1671 1672 1673 1674

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1675
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1676 1677 1678 1679 1680 1681 1682

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1683
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1684
 */
I
Ingo Molnar 已提交
1685 1686
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1687
{
1688
	cpumask_t tmp;
N
Nick Piggin 已提交
1689 1690 1691 1692
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1693 1694 1695 1696
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1697
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1723

1724
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1725 1726 1727
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1728 1729
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1730 1731
		if (tmp->flags & flag)
			sd = tmp;
1732
	}
N
Nick Piggin 已提交
1733 1734 1735 1736

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1737 1738 1739 1740 1741 1742
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1743 1744 1745

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1746 1747 1748 1749
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1750

1751
		new_cpu = find_idlest_cpu(group, t, cpu);
1752 1753 1754 1755 1756
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1757

1758
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1790
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1791
{
1792
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1793 1794
	unsigned long flags;
	long old_state;
1795
	struct rq *rq;
L
Linus Torvalds 已提交
1796

1797
	smp_wmb();
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802
	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1803
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1804 1805 1806
		goto out_running;

	cpu = task_cpu(p);
1807
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1808 1809 1810 1811 1812 1813
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1814 1815 1816
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821 1822
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1823
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828 1829
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1845 1846
out_activate:
#endif /* CONFIG_SMP */
1847 1848 1849 1850 1851 1852 1853 1854 1855
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1856
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1857
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1858
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1859 1860 1861 1862
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1863 1864 1865 1866
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1867 1868 1869 1870 1871 1872
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1873
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1874
{
1875
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1876 1877 1878
}
EXPORT_SYMBOL(wake_up_process);

1879
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1880 1881 1882 1883 1884 1885 1886
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1887 1888 1889 1890 1891 1892 1893
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1894
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1895 1896 1897

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1898 1899 1900 1901 1902 1903
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1904
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1905
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1906
#endif
N
Nick Piggin 已提交
1907

P
Peter Zijlstra 已提交
1908
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1909
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1910

1911 1912 1913 1914
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1915 1916 1917 1918 1919 1920 1921
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1936
	set_task_cpu(p, cpu);
1937 1938 1939 1940 1941

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1942 1943
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1944

1945
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1946
	if (likely(sched_info_on()))
1947
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1948
#endif
1949
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1950 1951
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1952
#ifdef CONFIG_PREEMPT
1953
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1954
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1955
#endif
N
Nick Piggin 已提交
1956
	put_cpu();
L
Linus Torvalds 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
1966
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
1967 1968
{
	unsigned long flags;
I
Ingo Molnar 已提交
1969
	struct rq *rq;
L
Linus Torvalds 已提交
1970 1971

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
1972
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
1973
	update_rq_clock(rq);
L
Linus Torvalds 已提交
1974 1975 1976

	p->prio = effective_prio(p);

1977
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
1978
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
1979 1980
	} else {
		/*
I
Ingo Molnar 已提交
1981 1982
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
1983
		 */
1984
		p->sched_class->task_new(rq, p);
1985
		inc_nr_running(p, rq);
L
Linus Torvalds 已提交
1986
	}
I
Ingo Molnar 已提交
1987
	check_preempt_curr(rq, p);
1988 1989 1990 1991
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
1992
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
1993 1994
}

1995 1996 1997
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
1998 1999
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2000 2001 2002 2003 2004 2005 2006 2007 2008
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2009
 * @notifier: notifier struct to unregister
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2053 2054 2055
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2056
 * @prev: the current task that is being switched out
2057 2058 2059 2060 2061 2062 2063 2064 2065
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2066 2067 2068
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2069
{
2070
	fire_sched_out_preempt_notifiers(prev, next);
2071 2072 2073 2074
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2075 2076
/**
 * finish_task_switch - clean up after a task-switch
2077
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2078 2079
 * @prev: the thread we just switched away from.
 *
2080 2081 2082 2083
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2084 2085
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2086
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2087 2088 2089
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2090
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2091 2092 2093
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2094
	long prev_state;
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2100
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2101 2102
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2103
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2104 2105 2106 2107 2108
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2109
	prev_state = prev->state;
2110 2111
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2112 2113 2114 2115
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2116

2117
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2118 2119
	if (mm)
		mmdrop(mm);
2120
	if (unlikely(prev_state == TASK_DEAD)) {
2121 2122 2123
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2124
		 */
2125
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2126
		put_task_struct(prev);
2127
	}
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132 2133
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2134
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2135 2136
	__releases(rq->lock)
{
2137 2138
	struct rq *rq = this_rq();

2139 2140 2141 2142 2143
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2144
	if (current->set_child_tid)
2145
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2146 2147 2148 2149 2150 2151
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2152
static inline void
2153
context_switch(struct rq *rq, struct task_struct *prev,
2154
	       struct task_struct *next)
L
Linus Torvalds 已提交
2155
{
I
Ingo Molnar 已提交
2156
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2157

2158
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2159 2160
	mm = next->mm;
	oldmm = prev->active_mm;
2161 2162 2163 2164 2165 2166 2167
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2168
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2169 2170 2171 2172 2173 2174
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2175
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2176 2177 2178
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2179 2180 2181 2182 2183 2184 2185
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2186
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2187
#endif
L
Linus Torvalds 已提交
2188 2189 2190 2191

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2192 2193 2194 2195 2196 2197 2198
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2222
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2237 2238
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2239

2240
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2241 2242 2243 2244 2245 2246 2247 2248 2249
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2250
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2271
/*
I
Ingo Molnar 已提交
2272 2273
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2274
 */
I
Ingo Molnar 已提交
2275
static void update_cpu_load(struct rq *this_rq)
2276
{
2277
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2290 2291 2292 2293 2294 2295 2296
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2297 2298
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2299 2300
}

I
Ingo Molnar 已提交
2301 2302
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2309
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2310 2311 2312
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2313
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2314 2315 2316 2317
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2318
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324 2325
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2326 2327
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2328 2329 2330 2331 2332 2333 2334 2335
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2336
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2350
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2351 2352 2353 2354
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2355 2356
	int ret = 0;

2357 2358 2359 2360 2361
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2362
	if (unlikely(!spin_trylock(&busiest->lock))) {
2363
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2364 2365 2366
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2367
			ret = 1;
L
Linus Torvalds 已提交
2368 2369 2370
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2371
	return ret;
L
Linus Torvalds 已提交
2372 2373 2374 2375 2376
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2377
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2378 2379
 * the cpu_allowed mask is restored.
 */
2380
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2381
{
2382
	struct migration_req req;
L
Linus Torvalds 已提交
2383
	unsigned long flags;
2384
	struct rq *rq;
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2395

L
Linus Torvalds 已提交
2396 2397 2398 2399 2400
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2401

L
Linus Torvalds 已提交
2402 2403 2404 2405 2406 2407 2408
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2409 2410
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2411 2412 2413 2414
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2415
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2416
	put_cpu();
N
Nick Piggin 已提交
2417 2418
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2419 2420 2421 2422 2423 2424
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2425 2426
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2427
{
2428
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2429
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2430
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2431 2432 2433 2434
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2435
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2441
static
2442
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2443
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2444
		     int *all_pinned)
L
Linus Torvalds 已提交
2445 2446 2447 2448 2449 2450 2451
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2452 2453
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2454
		return 0;
2455
	}
2456 2457
	*all_pinned = 0;

2458 2459
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2460
		return 0;
2461
	}
L
Linus Torvalds 已提交
2462

2463 2464 2465 2466 2467 2468
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2469 2470
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2471
#ifdef CONFIG_SCHEDSTATS
2472
		if (task_hot(p, rq->clock, sd)) {
2473
			schedstat_inc(sd, lb_hot_gained[idle]);
2474 2475
			schedstat_inc(p, se.nr_forced_migrations);
		}
2476 2477 2478 2479
#endif
		return 1;
	}

2480 2481
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2482
		return 0;
2483
	}
L
Linus Torvalds 已提交
2484 2485 2486
	return 1;
}

2487 2488 2489 2490 2491
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2492
{
2493
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2494 2495
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2496

2497
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2498 2499
		goto out;

2500 2501
	pinned = 1;

L
Linus Torvalds 已提交
2502
	/*
I
Ingo Molnar 已提交
2503
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2504
	 */
I
Ingo Molnar 已提交
2505 2506
	p = iterator->start(iterator->arg);
next:
2507
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2508
		goto out;
2509
	/*
2510
	 * To help distribute high priority tasks across CPUs we don't
2511 2512 2513
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2514 2515
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2516
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2517 2518 2519
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2520 2521
	}

I
Ingo Molnar 已提交
2522
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2523
	pulled++;
I
Ingo Molnar 已提交
2524
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2525

2526
	/*
2527
	 * We only want to steal up to the prescribed amount of weighted load.
2528
	 */
2529
	if (rem_load_move > 0) {
2530 2531
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2532 2533
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2534 2535 2536
	}
out:
	/*
2537
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2538 2539 2540 2541
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2542 2543 2544

	if (all_pinned)
		*all_pinned = pinned;
2545 2546

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2547 2548
}

I
Ingo Molnar 已提交
2549
/*
P
Peter Williams 已提交
2550 2551 2552
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2553 2554 2555 2556
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2557
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2558 2559 2560
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2561
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2562
	unsigned long total_load_moved = 0;
2563
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2564 2565

	do {
P
Peter Williams 已提交
2566 2567
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2568
				max_load_move - total_load_moved,
2569
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2570
		class = class->next;
P
Peter Williams 已提交
2571
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2572

P
Peter Williams 已提交
2573 2574 2575
	return total_load_moved > 0;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2612
	const struct sched_class *class;
P
Peter Williams 已提交
2613 2614

	for (class = sched_class_highest; class; class = class->next)
2615
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2616 2617 2618
			return 1;

	return 0;
I
Ingo Molnar 已提交
2619 2620
}

L
Linus Torvalds 已提交
2621 2622
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2623 2624
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2625 2626 2627
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2628 2629
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2630 2631 2632
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2633
	unsigned long max_pull;
2634 2635
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2636
	int load_idx, group_imb = 0;
2637 2638 2639 2640 2641 2642
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2643 2644

	max_load = this_load = total_load = total_pwr = 0;
2645 2646
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2647
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2648
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2649
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2650 2651 2652
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2653 2654

	do {
2655
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2656 2657
		int local_group;
		int i;
2658
		int __group_imb = 0;
2659
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2660
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2661 2662 2663

		local_group = cpu_isset(this_cpu, group->cpumask);

2664 2665 2666
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2667
		/* Tally up the load of all CPUs in the group */
2668
		sum_weighted_load = sum_nr_running = avg_load = 0;
2669 2670
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2671 2672

		for_each_cpu_mask(i, group->cpumask) {
2673 2674 2675 2676 2677 2678
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2679

2680
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2681 2682
				*sd_idle = 0;

L
Linus Torvalds 已提交
2683
			/* Bias balancing toward cpus of our domain */
2684 2685 2686 2687 2688 2689
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2690
				load = target_load(i, load_idx);
2691
			} else {
N
Nick Piggin 已提交
2692
				load = source_load(i, load_idx);
2693 2694 2695 2696 2697
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2698 2699

			avg_load += load;
2700
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2701
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2702 2703
		}

2704 2705 2706
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2707 2708
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2709
		 */
2710 2711
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2712 2713 2714 2715
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2716
		total_load += avg_load;
2717
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2718 2719

		/* Adjust by relative CPU power of the group */
2720 2721
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2722

2723 2724 2725
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2726
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2727

L
Linus Torvalds 已提交
2728 2729 2730
		if (local_group) {
			this_load = avg_load;
			this = group;
2731 2732 2733
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2734
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2735 2736
			max_load = avg_load;
			busiest = group;
2737 2738
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2739
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2740
		}
2741 2742 2743 2744 2745 2746

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2747 2748 2749
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2750 2751 2752 2753 2754 2755 2756 2757 2758

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2759
		/*
2760 2761
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2762 2763
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2764
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2765
			goto group_next;
2766

I
Ingo Molnar 已提交
2767
		/*
2768
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2769 2770 2771 2772 2773
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2774 2775
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2776 2777
			group_min = group;
			min_nr_running = sum_nr_running;
2778 2779
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2780
		}
2781

I
Ingo Molnar 已提交
2782
		/*
2783
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2795
		}
2796 2797
group_next:
#endif
L
Linus Torvalds 已提交
2798 2799 2800
		group = group->next;
	} while (group != sd->groups);

2801
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2802 2803 2804 2805 2806 2807 2808 2809
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2810
	busiest_load_per_task /= busiest_nr_running;
2811 2812 2813
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2814 2815 2816 2817 2818 2819 2820 2821
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2822
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2823 2824
	 * appear as very large values with unsigned longs.
	 */
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2837 2838

	/* Don't want to pull so many tasks that a group would go idle */
2839
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2840

L
Linus Torvalds 已提交
2841
	/* How much load to actually move to equalise the imbalance */
2842 2843
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2844 2845
			/ SCHED_LOAD_SCALE;

2846 2847 2848 2849 2850 2851
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2852
	if (*imbalance < busiest_load_per_task) {
2853
		unsigned long tmp, pwr_now, pwr_move;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2865

I
Ingo Molnar 已提交
2866 2867
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2868
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2869 2870 2871 2872 2873 2874 2875 2876 2877
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2878 2879 2880 2881
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2882 2883 2884
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2885 2886
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2887
		if (max_load > tmp)
2888
			pwr_move += busiest->__cpu_power *
2889
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2890 2891

		/* Amount of load we'd add */
2892
		if (max_load * busiest->__cpu_power <
2893
				busiest_load_per_task * SCHED_LOAD_SCALE)
2894 2895
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2896
		else
2897 2898 2899 2900
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2901 2902 2903
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2904 2905
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910
	}

	return busiest;

out_balanced:
2911
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2912
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2913
		goto ret;
L
Linus Torvalds 已提交
2914

2915 2916 2917 2918 2919
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2920
ret:
L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926 2927
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2928
static struct rq *
I
Ingo Molnar 已提交
2929
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2930
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2931
{
2932
	struct rq *busiest = NULL, *rq;
2933
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2934 2935 2936
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2937
		unsigned long wl;
2938 2939 2940 2941

		if (!cpu_isset(i, *cpus))
			continue;

2942
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2943
		wl = weighted_cpuload(i);
2944

I
Ingo Molnar 已提交
2945
		if (rq->nr_running == 1 && wl > imbalance)
2946
			continue;
L
Linus Torvalds 已提交
2947

I
Ingo Molnar 已提交
2948 2949
		if (wl > max_load) {
			max_load = wl;
2950
			busiest = rq;
L
Linus Torvalds 已提交
2951 2952 2953 2954 2955 2956
		}
	}

	return busiest;
}

2957 2958 2959 2960 2961 2962
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2963 2964 2965 2966
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
2967
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
2968
			struct sched_domain *sd, enum cpu_idle_type idle,
2969
			int *balance)
L
Linus Torvalds 已提交
2970
{
P
Peter Williams 已提交
2971
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
2972 2973
	struct sched_group *group;
	unsigned long imbalance;
2974
	struct rq *busiest;
2975
	cpumask_t cpus = CPU_MASK_ALL;
2976
	unsigned long flags;
N
Nick Piggin 已提交
2977

2978 2979 2980
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
2981
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
2982
	 * portraying it as CPU_NOT_IDLE.
2983
	 */
I
Ingo Molnar 已提交
2984
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2985
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
2986
		sd_idle = 1;
L
Linus Torvalds 已提交
2987

2988
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
2989

2990 2991
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2992 2993
				   &cpus, balance);

2994
	if (*balance == 0)
2995 2996
		goto out_balanced;

L
Linus Torvalds 已提交
2997 2998 2999 3000 3001
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3002
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3003 3004 3005 3006 3007
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3008
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3009 3010 3011

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3012
	ld_moved = 0;
L
Linus Torvalds 已提交
3013 3014 3015 3016
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3017
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3018 3019
		 * correctly treated as an imbalance.
		 */
3020
		local_irq_save(flags);
N
Nick Piggin 已提交
3021
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3022
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3023
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3024
		double_rq_unlock(this_rq, busiest);
3025
		local_irq_restore(flags);
3026

3027 3028 3029
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3030
		if (ld_moved && this_cpu != smp_processor_id())
3031 3032
			resched_cpu(this_cpu);

3033
		/* All tasks on this runqueue were pinned by CPU affinity */
3034 3035 3036 3037
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3038
			goto out_balanced;
3039
		}
L
Linus Torvalds 已提交
3040
	}
3041

P
Peter Williams 已提交
3042
	if (!ld_moved) {
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3048
			spin_lock_irqsave(&busiest->lock, flags);
3049 3050 3051 3052 3053

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3054
				spin_unlock_irqrestore(&busiest->lock, flags);
3055 3056 3057 3058
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3059 3060 3061
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3062
				active_balance = 1;
L
Linus Torvalds 已提交
3063
			}
3064
			spin_unlock_irqrestore(&busiest->lock, flags);
3065
			if (active_balance)
L
Linus Torvalds 已提交
3066 3067 3068 3069 3070 3071
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3072
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3073
		}
3074
	} else
L
Linus Torvalds 已提交
3075 3076
		sd->nr_balance_failed = 0;

3077
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3078 3079
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3080 3081 3082 3083 3084 3085 3086 3087 3088
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3089 3090
	}

P
Peter Williams 已提交
3091
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3092
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3093
		return -1;
P
Peter Williams 已提交
3094
	return ld_moved;
L
Linus Torvalds 已提交
3095 3096 3097 3098

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3099
	sd->nr_balance_failed = 0;
3100 3101

out_one_pinned:
L
Linus Torvalds 已提交
3102
	/* tune up the balancing interval */
3103 3104
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3105 3106
		sd->balance_interval *= 2;

3107
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3108
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3109
		return -1;
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115 3116
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3117
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3118 3119
 * this_rq is locked.
 */
3120
static int
3121
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3122 3123
{
	struct sched_group *group;
3124
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3125
	unsigned long imbalance;
P
Peter Williams 已提交
3126
	int ld_moved = 0;
N
Nick Piggin 已提交
3127
	int sd_idle = 0;
3128
	int all_pinned = 0;
3129
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3130

3131 3132 3133 3134
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3135
	 * portraying it as CPU_NOT_IDLE.
3136 3137 3138
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3139
		sd_idle = 1;
L
Linus Torvalds 已提交
3140

3141
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3142
redo:
I
Ingo Molnar 已提交
3143
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3144
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3145
	if (!group) {
I
Ingo Molnar 已提交
3146
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3147
		goto out_balanced;
L
Linus Torvalds 已提交
3148 3149
	}

I
Ingo Molnar 已提交
3150
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3151
				&cpus);
N
Nick Piggin 已提交
3152
	if (!busiest) {
I
Ingo Molnar 已提交
3153
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3154
		goto out_balanced;
L
Linus Torvalds 已提交
3155 3156
	}

N
Nick Piggin 已提交
3157 3158
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3159
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3160

P
Peter Williams 已提交
3161
	ld_moved = 0;
3162 3163 3164
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3165 3166
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3167
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3168 3169
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3170
		spin_unlock(&busiest->lock);
3171

3172
		if (unlikely(all_pinned)) {
3173 3174 3175 3176
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3177 3178
	}

P
Peter Williams 已提交
3179
	if (!ld_moved) {
I
Ingo Molnar 已提交
3180
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3181 3182
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3183 3184
			return -1;
	} else
3185
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3186

P
Peter Williams 已提交
3187
	return ld_moved;
3188 3189

out_balanced:
I
Ingo Molnar 已提交
3190
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3191
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3192
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3193
		return -1;
3194
	sd->nr_balance_failed = 0;
3195

3196
	return 0;
L
Linus Torvalds 已提交
3197 3198 3199 3200 3201 3202
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3203
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3204 3205
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3206 3207
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3208 3209

	for_each_domain(this_cpu, sd) {
3210 3211 3212 3213 3214 3215
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3216
			/* If we've pulled tasks over stop searching: */
3217
			pulled_task = load_balance_newidle(this_cpu,
3218 3219 3220 3221 3222 3223 3224
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3225
	}
I
Ingo Molnar 已提交
3226
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3227 3228 3229 3230 3231
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3232
	}
L
Linus Torvalds 已提交
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3243
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3244
{
3245
	int target_cpu = busiest_rq->push_cpu;
3246 3247
	struct sched_domain *sd;
	struct rq *target_rq;
3248

3249
	/* Is there any task to move? */
3250 3251 3252 3253
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3254 3255

	/*
3256
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3257
	 * we need to fix it. Originally reported by
3258
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3259
	 */
3260
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3261

3262 3263
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3264 3265
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3266 3267

	/* Search for an sd spanning us and the target CPU. */
3268
	for_each_domain(target_cpu, sd) {
3269
		if ((sd->flags & SD_LOAD_BALANCE) &&
3270
		    cpu_isset(busiest_cpu, sd->span))
3271
				break;
3272
	}
3273

3274
	if (likely(sd)) {
3275
		schedstat_inc(sd, alb_count);
3276

P
Peter Williams 已提交
3277 3278
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3279 3280 3281 3282
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3283
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3284 3285
}

3286 3287 3288
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3289
	cpumask_t cpu_mask;
3290 3291 3292 3293 3294
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3295
/*
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3306
 *
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3363 3364 3365 3366 3367
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3368
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3369
{
3370 3371
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3372 3373
	unsigned long interval;
	struct sched_domain *sd;
3374
	/* Earliest time when we have to do rebalance again */
3375
	unsigned long next_balance = jiffies + 60*HZ;
3376
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3377

3378
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3379 3380 3381 3382
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3383
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3384 3385 3386 3387 3388 3389
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3390 3391 3392
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3393

3394 3395 3396 3397 3398
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3399
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3400
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3401 3402
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3403 3404 3405
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3406
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3407
			}
3408
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3409
		}
3410 3411 3412
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3413
		if (time_after(next_balance, sd->last_balance + interval)) {
3414
			next_balance = sd->last_balance + interval;
3415 3416
			update_next_balance = 1;
		}
3417 3418 3419 3420 3421 3422 3423 3424

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3425
	}
3426 3427 3428 3429 3430 3431 3432 3433

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3434 3435 3436 3437 3438 3439 3440 3441 3442
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3443 3444 3445 3446
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3447

I
Ingo Molnar 已提交
3448
	rebalance_domains(this_cpu, idle);
3449 3450 3451 3452 3453 3454 3455

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3456 3457
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3458 3459 3460 3461
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3462
		cpu_clear(this_cpu, cpus);
3463 3464 3465 3466 3467 3468 3469 3470 3471
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3472
			rebalance_domains(balance_cpu, CPU_IDLE);
3473 3474

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3475 3476
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3489
static inline void trigger_load_balance(struct rq *rq, int cpu)
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3541
}
I
Ingo Molnar 已提交
3542 3543 3544

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3545 3546 3547
/*
 * on UP we do not need to balance between CPUs:
 */
3548
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3549 3550
{
}
I
Ingo Molnar 已提交
3551

L
Linus Torvalds 已提交
3552 3553 3554 3555 3556 3557 3558
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3559 3560
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3561
 */
3562
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3563 3564
{
	unsigned long flags;
3565 3566
	u64 ns, delta_exec;
	struct rq *rq;
3567

3568 3569
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3570
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3571 3572
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3573 3574 3575 3576
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3577

L
Linus Torvalds 已提交
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3601 3602 3603 3604 3605
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3606
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3640
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3641 3642
	cputime64_t tmp;

3643 3644
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3645

L
Linus Torvalds 已提交
3646 3647 3648 3649 3650 3651 3652 3653
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3654
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3655
		cpustat->system = cputime64_add(cpustat->system, tmp);
3656
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3657 3658 3659 3660 3661 3662 3663
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3675 3676 3677 3678 3679 3680 3681 3682 3683
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3684
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3685 3686 3687 3688 3689 3690 3691

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3692
	} else
L
Linus Torvalds 已提交
3693 3694 3695
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3707
	struct task_struct *curr = rq->curr;
3708
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3709 3710

	spin_lock(&rq->lock);
3711
	__update_rq_clock(rq);
3712 3713 3714
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3715
	if (unlikely(rq->clock < next_tick)) {
3716
		rq->clock = next_tick;
3717 3718
		rq->clock_underflows++;
	}
3719
	rq->tick_timestamp = rq->clock;
3720
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3721 3722
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3723
	spin_unlock(&rq->lock);
3724

3725
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3726 3727
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3728
#endif
L
Linus Torvalds 已提交
3729 3730 3731 3732
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3733
void __kprobes add_preempt_count(int val)
L
Linus Torvalds 已提交
3734 3735 3736 3737
{
	/*
	 * Underflow?
	 */
3738 3739
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3740 3741 3742 3743
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3744 3745
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3746 3747 3748
}
EXPORT_SYMBOL(add_preempt_count);

3749
void __kprobes sub_preempt_count(int val)
L
Linus Torvalds 已提交
3750 3751 3752 3753
{
	/*
	 * Underflow?
	 */
3754 3755
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3756 3757 3758
	/*
	 * Is the spinlock portion underflowing?
	 */
3759 3760 3761 3762
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3763 3764 3765 3766 3767 3768 3769
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3770
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3771
 */
I
Ingo Molnar 已提交
3772
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3773
{
3774 3775 3776 3777 3778
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3779 3780 3781
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3782 3783 3784 3785 3786

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3787
}
L
Linus Torvalds 已提交
3788

I
Ingo Molnar 已提交
3789 3790 3791 3792 3793
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3794
	/*
I
Ingo Molnar 已提交
3795
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3796 3797 3798
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3799 3800 3801
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3802 3803
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3804
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3805 3806
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3807 3808
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3809 3810
	}
#endif
I
Ingo Molnar 已提交
3811 3812 3813 3814 3815 3816
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3817
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3818
{
3819
	const struct sched_class *class;
I
Ingo Molnar 已提交
3820
	struct task_struct *p;
L
Linus Torvalds 已提交
3821 3822

	/*
I
Ingo Molnar 已提交
3823 3824
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3825
	 */
I
Ingo Molnar 已提交
3826
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3827
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3828 3829
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3830 3831
	}

I
Ingo Molnar 已提交
3832 3833
	class = sched_class_highest;
	for ( ; ; ) {
3834
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3835 3836 3837 3838 3839 3840 3841 3842 3843
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3844

I
Ingo Molnar 已提交
3845 3846 3847 3848 3849 3850
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
3851
	unsigned long *switch_count;
I
Ingo Molnar 已提交
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3867

P
Peter Zijlstra 已提交
3868 3869
	hrtick_clear(rq);

3870 3871 3872 3873
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3874
	__update_rq_clock(rq);
3875 3876
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3877 3878 3879

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3880
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3881
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3882
		} else {
3883
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3884
		}
I
Ingo Molnar 已提交
3885
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3886 3887
	}

3888 3889 3890 3891
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3892

I
Ingo Molnar 已提交
3893
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3894 3895
		idle_balance(cpu, rq);

3896
	prev->sched_class->put_prev_task(rq, prev);
3897
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3898 3899

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3900

L
Linus Torvalds 已提交
3901 3902 3903 3904 3905
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3906
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3907 3908 3909 3910 3911 3912
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3913 3914 3915
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3916 3917 3918
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3919
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3920

L
Linus Torvalds 已提交
3921 3922 3923 3924 3925 3926 3927 3928
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3929
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3930
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3938

L
Linus Torvalds 已提交
3939 3940
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3941
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3942
	 */
N
Nick Piggin 已提交
3943
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3944 3945
		return;

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3959

3960 3961 3962 3963 3964 3965
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
3966 3967 3968 3969
}
EXPORT_SYMBOL(preempt_schedule);

/*
3970
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
3971 3972 3973 3974 3975 3976 3977 3978 3979
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3980

3981
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
3982 3983
	BUG_ON(ti->preempt_count || !irqs_disabled());

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3999

4000 4001 4002 4003 4004 4005
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4006 4007 4008 4009
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4010 4011
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4012
{
4013
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4014 4015 4016 4017
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4018 4019
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4020 4021 4022
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4023
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4024 4025 4026 4027 4028
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4029
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4030

4031
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4032 4033
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4034
		if (curr->func(curr, mode, sync, key) &&
4035
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4045
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4046
 */
4047
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4048
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4061
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4062 4063 4064 4065 4066
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4067
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4079
void
I
Ingo Molnar 已提交
4080
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4097
void complete(struct completion *x)
L
Linus Torvalds 已提交
4098 4099 4100 4101 4102
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4103
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4104 4105 4106 4107
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4108
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4109 4110 4111 4112 4113
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4114
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4115 4116 4117 4118
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4119 4120
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4121 4122 4123 4124 4125 4126 4127
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4128 4129 4130 4131
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4132 4133 4134 4135
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4141
				return timeout;
L
Linus Torvalds 已提交
4142 4143 4144 4145 4146 4147 4148 4149
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4150 4151
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4152 4153 4154 4155
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4156
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4157
	spin_unlock_irq(&x->wait.lock);
4158 4159
	return timeout;
}
L
Linus Torvalds 已提交
4160

4161
void __sched wait_for_completion(struct completion *x)
4162 4163
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4164
}
4165
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4166

4167
unsigned long __sched
4168
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4169
{
4170
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4171
}
4172
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4173

4174
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4175
{
4176 4177 4178 4179
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4180
}
4181
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4182

4183
unsigned long __sched
4184 4185
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4186
{
4187
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4188
}
4189
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4190

M
Matthew Wilcox 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4200 4201
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4202
{
I
Ingo Molnar 已提交
4203 4204 4205 4206
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4207

4208
	__set_current_state(state);
L
Linus Torvalds 已提交
4209

4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4224 4225 4226
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4227
long __sched
I
Ingo Molnar 已提交
4228
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4229
{
4230
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4231 4232 4233
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4234
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4235
{
4236
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4237 4238 4239
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4240
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4241
{
4242
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4243 4244 4245
}
EXPORT_SYMBOL(sleep_on_timeout);

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4258
void rt_mutex_setprio(struct task_struct *p, int prio)
4259 4260
{
	unsigned long flags;
4261
	int oldprio, on_rq, running;
4262
	struct rq *rq;
4263
	const struct sched_class *prev_class = p->sched_class;
4264 4265 4266 4267

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4268
	update_rq_clock(rq);
4269

4270
	oldprio = p->prio;
I
Ingo Molnar 已提交
4271
	on_rq = p->se.on_rq;
4272
	running = task_current(rq, p);
4273
	if (on_rq)
4274
		dequeue_task(rq, p, 0);
4275 4276
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
4277 4278 4279 4280 4281 4282

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4283 4284
	p->prio = prio;

4285 4286
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4287
	if (on_rq) {
4288
		enqueue_task(rq, p, 0);
4289 4290

		check_class_changed(rq, p, prev_class, oldprio, running);
4291 4292 4293 4294 4295 4296
	}
	task_rq_unlock(rq, &flags);
}

#endif

4297
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4298
{
I
Ingo Molnar 已提交
4299
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4300
	unsigned long flags;
4301
	struct rq *rq;
L
Linus Torvalds 已提交
4302 4303 4304 4305 4306 4307 4308 4309

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4310
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4311 4312 4313 4314
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4315
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4316
	 */
4317
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4318 4319 4320
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4321
	on_rq = p->se.on_rq;
4322
	if (on_rq) {
4323
		dequeue_task(rq, p, 0);
4324 4325
		dec_load(rq, p);
	}
L
Linus Torvalds 已提交
4326 4327

	p->static_prio = NICE_TO_PRIO(nice);
4328
	set_load_weight(p);
4329 4330 4331
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4332

I
Ingo Molnar 已提交
4333
	if (on_rq) {
4334
		enqueue_task(rq, p, 0);
4335
		inc_load(rq, p);
L
Linus Torvalds 已提交
4336
		/*
4337 4338
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4339
		 */
4340
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4341 4342 4343 4344 4345 4346 4347
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4348 4349 4350 4351 4352
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4353
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4354
{
4355 4356
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4357

M
Matt Mackall 已提交
4358 4359 4360 4361
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4373
	long nice, retval;
L
Linus Torvalds 已提交
4374 4375 4376 4377 4378 4379

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4380 4381
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389 4390
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4391 4392 4393
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4412
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4413 4414 4415 4416 4417 4418 4419 4420
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4421
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4422 4423 4424
{
	return TASK_NICE(p);
}
P
Pavel Roskin 已提交
4425
EXPORT_SYMBOL(task_nice);
L
Linus Torvalds 已提交
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4440
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4441 4442 4443 4444 4445 4446 4447 4448
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4449
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4450
{
4451
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4452 4453 4454
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4455 4456
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4457
{
I
Ingo Molnar 已提交
4458
	BUG_ON(p->se.on_rq);
4459

L
Linus Torvalds 已提交
4460
	p->policy = policy;
I
Ingo Molnar 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4473
	p->rt_priority = prio;
4474 4475 4476
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4477
	set_load_weight(p);
L
Linus Torvalds 已提交
4478 4479 4480
}

/**
4481
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4482 4483 4484
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4485
 *
4486
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4487
 */
I
Ingo Molnar 已提交
4488 4489
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4490
{
4491
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4492
	unsigned long flags;
4493
	const struct sched_class *prev_class = p->sched_class;
4494
	struct rq *rq;
L
Linus Torvalds 已提交
4495

4496 4497
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4498 4499 4500 4501 4502
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4503 4504
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4505
		return -EINVAL;
L
Linus Torvalds 已提交
4506 4507
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4508 4509
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4510 4511
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4512
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4513
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4514
		return -EINVAL;
4515
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4516 4517
		return -EINVAL;

4518 4519 4520 4521
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4522
		if (rt_policy(policy)) {
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4539 4540 4541 4542 4543 4544
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4545

4546 4547 4548 4549 4550
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4551

4552 4553 4554 4555 4556 4557 4558 4559 4560
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
	if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4561 4562 4563
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4564 4565 4566 4567 4568
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4569 4570 4571 4572
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4573
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4574 4575 4576
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4577 4578
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4579 4580
		goto recheck;
	}
I
Ingo Molnar 已提交
4581
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4582
	on_rq = p->se.on_rq;
4583
	running = task_current(rq, p);
4584
	if (on_rq)
4585
		deactivate_task(rq, p, 0);
4586 4587
	if (running)
		p->sched_class->put_prev_task(rq, p);
4588

L
Linus Torvalds 已提交
4589
	oldprio = p->prio;
I
Ingo Molnar 已提交
4590
	__setscheduler(rq, p, policy, param->sched_priority);
4591

4592 4593
	if (running)
		p->sched_class->set_curr_task(rq);
I
Ingo Molnar 已提交
4594 4595
	if (on_rq) {
		activate_task(rq, p, 0);
4596 4597

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4598
	}
4599 4600 4601
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4602 4603
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4604 4605 4606 4607
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4608 4609
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4610 4611 4612
{
	struct sched_param lparam;
	struct task_struct *p;
4613
	int retval;
L
Linus Torvalds 已提交
4614 4615 4616 4617 4618

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4619 4620 4621

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4622
	p = find_process_by_pid(pid);
4623 4624 4625
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4626

L
Linus Torvalds 已提交
4627 4628 4629 4630 4631 4632 4633 4634 4635
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4636 4637
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4638
{
4639 4640 4641 4642
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4662
	struct task_struct *p;
4663
	int retval;
L
Linus Torvalds 已提交
4664 4665

	if (pid < 0)
4666
		return -EINVAL;
L
Linus Torvalds 已提交
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4688
	struct task_struct *p;
4689
	int retval;
L
Linus Torvalds 已提交
4690 4691

	if (!param || pid < 0)
4692
		return -EINVAL;
L
Linus Torvalds 已提交
4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4722 4723
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4724

4725
	get_online_cpus();
L
Linus Torvalds 已提交
4726 4727 4728 4729 4730
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4731
		put_online_cpus();
L
Linus Torvalds 已提交
4732 4733 4734 4735 4736
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4737
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4748 4749 4750 4751
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4752 4753
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4754
 again:
L
Linus Torvalds 已提交
4755 4756
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4769 4770
out_unlock:
	put_task_struct(p);
4771
	put_online_cpus();
L
Linus Torvalds 已提交
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4812
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4813 4814 4815
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4816
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4817 4818
EXPORT_SYMBOL(cpu_online_map);

4819
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4820
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4821 4822 4823 4824
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4825
	struct task_struct *p;
L
Linus Torvalds 已提交
4826 4827
	int retval;

4828
	get_online_cpus();
L
Linus Torvalds 已提交
4829 4830 4831 4832 4833 4834 4835
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4836 4837 4838 4839
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4840
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4841 4842 4843

out_unlock:
	read_unlock(&tasklist_lock);
4844
	put_online_cpus();
L
Linus Torvalds 已提交
4845

4846
	return retval;
L
Linus Torvalds 已提交
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4877 4878
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4879 4880 4881
 */
asmlinkage long sys_sched_yield(void)
{
4882
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4883

4884
	schedstat_inc(rq, yld_count);
4885
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4886 4887 4888 4889 4890 4891

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4892
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4893 4894 4895 4896 4897 4898 4899 4900
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4901
static void __cond_resched(void)
L
Linus Torvalds 已提交
4902
{
4903 4904 4905
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4906 4907 4908 4909 4910
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4911 4912 4913 4914 4915 4916 4917
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4918 4919
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4920
{
4921 4922
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927
		__cond_resched();
		return 1;
	}
	return 0;
}
4928 4929
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4935
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4936 4937 4938
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4939
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4940
{
N
Nick Piggin 已提交
4941
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
4942 4943
	int ret = 0;

N
Nick Piggin 已提交
4944
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4945
		spin_unlock(lock);
N
Nick Piggin 已提交
4946 4947 4948 4949
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4950
		ret = 1;
L
Linus Torvalds 已提交
4951 4952
		spin_lock(lock);
	}
J
Jan Kara 已提交
4953
	return ret;
L
Linus Torvalds 已提交
4954 4955 4956 4957 4958 4959 4960
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4961
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4962
		local_bh_enable();
L
Linus Torvalds 已提交
4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
4974
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
4985
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4986 4987 4988 4989 4990 4991 4992
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
4993
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
4994

4995
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4996 4997 4998
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
4999
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5005
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5006 5007
	long ret;

5008
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5009 5010 5011
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5012
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5033
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5034
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5058
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5059
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5076
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5077
	unsigned int time_slice;
5078
	int retval;
L
Linus Torvalds 已提交
5079 5080 5081
	struct timespec t;

	if (pid < 0)
5082
		return -EINVAL;
L
Linus Torvalds 已提交
5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5094 5095 5096 5097 5098 5099
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5100
		time_slice = DEF_TIMESLICE;
5101
	} else if (p->policy != SCHED_FIFO) {
D
Dmitry Adamushko 已提交
5102 5103 5104 5105 5106
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5107 5108
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5109 5110
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5111
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5112
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5113 5114
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5115

L
Linus Torvalds 已提交
5116 5117 5118 5119 5120
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5121
static const char stat_nam[] = "RSDTtZX";
5122

5123
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5124 5125
{
	unsigned long free = 0;
5126
	unsigned state;
L
Linus Torvalds 已提交
5127 5128

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5129
	printk(KERN_INFO "%-13.13s %c", p->comm,
5130
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5131
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5132
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5133
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5134
	else
I
Ingo Molnar 已提交
5135
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5136 5137
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5138
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5139
	else
I
Ingo Molnar 已提交
5140
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5141 5142 5143
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5144
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5145 5146
		while (!*n)
			n++;
5147
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5148 5149
	}
#endif
5150
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5151
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5152

5153
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5154 5155
}

I
Ingo Molnar 已提交
5156
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5157
{
5158
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5159

5160 5161 5162
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5163
#else
5164 5165
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5166 5167 5168 5169 5170 5171 5172 5173
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5174
		if (!state_filter || (p->state & state_filter))
5175
			sched_show_task(p);
L
Linus Torvalds 已提交
5176 5177
	} while_each_thread(g, p);

5178 5179
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5180 5181 5182
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5183
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5184 5185 5186 5187 5188
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5189 5190
}

I
Ingo Molnar 已提交
5191 5192
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5193
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5194 5195
}

5196 5197 5198 5199 5200 5201 5202 5203
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5204
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5205
{
5206
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5207 5208
	unsigned long flags;

I
Ingo Molnar 已提交
5209 5210 5211
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5212
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5213
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5214
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5215 5216 5217

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5218 5219 5220
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5221 5222 5223
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5224
	task_thread_info(idle)->preempt_count = 0;
5225

I
Ingo Molnar 已提交
5226 5227 5228 5229
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5267 5268 5269 5270
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5271
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5290
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5291 5292
 * call is not atomic; no spinlocks may be held.
 */
5293
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5294
{
5295
	struct migration_req req;
L
Linus Torvalds 已提交
5296
	unsigned long flags;
5297
	struct rq *rq;
5298
	int ret = 0;
L
Linus Torvalds 已提交
5299 5300 5301 5302 5303 5304 5305

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5306 5307 5308
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5309
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5310
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5311 5312
	}

L
Linus Torvalds 已提交
5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5327

L
Linus Torvalds 已提交
5328 5329 5330 5331 5332
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5333
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5334 5335 5336 5337 5338 5339
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5340 5341
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5342
 */
5343
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5344
{
5345
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5346
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5347 5348

	if (unlikely(cpu_is_offline(dest_cpu)))
5349
		return ret;
L
Linus Torvalds 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5362
	on_rq = p->se.on_rq;
5363
	if (on_rq)
5364
		deactivate_task(rq_src, p, 0);
5365

L
Linus Torvalds 已提交
5366
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5367 5368 5369
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5370
	}
5371
	ret = 1;
L
Linus Torvalds 已提交
5372 5373
out:
	double_rq_unlock(rq_src, rq_dest);
5374
	return ret;
L
Linus Torvalds 已提交
5375 5376 5377 5378 5379 5380 5381
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5382
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5383 5384
{
	int cpu = (long)data;
5385
	struct rq *rq;
L
Linus Torvalds 已提交
5386 5387 5388 5389 5390 5391

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5392
		struct migration_req *req;
L
Linus Torvalds 已提交
5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5415
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5416 5417
		list_del_init(head->next);

N
Nick Piggin 已提交
5418 5419 5420
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5450
/*
5451
 * Figure out where task on dead CPU should go, use force if necessary.
5452 5453
 * NOTE: interrupts should be disabled by the caller
 */
5454
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5455
{
5456
	unsigned long flags;
L
Linus Torvalds 已提交
5457
	cpumask_t mask;
5458 5459
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5460

5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5473 5474 5475 5476 5477
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5478
			 * cpuset_cpus_allowed() will not block. It must be
5479 5480
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5481
			rq = task_rq_lock(p, &flags);
5482
			p->cpus_allowed = cpus_allowed;
5483 5484
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5485

5486 5487 5488 5489 5490
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5491
			if (p->mm && printk_ratelimit()) {
5492 5493
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5494 5495
					task_pid_nr(p), p->comm, dead_cpu);
			}
5496
		}
5497
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5498 5499 5500 5501 5502 5503 5504 5505 5506
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5507
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5508
{
5509
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5523
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5524

5525
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5526

5527 5528
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5529 5530
			continue;

5531 5532 5533
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5534

5535
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5536 5537
}

I
Ingo Molnar 已提交
5538 5539
/*
 * Schedules idle task to be the next runnable task on current CPU.
5540 5541
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5542 5543 5544
 */
void sched_idle_next(void)
{
5545
	int this_cpu = smp_processor_id();
5546
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5547 5548 5549 5550
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5551
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5552

5553 5554 5555
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5556 5557 5558
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5559
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5560

5561 5562
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5563 5564 5565 5566

	spin_unlock_irqrestore(&rq->lock, flags);
}

5567 5568
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5582
/* called under rq->lock with disabled interrupts */
5583
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5584
{
5585
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5586 5587

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5588
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5589 5590

	/* Cannot have done final schedule yet: would have vanished. */
5591
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5592

5593
	get_task_struct(p);
L
Linus Torvalds 已提交
5594 5595 5596

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5597
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5598 5599
	 * fine.
	 */
5600
	spin_unlock_irq(&rq->lock);
5601
	move_task_off_dead_cpu(dead_cpu, p);
5602
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5603

5604
	put_task_struct(p);
L
Linus Torvalds 已提交
5605 5606 5607 5608 5609
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5610
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5611
	struct task_struct *next;
5612

I
Ingo Molnar 已提交
5613 5614 5615
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5616
		update_rq_clock(rq);
5617
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5618 5619 5620
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5621

L
Linus Torvalds 已提交
5622 5623 5624 5625
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5626 5627 5628
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5629 5630
	{
		.procname	= "sched_domain",
5631
		.mode		= 0555,
5632
	},
I
Ingo Molnar 已提交
5633
	{0, },
5634 5635 5636
};

static struct ctl_table sd_ctl_root[] = {
5637
	{
5638
		.ctl_name	= CTL_KERN,
5639
		.procname	= "kernel",
5640
		.mode		= 0555,
5641 5642
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5643
	{0, },
5644 5645 5646 5647 5648
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5649
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5650 5651 5652 5653

	return entry;
}

5654 5655
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5656
	struct ctl_table *entry;
5657

5658 5659 5660
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5661
	 * will always be set. In the lowest directory the names are
5662 5663 5664
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5665 5666
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5667 5668 5669
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5670 5671 5672 5673 5674

	kfree(*tablep);
	*tablep = NULL;
}

5675
static void
5676
set_table_entry(struct ctl_table *entry,
5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5690
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5691

5692 5693 5694
	if (table == NULL)
		return NULL;

5695
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5696
		sizeof(long), 0644, proc_doulongvec_minmax);
5697
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5698
		sizeof(long), 0644, proc_doulongvec_minmax);
5699
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5700
		sizeof(int), 0644, proc_dointvec_minmax);
5701
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5702
		sizeof(int), 0644, proc_dointvec_minmax);
5703
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5704
		sizeof(int), 0644, proc_dointvec_minmax);
5705
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5706
		sizeof(int), 0644, proc_dointvec_minmax);
5707
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5708
		sizeof(int), 0644, proc_dointvec_minmax);
5709
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5710
		sizeof(int), 0644, proc_dointvec_minmax);
5711
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5712
		sizeof(int), 0644, proc_dointvec_minmax);
5713
	set_table_entry(&table[9], "cache_nice_tries",
5714 5715
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5716
	set_table_entry(&table[10], "flags", &sd->flags,
5717
		sizeof(int), 0644, proc_dointvec_minmax);
5718
	/* &table[11] is terminator */
5719 5720 5721 5722

	return table;
}

5723
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5724 5725 5726 5727 5728 5729 5730 5731 5732
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5733 5734
	if (table == NULL)
		return NULL;
5735 5736 5737 5738 5739

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5740
		entry->mode = 0555;
5741 5742 5743 5744 5745 5746 5747 5748
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5749
static void register_sched_domain_sysctl(void)
5750 5751 5752 5753 5754
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5755 5756 5757
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5758 5759 5760
	if (entry == NULL)
		return;

5761
	for_each_online_cpu(i) {
5762 5763
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5764
		entry->mode = 0555;
5765
		entry->child = sd_alloc_ctl_cpu_table(i);
5766
		entry++;
5767
	}
5768 5769

	WARN_ON(sd_sysctl_header);
5770 5771
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5772

5773
/* may be called multiple times per register */
5774 5775
static void unregister_sched_domain_sysctl(void)
{
5776 5777
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5778
	sd_sysctl_header = NULL;
5779 5780
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5781
}
5782
#else
5783 5784 5785 5786
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5787 5788 5789 5790
{
}
#endif

L
Linus Torvalds 已提交
5791 5792 5793 5794
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5795 5796
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5797 5798
{
	struct task_struct *p;
5799
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5800
	unsigned long flags;
5801
	struct rq *rq;
L
Linus Torvalds 已提交
5802 5803

	switch (action) {
5804

L
Linus Torvalds 已提交
5805
	case CPU_UP_PREPARE:
5806
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5807
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5808 5809 5810 5811 5812
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5813
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5814 5815 5816
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5817

L
Linus Torvalds 已提交
5818
	case CPU_ONLINE:
5819
	case CPU_ONLINE_FROZEN:
5820
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5821
		wake_up_process(cpu_rq(cpu)->migration_thread);
5822 5823 5824 5825 5826 5827 5828 5829 5830

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5831
		break;
5832

L
Linus Torvalds 已提交
5833 5834
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5835
	case CPU_UP_CANCELED_FROZEN:
5836 5837
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5838
		/* Unbind it from offline cpu so it can run. Fall thru. */
5839 5840
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5841 5842 5843
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5844

L
Linus Torvalds 已提交
5845
	case CPU_DEAD:
5846
	case CPU_DEAD_FROZEN:
5847
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5848 5849 5850 5851 5852
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5853
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5854
		update_rq_clock(rq);
5855
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5856
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5857 5858
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5859
		migrate_dead_tasks(cpu);
5860
		spin_unlock_irq(&rq->lock);
5861
		cpuset_unlock();
L
Linus Torvalds 已提交
5862 5863 5864
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5865 5866 5867 5868 5869
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5870 5871
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5872 5873
			struct migration_req *req;

L
Linus Torvalds 已提交
5874
			req = list_entry(rq->migration_queue.next,
5875
					 struct migration_req, list);
L
Linus Torvalds 已提交
5876 5877 5878 5879 5880
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5881

5882 5883
	case CPU_DYING:
	case CPU_DYING_FROZEN:
G
Gregory Haskins 已提交
5884 5885 5886 5887 5888 5889 5890 5891 5892
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5893 5894 5895 5896 5897 5898 5899 5900
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5901
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5902 5903 5904 5905
	.notifier_call = migration_call,
	.priority = 10
};

5906
void __init migration_init(void)
L
Linus Torvalds 已提交
5907 5908
{
	void *cpu = (void *)(long)smp_processor_id();
5909
	int err;
5910 5911

	/* Start one for the boot CPU: */
5912 5913
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5914 5915 5916 5917 5918 5919
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5920 5921 5922 5923 5924

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5925
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5926 5927

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5928
{
I
Ingo Molnar 已提交
5929 5930 5931
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5932

I
Ingo Molnar 已提交
5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5944 5945
	}

I
Ingo Molnar 已提交
5946 5947 5948 5949 5950 5951 5952 5953 5954 5955
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5956

I
Ingo Molnar 已提交
5957
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5958
	do {
I
Ingo Molnar 已提交
5959 5960 5961
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5962 5963 5964
			break;
		}

I
Ingo Molnar 已提交
5965 5966 5967 5968 5969 5970
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
5971

I
Ingo Molnar 已提交
5972 5973 5974 5975 5976
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
5977

I
Ingo Molnar 已提交
5978 5979 5980 5981 5982
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
5983

I
Ingo Molnar 已提交
5984
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
5985

I
Ingo Molnar 已提交
5986 5987
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
5988

I
Ingo Molnar 已提交
5989 5990 5991
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5992

I
Ingo Molnar 已提交
5993 5994
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5995

I
Ingo Molnar 已提交
5996 5997 5998 5999 6000
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6001

I
Ingo Molnar 已提交
6002 6003 6004
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6005

I
Ingo Molnar 已提交
6006 6007 6008 6009
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6010

I
Ingo Molnar 已提交
6011 6012 6013 6014 6015
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6016 6017
		level++;
		sd = sd->parent;
6018
		if (!sd)
I
Ingo Molnar 已提交
6019 6020
			break;
	}
L
Linus Torvalds 已提交
6021 6022
}
#else
6023
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6024 6025
#endif

6026
static int sd_degenerate(struct sched_domain *sd)
6027 6028 6029 6030 6031 6032 6033 6034
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6035 6036 6037
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6051 6052
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6071 6072 6073
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6074 6075 6076 6077 6078 6079 6080
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6081 6082 6083 6084 6085 6086 6087 6088 6089 6090
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6091
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6092 6093
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6094
		}
G
Gregory Haskins 已提交
6095

6096 6097 6098
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6099 6100 6101 6102 6103 6104 6105
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6106
	cpu_set(rq->cpu, rd->span);
6107 6108
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);
6109

I
Ingo Molnar 已提交
6110
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6111 6112
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6113
	}
G
Gregory Haskins 已提交
6114 6115 6116 6117

	spin_unlock_irqrestore(&rq->lock, flags);
}

6118
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6119 6120 6121
{
	memset(rd, 0, sizeof(*rd));

6122 6123
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6124 6125 6126 6127
}

static void init_defrootdomain(void)
{
6128
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6129 6130 6131
	atomic_set(&def_root_domain.refcount, 1);
}

6132
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6133 6134 6135 6136 6137 6138 6139
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6140
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6141 6142 6143 6144

	return rd;
}

L
Linus Torvalds 已提交
6145
/*
I
Ingo Molnar 已提交
6146
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6147 6148
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6149 6150
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6151
{
6152
	struct rq *rq = cpu_rq(cpu);
6153 6154 6155 6156 6157 6158 6159
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6160
		if (sd_parent_degenerate(tmp, parent)) {
6161
			tmp->parent = parent->parent;
6162 6163 6164
			if (parent->parent)
				parent->parent->child = tmp;
		}
6165 6166
	}

6167
	if (sd && sd_degenerate(sd)) {
6168
		sd = sd->parent;
6169 6170 6171
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6172 6173 6174

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6175
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6176
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6177 6178 6179
}

/* cpus with isolated domains */
6180
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6195
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6196 6197

/*
6198 6199 6200 6201
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6202 6203 6204 6205 6206
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6207
static void
6208 6209 6210
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6211 6212 6213 6214 6215 6216
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6217 6218
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6219 6220 6221 6222 6223 6224
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6225
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6226 6227

		for_each_cpu_mask(j, span) {
6228
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6243
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6244

6245
#ifdef CONFIG_NUMA
6246

6247 6248 6249 6250 6251
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6252
 * Find the next node to include in a given scheduling domain. Simply
6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6292
 * Given a node, construct a good cpumask for its sched_domain to span. It
6293 6294 6295 6296 6297 6298
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6299 6300
	cpumask_t span, nodemask;
	int i;
6301 6302 6303 6304 6305 6306 6307 6308 6309 6310

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6311

6312 6313 6314 6315 6316 6317 6318 6319
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6320
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6321

6322
/*
6323
 * SMT sched-domains:
6324
 */
L
Linus Torvalds 已提交
6325 6326
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6327
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6328

I
Ingo Molnar 已提交
6329 6330
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6331
{
6332 6333
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6334 6335 6336 6337
	return cpu;
}
#endif

6338 6339 6340
/*
 * multi-core sched-domains:
 */
6341 6342
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6343
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6344 6345 6346
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6347 6348
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6349
{
6350
	int group;
6351
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6352
	cpus_and(mask, mask, *cpu_map);
6353 6354 6355 6356
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6357 6358
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6359 6360
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6361
{
6362 6363
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6364 6365 6366 6367
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6368
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6369
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6370

I
Ingo Molnar 已提交
6371 6372
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6373
{
6374
	int group;
6375
#ifdef CONFIG_SCHED_MC
6376
	cpumask_t mask = cpu_coregroup_map(cpu);
6377
	cpus_and(mask, mask, *cpu_map);
6378
	group = first_cpu(mask);
6379
#elif defined(CONFIG_SCHED_SMT)
6380
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6381
	cpus_and(mask, mask, *cpu_map);
6382
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6383
#else
6384
	group = cpu;
L
Linus Torvalds 已提交
6385
#endif
6386 6387 6388
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6389 6390 6391 6392
}

#ifdef CONFIG_NUMA
/*
6393 6394 6395
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6396
 */
6397
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6398
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6399

6400
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6401
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6402

6403 6404
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6405
{
6406 6407 6408 6409 6410 6411 6412 6413 6414
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6415
}
6416

6417 6418 6419 6420 6421 6422 6423
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6424 6425 6426
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6427

6428 6429 6430 6431 6432 6433 6434 6435
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6436

6437 6438 6439 6440
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6441
}
L
Linus Torvalds 已提交
6442 6443
#endif

6444
#ifdef CONFIG_NUMA
6445 6446 6447
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6448
	int cpu, i;
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6479 6480 6481 6482 6483
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6484

6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6511 6512
	sd->groups->__cpu_power = 0;

6513 6514 6515 6516 6517 6518 6519 6520 6521 6522
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6523
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6524 6525 6526 6527 6528 6529 6530 6531
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6532
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6533 6534 6535 6536
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6537
/*
6538 6539
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6540
 */
6541
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6542 6543
{
	int i;
G
Gregory Haskins 已提交
6544
	struct root_domain *rd;
6545 6546
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6547
	int sd_allnodes = 0;
6548 6549 6550 6551

	/*
	 * Allocate the per-node list of sched groups
	 */
6552
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6553
				    GFP_KERNEL);
6554 6555
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6556
		return -ENOMEM;
6557 6558 6559
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6560

6561
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6562 6563 6564 6565 6566
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6567
	/*
6568
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6569
	 */
6570
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6571 6572 6573
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6574
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6575 6576

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6577 6578
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6579 6580 6581
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6582
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6583
			p = sd;
6584
			sd_allnodes = 1;
6585 6586 6587
		} else
			p = NULL;

L
Linus Torvalds 已提交
6588 6589
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6590 6591
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6592 6593
		if (p)
			p->child = sd;
6594
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6595 6596 6597 6598 6599 6600 6601
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6602 6603
		if (p)
			p->child = sd;
6604
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6605

6606 6607 6608 6609 6610 6611 6612
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6613
		p->child = sd;
6614
		cpu_to_core_group(i, cpu_map, &sd->groups);
6615 6616
#endif

L
Linus Torvalds 已提交
6617 6618 6619 6620
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6621
		sd->span = per_cpu(cpu_sibling_map, i);
6622
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6623
		sd->parent = p;
6624
		p->child = sd;
6625
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6626 6627 6628 6629 6630
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6631
	for_each_cpu_mask(i, *cpu_map) {
6632
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6633
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6634 6635 6636
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6637 6638
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6639 6640 6641
	}
#endif

6642 6643 6644 6645 6646 6647 6648
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6649 6650
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6651 6652 6653
	}
#endif

L
Linus Torvalds 已提交
6654 6655 6656 6657
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6658
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6659 6660 6661
		if (cpus_empty(nodemask))
			continue;

6662
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6663 6664 6665 6666
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6667
	if (sd_allnodes)
I
Ingo Molnar 已提交
6668 6669
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6680 6681
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6682
			continue;
6683
		}
6684 6685 6686 6687

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6688
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6689 6690 6691 6692 6693
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6694 6695 6696
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6697

6698 6699 6700
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6701
		sg->__cpu_power = 0;
6702
		sg->cpumask = nodemask;
6703
		sg->next = sg;
6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6722 6723
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6724 6725 6726
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6727
				goto error;
6728
			}
6729
			sg->__cpu_power = 0;
6730
			sg->cpumask = tmp;
6731
			sg->next = prev->next;
6732 6733 6734 6735 6736
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6737 6738 6739
#endif

	/* Calculate CPU power for physical packages and nodes */
6740
#ifdef CONFIG_SCHED_SMT
6741
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6742 6743
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6744
		init_sched_groups_power(i, sd);
6745
	}
L
Linus Torvalds 已提交
6746
#endif
6747
#ifdef CONFIG_SCHED_MC
6748
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6749 6750
		struct sched_domain *sd = &per_cpu(core_domains, i);

6751
		init_sched_groups_power(i, sd);
6752 6753
	}
#endif
6754

6755
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6756 6757
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6758
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6759 6760
	}

6761
#ifdef CONFIG_NUMA
6762 6763
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6764

6765 6766
	if (sd_allnodes) {
		struct sched_group *sg;
6767

6768
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6769 6770
		init_numa_sched_groups_power(sg);
	}
6771 6772
#endif

L
Linus Torvalds 已提交
6773
	/* Attach the domains */
6774
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6775 6776 6777
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6778 6779
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6780 6781 6782
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6783
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6784
	}
6785 6786 6787

	return 0;

6788
#ifdef CONFIG_NUMA
6789 6790 6791
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6792
#endif
L
Linus Torvalds 已提交
6793
}
P
Paul Jackson 已提交
6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6805
/*
I
Ingo Molnar 已提交
6806
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6807 6808
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6809
 */
6810
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6811
{
6812 6813
	int err;

P
Paul Jackson 已提交
6814 6815 6816 6817 6818
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6819
	err = build_sched_domains(doms_cur);
6820
	register_sched_domain_sysctl();
6821 6822

	return err;
6823 6824 6825
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6826
{
6827
	free_sched_groups(cpu_map);
6828
}
L
Linus Torvalds 已提交
6829

6830 6831 6832 6833
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6834
static void detach_destroy_domains(const cpumask_t *cpu_map)
6835 6836 6837
{
	int i;

6838 6839
	unregister_sched_domain_sysctl();

6840
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6841
		cpu_attach_domain(NULL, &def_root_domain, i);
6842 6843 6844 6845
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6846 6847
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6848
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6849 6850 6851 6852
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6853 6854 6855
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6856 6857 6858
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6859 6860
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6871 6872
	lock_doms_cur();

6873 6874 6875
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6911 6912

	register_sched_domain_sysctl();
6913 6914

	unlock_doms_cur();
P
Paul Jackson 已提交
6915 6916
}

6917
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6918
static int arch_reinit_sched_domains(void)
6919 6920 6921
{
	int err;

6922
	get_online_cpus();
6923 6924
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6925
	put_online_cpus();
6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6952 6953
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6954 6955 6956
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6957 6958
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6959 6960 6961 6962 6963 6964 6965
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
6966 6967
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
6968 6969 6970
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
6991 6992
#endif

L
Linus Torvalds 已提交
6993
/*
I
Ingo Molnar 已提交
6994
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
6995
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
6996
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
6997 6998 6999 7000 7001 7002 7003
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7004
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7005
	case CPU_DOWN_PREPARE:
7006
	case CPU_DOWN_PREPARE_FROZEN:
7007
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7008 7009 7010
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7011
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7012
	case CPU_DOWN_FAILED:
7013
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7014
	case CPU_ONLINE:
7015
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7016
	case CPU_DEAD:
7017
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7018 7019 7020 7021 7022 7023 7024 7025 7026
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7027
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7028 7029 7030 7031 7032 7033

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7034 7035
	cpumask_t non_isolated_cpus;

7036
	get_online_cpus();
7037
	arch_init_sched_domains(&cpu_online_map);
7038
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7039 7040
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7041
	put_online_cpus();
L
Linus Torvalds 已提交
7042 7043
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7044 7045 7046 7047

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7048
	sched_init_granularity();
L
Linus Torvalds 已提交
7049 7050 7051 7052
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7053
	sched_init_granularity();
L
Linus Torvalds 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7064
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7065 7066 7067 7068 7069
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7070
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7071 7072
}

P
Peter Zijlstra 已提交
7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7086
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7087 7088
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7089 7090 7091 7092 7093 7094 7095
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7096

7097
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7098
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7099 7100
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7101 7102
}

P
Peter Zijlstra 已提交
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7121
#endif
P
Peter Zijlstra 已提交
7122

7123
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7143 7144
void __init sched_init(void)
{
7145
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7146 7147
	int i, j;

G
Gregory Haskins 已提交
7148 7149 7150 7151
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7152
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7153 7154 7155
	list_add(&init_task_group.list, &task_groups);
#endif

7156
	for_each_possible_cpu(i) {
7157
		struct rq *rq;
L
Linus Torvalds 已提交
7158 7159 7160

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7161
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7162
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7163 7164
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7165
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7166
#ifdef CONFIG_FAIR_GROUP_SCHED
7167
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7168 7169 7170 7171 7172
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7173 7174
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7175 7176
		init_task_group.rt_runtime =
			sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7177 7178 7179 7180
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7181
#endif
P
Peter Zijlstra 已提交
7182
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7183
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7184

I
Ingo Molnar 已提交
7185 7186
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7187
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7188
		rq->sd = NULL;
G
Gregory Haskins 已提交
7189
		rq->rd = NULL;
L
Linus Torvalds 已提交
7190
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7191
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7192
		rq->push_cpu = 0;
7193
		rq->cpu = i;
L
Linus Torvalds 已提交
7194 7195
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7196
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7197
#endif
P
Peter Zijlstra 已提交
7198
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7199
		atomic_set(&rq->nr_iowait, 0);
7200
		highest_cpu = i;
L
Linus Torvalds 已提交
7201 7202
	}

7203
	set_load_weight(&init_task);
7204

7205 7206 7207 7208
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7209
#ifdef CONFIG_SMP
7210
	nr_cpu_ids = highest_cpu + 1;
7211 7212 7213
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7214 7215 7216 7217
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7231 7232 7233 7234
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7235 7236

	scheduler_running = 1;
L
Linus Torvalds 已提交
7237 7238 7239 7240 7241
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7242
#ifdef in_atomic
L
Linus Torvalds 已提交
7243 7244 7245 7246 7247 7248 7249
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7250
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7251 7252 7253
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7254
		debug_show_held_locks(current);
7255 7256
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7257 7258 7259 7260 7261 7262 7263 7264
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7279 7280
void normalize_rt_tasks(void)
{
7281
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7282
	unsigned long flags;
7283
	struct rq *rq;
L
Linus Torvalds 已提交
7284

7285
	read_lock_irqsave(&tasklist_lock, flags);
7286
	do_each_thread(g, p) {
7287 7288 7289 7290 7291 7292
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7293 7294
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7295 7296 7297
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7298
#endif
I
Ingo Molnar 已提交
7299 7300 7301 7302 7303 7304 7305 7306 7307
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7308
			continue;
I
Ingo Molnar 已提交
7309
		}
L
Linus Torvalds 已提交
7310

7311
		spin_lock(&p->pi_lock);
7312
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7313

7314
		normalize_task(rq, p);
7315

7316
		__task_rq_unlock(rq);
7317
		spin_unlock(&p->pi_lock);
7318 7319
	} while_each_thread(g, p);

7320
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7321 7322 7323
}

#endif /* CONFIG_MAGIC_SYSRQ */
7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7342
struct task_struct *curr_task(int cpu)
7343 7344 7345 7346 7347 7348 7349 7350 7351 7352
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7353 7354
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7355 7356 7357 7358 7359 7360 7361
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7362
void set_curr_task(int cpu, struct task_struct *p)
7363 7364 7365 7366 7367
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7368

7369
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7370

7371 7372
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7387
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7388 7389 7390
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7391
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7392 7393
	int i;

7394
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7395 7396
	if (!tg->cfs_rq)
		goto err;
7397
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7398 7399
	if (!tg->se)
		goto err;
7400 7401

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7402 7403

	for_each_possible_cpu(i) {
7404
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7405

P
Peter Zijlstra 已提交
7406 7407
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7408 7409 7410
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7411 7412
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7413 7414 7415
		if (!se)
			goto err;

7416
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7452 7453 7454
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->rt_runtime = 0;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7489 7490 7491 7492
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7493

P
Peter Zijlstra 已提交
7494 7495 7496 7497
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7498

P
Peter Zijlstra 已提交
7499
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7500 7501
	}

7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7561
	spin_lock_irqsave(&task_group_lock, flags);
7562
	for_each_possible_cpu(i) {
7563 7564
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7565
	}
P
Peter Zijlstra 已提交
7566
	list_add_rcu(&tg->list, &task_groups);
7567
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7568

7569
	return tg;
S
Srivatsa Vaddagiri 已提交
7570 7571

err:
P
Peter Zijlstra 已提交
7572
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7573 7574 7575
	return ERR_PTR(-ENOMEM);
}

7576
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7577
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7578 7579
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7580
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7581 7582
}

7583
/* Destroy runqueue etc associated with a task group */
7584
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7585
{
7586
	unsigned long flags;
7587
	int i;
S
Srivatsa Vaddagiri 已提交
7588

7589
	spin_lock_irqsave(&task_group_lock, flags);
7590
	for_each_possible_cpu(i) {
7591 7592
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7593
	}
P
Peter Zijlstra 已提交
7594
	list_del_rcu(&tg->list);
7595
	spin_unlock_irqrestore(&task_group_lock, flags);
7596 7597

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7598
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7599 7600
}

7601
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7602 7603 7604
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7605 7606
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7607 7608 7609 7610 7611 7612 7613 7614 7615
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7616
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7617 7618
	on_rq = tsk->se.on_rq;

7619
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7620
		dequeue_task(rq, tsk, 0);
7621 7622
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7623

P
Peter Zijlstra 已提交
7624
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7625

P
Peter Zijlstra 已提交
7626 7627 7628 7629 7630
#ifdef CONFIG_FAIR_GROUP_SCHED
	if (tsk->sched_class->moved_group)
		tsk->sched_class->moved_group(tsk);
#endif

7631 7632 7633
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7634
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7635 7636 7637 7638

	task_rq_unlock(rq, &flags);
}

7639
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7640 7641 7642 7643 7644 7645
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7646
	spin_lock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7647 7648

	on_rq = se->on_rq;
7649
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7650 7651 7652 7653 7654
		dequeue_entity(cfs_rq, se, 0);

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7655
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7656
		enqueue_entity(cfs_rq, se, 0);
7657 7658

	spin_unlock_irq(&rq->lock);
S
Srivatsa Vaddagiri 已提交
7659 7660
}

7661 7662
static DEFINE_MUTEX(shares_mutex);

7663
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7664 7665
{
	int i;
7666
	unsigned long flags;
7667

7668 7669 7670 7671 7672 7673 7674 7675
	/*
	 * A weight of 0 or 1 can cause arithmetics problems.
	 * (The default weight is 1024 - so there's no practical
	 *  limitation from this.)
	 */
	if (shares < 2)
		shares = 2;

7676
	mutex_lock(&shares_mutex);
7677
	if (tg->shares == shares)
7678
		goto done;
S
Srivatsa Vaddagiri 已提交
7679

7680
	spin_lock_irqsave(&task_group_lock, flags);
7681 7682
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7683
	spin_unlock_irqrestore(&task_group_lock, flags);
7684 7685 7686 7687 7688 7689 7690 7691

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7692
	tg->shares = shares;
7693
	for_each_possible_cpu(i)
7694
		set_se_shares(tg->se[i], shares);
S
Srivatsa Vaddagiri 已提交
7695

7696 7697 7698 7699
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7700
	spin_lock_irqsave(&task_group_lock, flags);
7701 7702
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7703
	spin_unlock_irqrestore(&task_group_lock, flags);
7704
done:
7705
	mutex_unlock(&shares_mutex);
7706
	return 0;
S
Srivatsa Vaddagiri 已提交
7707 7708
}

7709 7710 7711 7712
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7713
#endif
7714

7715
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7716
/*
P
Peter Zijlstra 已提交
7717
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7718
 */
P
Peter Zijlstra 已提交
7719 7720 7721 7722 7723 7724 7725
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

7726
	return div64_64(runtime << 16, period);
P
Peter Zijlstra 已提交
7727 7728 7729
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7730 7731 7732
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7733 7734 7735 7736
	unsigned long global_ratio =
		to_ratio(sysctl_sched_rt_period,
			 sysctl_sched_rt_runtime < 0 ?
				RUNTIME_INF : sysctl_sched_rt_runtime);
P
Peter Zijlstra 已提交
7737 7738

	rcu_read_lock();
P
Peter Zijlstra 已提交
7739 7740 7741
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7742

P
Peter Zijlstra 已提交
7743 7744 7745
		total += to_ratio(period, tgi->rt_runtime);
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7746

P
Peter Zijlstra 已提交
7747
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7748 7749
}

7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
{
	struct task_struct *g, *p;
	do_each_thread(g, p) {
		if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
			return 1;
	} while_each_thread(g, p);
	return 0;
}

P
Peter Zijlstra 已提交
7761
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
P
Peter Zijlstra 已提交
7762
{
P
Peter Zijlstra 已提交
7763 7764 7765
	u64 rt_runtime, rt_period;
	int err = 0;

7766
	rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7767 7768
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us == -1)
7769
		rt_runtime = RUNTIME_INF;
P
Peter Zijlstra 已提交
7770 7771

	mutex_lock(&rt_constraints_mutex);
7772 7773 7774 7775 7776
	read_lock(&tasklist_lock);
	if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
		err = -EBUSY;
		goto unlock;
	}
P
Peter Zijlstra 已提交
7777 7778 7779 7780 7781 7782
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
	tg->rt_runtime = rt_runtime;
 unlock:
7783
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7784 7785 7786
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7787 7788
}

P
Peter Zijlstra 已提交
7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

	if (tg->rt_runtime == RUNTIME_INF)
		return -1;

	rt_runtime_us = tg->rt_runtime;
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7800 7801
#endif
#endif	/* CONFIG_GROUP_SCHED */
7802

7803
#ifdef CONFIG_CGROUP_SCHED
7804 7805

/* return corresponding task_group object of a cgroup */
7806
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7807
{
7808 7809
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
7810 7811 7812
}

static struct cgroup_subsys_state *
7813
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7814 7815 7816
{
	struct task_group *tg;

7817
	if (!cgrp->parent) {
7818
		/* This is early initialization for the top cgroup */
7819
		init_task_group.css.cgroup = cgrp;
7820 7821 7822 7823
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
7824
	if (cgrp->parent->parent)
7825 7826 7827 7828 7829 7830 7831
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
7832
	tg->css.cgroup = cgrp;
7833 7834 7835 7836

	return &tg->css;
}

I
Ingo Molnar 已提交
7837 7838
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7839
{
7840
	struct task_group *tg = cgroup_tg(cgrp);
7841 7842 7843 7844

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
7845 7846 7847
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
7848
{
7849 7850 7851 7852 7853
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
		return -EINVAL;
#else
7854 7855 7856
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
7857
#endif
7858 7859 7860 7861 7862

	return 0;
}

static void
7863
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7864 7865 7866 7867 7868
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

7869
#ifdef CONFIG_FAIR_GROUP_SCHED
7870 7871
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
7872
{
7873
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7874 7875
}

7876
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7877
{
7878
	struct task_group *tg = cgroup_tg(cgrp);
7879 7880 7881

	return (u64) tg->shares;
}
7882
#endif
7883

7884
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7885 7886 7887 7888
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
7889
{
P
Peter Zijlstra 已提交
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
7916 7917
}

P
Peter Zijlstra 已提交
7918 7919 7920 7921
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
7922
{
P
Peter Zijlstra 已提交
7923 7924 7925
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
7926

P
Peter Zijlstra 已提交
7927
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
7928
}
7929
#endif
P
Peter Zijlstra 已提交
7930

7931
static struct cftype cpu_files[] = {
7932
#ifdef CONFIG_FAIR_GROUP_SCHED
7933 7934 7935 7936 7937
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
7938 7939
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7940
	{
P
Peter Zijlstra 已提交
7941 7942 7943
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
7944
	},
7945
#endif
7946 7947 7948 7949
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
7950
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7951 7952 7953
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
7954 7955 7956 7957 7958 7959 7960
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
7961 7962 7963
	.early_init	= 1,
};

7964
#endif	/* CONFIG_CGROUP_SCHED */
7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8017 8018
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */