hugetlb.c 128.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/sched/signal.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include <linux/userfaultfd_k.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55
static bool __initdata parsed_valid_hugepagesz = true;
56

57
/*
58 59
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
60
 */
61
DEFINE_SPINLOCK(hugetlb_lock);
62

63 64 65 66 67
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
68
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69

70 71 72
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

73 74 75 76 77 78 79
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
80 81 82 83 84 85
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
86
		kfree(spool);
87
	}
88 89
}

90 91
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
92 93 94
{
	struct hugepage_subpool *spool;

95
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 97 98 99 100
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
101 102 103 104 105 106 107 108 109
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
110 111 112 113 114 115 116 117 118 119 120 121

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

122 123 124 125 126 127 128 129 130
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 132
				      long delta)
{
133
	long ret = delta;
134 135

	if (!spool)
136
		return ret;
137 138

	spin_lock(&spool->lock);
139 140 141 142 143 144 145 146

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
147 148
	}

149 150
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
166 167 168
	return ret;
}

169 170 171 172 173 174 175
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 177
				       long delta)
{
178 179
	long ret = delta;

180
	if (!spool)
181
		return delta;
182 183

	spin_lock(&spool->lock);
184 185 186 187

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

188 189
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
204
	unlock_or_release_subpool(spool);
205 206

	return ret;
207 208 209 210 211 212 213 214 215
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
216
	return subpool_inode(file_inode(vma->vm_file));
217 218
}

219 220 221
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
222
 *
223 224 225 226 227 228 229 230 231 232 233 234 235 236
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
237 238 239 240 241 242 243
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

244 245
/*
 * Add the huge page range represented by [f, t) to the reserve
246 247 248 249 250 251 252 253
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
254 255 256
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
257
 */
258
static long region_add(struct resv_map *resv, long f, long t)
259
{
260
	struct list_head *head = &resv->regions;
261
	struct file_region *rg, *nrg, *trg;
262
	long add = 0;
263

264
	spin_lock(&resv->lock);
265 266 267 268 269
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
310 311 312 313 314
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
315 316 317 318
			list_del(&rg->link);
			kfree(rg);
		}
	}
319 320

	add += (nrg->from - f);		/* Added to beginning of region */
321
	nrg->from = f;
322
	add += t - nrg->to;		/* Added to end of region */
323
	nrg->to = t;
324

325 326
out_locked:
	resv->adds_in_progress--;
327
	spin_unlock(&resv->lock);
328 329
	VM_BUG_ON(add < 0);
	return add;
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
345 346 347 348 349 350 351 352
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
353
 */
354
static long region_chg(struct resv_map *resv, long f, long t)
355
{
356
	struct list_head *head = &resv->regions;
357
	struct file_region *rg, *nrg = NULL;
358 359
	long chg = 0;

360 361
retry:
	spin_lock(&resv->lock);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 379
		if (!trg) {
			kfree(nrg);
380
			return -ENOMEM;
381
		}
382 383 384 385 386 387 388

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

389 390 391 392 393 394 395 396 397
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
398
		if (!nrg) {
399
			resv->adds_in_progress--;
400 401 402 403 404 405 406 407 408 409
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
410

411 412 413
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
414 415 416 417 418 419 420 421 422 423 424 425
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
426
			goto out;
427

L
Lucas De Marchi 已提交
428
		/* We overlap with this area, if it extends further than
429 430 431 432 433 434 435 436
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
437 438 439 440 441 442 443 444

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
445 446 447
	return chg;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

467
/*
468 469 470 471 472 473 474 475 476 477 478 479
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
480
 */
481
static long region_del(struct resv_map *resv, long f, long t)
482
{
483
	struct list_head *head = &resv->regions;
484
	struct file_region *rg, *trg;
485 486
	struct file_region *nrg = NULL;
	long del = 0;
487

488
retry:
489
	spin_lock(&resv->lock);
490
	list_for_each_entry_safe(rg, trg, head, link) {
491 492 493 494 495 496 497 498
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499
			continue;
500

501
		if (rg->from >= t)
502 503
			break;

504 505 506 507 508 509 510 511 512 513 514 515 516
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
538
			break;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
555
	}
556 557

	spin_unlock(&resv->lock);
558 559
	kfree(nrg);
	return del;
560 561
}

562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
571
void hugetlb_fix_reserve_counts(struct inode *inode)
572 573 574 575 576
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577
	if (rsv_adjust) {
578 579 580 581 582 583
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

584 585 586 587
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
588
static long region_count(struct resv_map *resv, long f, long t)
589
{
590
	struct list_head *head = &resv->regions;
591 592 593
	struct file_region *rg;
	long chg = 0;

594
	spin_lock(&resv->lock);
595 596
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
597 598
		long seg_from;
		long seg_to;
599 600 601 602 603 604 605 606 607 608 609

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
610
	spin_unlock(&resv->lock);
611 612 613 614

	return chg;
}

615 616 617 618
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
619 620
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
621
{
622 623
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
624 625
}

626 627 628 629 630
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
631
EXPORT_SYMBOL_GPL(linear_hugepage_index);
632

633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

646
	return 1UL << huge_page_shift(hstate);
647
}
648
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649

650 651 652 653 654 655 656 657 658 659 660 661 662
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

663 664 665 666 667 668 669
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
670
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671

672 673 674 675 676 677 678 679 680
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
681 682 683 684 685 686 687 688 689
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
690
 */
691 692 693 694 695 696 697 698 699 700 701
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

702
struct resv_map *resv_map_alloc(void)
703 704
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 706 707 708 709
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
710
		return NULL;
711
	}
712 713

	kref_init(&resv_map->refs);
714
	spin_lock_init(&resv_map->lock);
715 716
	INIT_LIST_HEAD(&resv_map->regions);

717 718 719 720 721 722
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

723 724 725
	return resv_map;
}

726
void resv_map_release(struct kref *ref)
727 728
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 730
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
731 732

	/* Clear out any active regions before we release the map. */
733
	region_del(resv_map, 0, LONG_MAX);
734 735 736 737 738 739 740 741 742

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

743 744 745
	kfree(resv_map);
}

746 747 748 749 750
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

751
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752
{
753
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 755 756 757 758 759 760
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
761 762
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
763
	}
764 765
}

766
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767
{
768 769
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770

771 772
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
773 774 775 776
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
777 778
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 780

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 782 783 784
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
785
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 787

	return (get_vma_private_data(vma) & flag) != 0;
788 789
}

790
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 792
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
793
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794
	if (!(vma->vm_flags & VM_MAYSHARE))
795 796 797 798
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
799
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800
{
801 802 803 804 805 806 807 808 809 810 811
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812
			return true;
813
		else
814
			return false;
815
	}
816 817

	/* Shared mappings always use reserves */
818 819 820 821 822 823 824 825 826 827 828 829 830
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
831 832 833 834 835

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
857

858
	return false;
859 860
}

861
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
862 863
{
	int nid = page_to_nid(page);
864
	list_move(&page->lru, &h->hugepage_freelists[nid]);
865 866
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
867 868
}

869
static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
870 871 872
{
	struct page *page;

873
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
874
		if (!PageHWPoison(page))
875 876 877 878 879 880
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
881
		return NULL;
882
	list_move(&page->lru, &h->hugepage_activelist);
883
	set_page_refcounted(page);
884 885 886 887 888
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;
	int node;

	if (nid != NUMA_NO_NODE)
		return dequeue_huge_page_node_exact(h, nid);

	for_each_online_node(node) {
		page = dequeue_huge_page_node_exact(h, node);
		if (page)
			return page;
	}
	return NULL;
}

905 906 907
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
908
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
909 910 911 912 913
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

914 915
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
916 917
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
918
{
919
	struct page *page = NULL;
920
	struct mempolicy *mpol;
921
	nodemask_t *nodemask;
922 923
	gfp_t gfp_mask;
	int nid;
924
	struct zonelist *zonelist;
925 926
	struct zone *zone;
	struct zoneref *z;
927
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
928

929 930 931 932 933
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
934
	if (!vma_has_reserves(vma, chg) &&
935
			h->free_huge_pages - h->resv_huge_pages == 0)
936
		goto err;
937

938
	/* If reserves cannot be used, ensure enough pages are in the pool */
939
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
940
		goto err;
941

942
retry_cpuset:
943
	cpuset_mems_cookie = read_mems_allowed_begin();
944 945 946
	gfp_mask = htlb_alloc_mask(h);
	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
	zonelist = node_zonelist(nid, gfp_mask);
947

948 949
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
950
		if (cpuset_zone_allowed(zone, gfp_mask)) {
951 952
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
953 954 955 956 957
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

958
				SetPagePrivate(page);
959
				h->resv_huge_pages--;
960 961
				break;
			}
A
Andrew Morton 已提交
962
		}
L
Linus Torvalds 已提交
963
	}
964

965
	mpol_cond_put(mpol);
966
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
967
		goto retry_cpuset;
L
Linus Torvalds 已提交
968
	return page;
969 970 971

err:
	return NULL;
L
Linus Torvalds 已提交
972 973
}

974 975 976 977 978 979 980 981 982
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
983
	nid = next_node_in(nid, *nodes_allowed);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1045
#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046
static void destroy_compound_gigantic_page(struct page *page,
1047
					unsigned int order)
1048 1049 1050 1051 1052
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1053
	atomic_set(compound_mapcount_ptr(page), 0);
1054
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1055
		clear_compound_head(p);
1056 1057 1058 1059 1060 1061 1062
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1063
static void free_gigantic_page(struct page *page, unsigned int order)
1064 1065 1066 1067 1068 1069 1070 1071
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
1072 1073
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
				  GFP_KERNEL);
1074 1075
}

1076 1077
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1088 1089 1090
		if (page_zone(page) != z)
			return false;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1111
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1123
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1147
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

1177
#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1178
static inline bool gigantic_page_supported(void) { return false; }
1179
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1180
static inline void destroy_compound_gigantic_page(struct page *page,
1181
						unsigned int order) { }
1182 1183 1184 1185
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1186
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1187 1188
{
	int i;
1189

1190 1191
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1192

1193 1194 1195
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1196 1197
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1198 1199
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1200
	}
1201
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1202
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1203
	set_page_refcounted(page);
1204 1205 1206 1207 1208 1209
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1248
void free_huge_page(struct page *page)
1249
{
1250 1251 1252 1253
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1254
	struct hstate *h = page_hstate(page);
1255
	int nid = page_to_nid(page);
1256 1257
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1258
	bool restore_reserve;
1259

1260
	set_page_private(page, 0);
1261
	page->mapping = NULL;
1262 1263
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1264
	restore_reserve = PagePrivate(page);
1265
	ClearPagePrivate(page);
1266

1267 1268 1269 1270 1271 1272 1273 1274
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1275
	spin_lock(&hugetlb_lock);
1276
	clear_page_huge_active(page);
1277 1278
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1279 1280 1281
	if (restore_reserve)
		h->resv_huge_pages++;

1282
	if (h->surplus_huge_pages_node[nid]) {
1283 1284
		/* remove the page from active list */
		list_del(&page->lru);
1285 1286 1287
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1288
	} else {
1289
		arch_clear_hugepage_flags(page);
1290
		enqueue_huge_page(h, page);
1291
	}
1292 1293 1294
	spin_unlock(&hugetlb_lock);
}

1295
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1296
{
1297
	INIT_LIST_HEAD(&page->lru);
1298
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1299
	spin_lock(&hugetlb_lock);
1300
	set_hugetlb_cgroup(page, NULL);
1301 1302
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1303 1304 1305 1306
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1307
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1308 1309 1310 1311 1312 1313 1314
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1315
	__ClearPageReserved(page);
1316
	__SetPageHead(page);
1317
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1331
		set_page_count(p, 0);
1332
		set_compound_head(p, page);
1333
	}
1334
	atomic_set(compound_mapcount_ptr(page), -1);
1335 1336
}

A
Andrew Morton 已提交
1337 1338 1339 1340 1341
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1342 1343 1344 1345 1346 1347
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1348
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1349
}
1350 1351
EXPORT_SYMBOL_GPL(PageHuge);

1352 1353 1354 1355 1356 1357 1358 1359 1360
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1361
	return get_compound_page_dtor(page_head) == free_huge_page;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1381
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1382 1383
{
	struct page *page;
1384

1385
	page = __alloc_pages_node(nid,
1386
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1387
						__GFP_REPEAT|__GFP_NOWARN,
1388
		huge_page_order(h));
L
Linus Torvalds 已提交
1389
	if (page) {
1390
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1391
	}
1392 1393 1394 1395

	return page;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1418 1419 1420 1421 1422 1423
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1424 1425
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1426
{
1427
	int nr_nodes, node;
1428 1429
	int ret = 0;

1430
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1431 1432 1433 1434
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1435 1436
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1437
			struct page *page =
1438
				list_entry(h->hugepage_freelists[node].next,
1439 1440 1441
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1442
			h->free_huge_pages_node[node]--;
1443 1444
			if (acct_surplus) {
				h->surplus_huge_pages--;
1445
				h->surplus_huge_pages_node[node]--;
1446
			}
1447 1448
			update_and_free_page(h, page);
			ret = 1;
1449
			break;
1450
		}
1451
	}
1452 1453 1454 1455

	return ret;
}

1456 1457
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1458 1459 1460
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1461
 */
1462
int dissolve_free_huge_page(struct page *page)
1463
{
1464 1465
	int rc = 0;

1466 1467
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1468 1469 1470
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1471 1472 1473 1474
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1475 1476 1477 1478 1479 1480 1481 1482
		/*
		 * Move PageHWPoison flag from head page to the raw error page,
		 * which makes any subpages rather than the error page reusable.
		 */
		if (PageHWPoison(head) && page != head) {
			SetPageHWPoison(page);
			ClearPageHWPoison(head);
		}
1483
		list_del(&head->lru);
1484 1485
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1486
		h->max_huge_pages--;
1487
		update_and_free_page(h, head);
1488
	}
1489
out:
1490
	spin_unlock(&hugetlb_lock);
1491
	return rc;
1492 1493 1494 1495 1496
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1497 1498
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1499 1500
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1501
 */
1502
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1503 1504
{
	unsigned long pfn;
1505
	struct page *page;
1506
	int rc = 0;
1507

1508
	if (!hugepages_supported())
1509
		return rc;
1510

1511 1512 1513 1514 1515 1516 1517 1518
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1519 1520

	return rc;
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1541 1542 1543 1544 1545 1546
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1547
	 */
D
Dave Hansen 已提交
1548
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1565 1566
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1567 1568 1569 1570
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
1571
		int nid;
1572 1573 1574
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
1575
		nid = huge_node(vma, addr, gfp, &mpol, &nodemask);
1576
		mpol_cond_put(mpol);
1577
		page = __alloc_pages_nodemask(gfp, order, nid, nodemask);
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1599 1600
{
	struct page *page;
1601
	unsigned int r_nid;
1602

1603
	if (hstate_is_gigantic(h))
1604 1605
		return NULL;

1606 1607 1608 1609 1610 1611
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1612 1613
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1614
	}
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1639
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1640 1641 1642
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1643 1644
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1645 1646 1647
	}
	spin_unlock(&hugetlb_lock);

1648
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1649 1650

	spin_lock(&hugetlb_lock);
1651
	if (page) {
1652
		INIT_LIST_HEAD(&page->lru);
1653
		r_nid = page_to_nid(page);
1654
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1655
		set_hugetlb_cgroup(page, NULL);
1656 1657 1658
		/*
		 * We incremented the global counters already
		 */
1659 1660
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1661
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1662
	} else {
1663 1664
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1665
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1666
	}
1667
	spin_unlock(&hugetlb_lock);
1668 1669 1670 1671

	return page;
}

1672 1673 1674 1675 1676
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1677
static
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1688
static
1689 1690 1691 1692 1693 1694
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1695 1696 1697 1698 1699 1700 1701
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1702
	struct page *page = NULL;
1703 1704

	spin_lock(&hugetlb_lock);
1705 1706
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1707 1708
	spin_unlock(&hugetlb_lock);

1709
	if (!page)
1710
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1711 1712 1713 1714

	return page;
}

1715
/*
L
Lucas De Marchi 已提交
1716
 * Increase the hugetlb pool such that it can accommodate a reservation
1717 1718
 * of size 'delta'.
 */
1719
static int gather_surplus_pages(struct hstate *h, int delta)
1720 1721 1722 1723 1724
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1725
	bool alloc_ok = true;
1726

1727
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1728
	if (needed <= 0) {
1729
		h->resv_huge_pages += delta;
1730
		return 0;
1731
	}
1732 1733 1734 1735 1736 1737 1738 1739

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1740
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1741 1742 1743 1744
		if (!page) {
			alloc_ok = false;
			break;
		}
1745 1746
		list_add(&page->lru, &surplus_list);
	}
1747
	allocated += i;
1748 1749 1750 1751 1752 1753

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1754 1755
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1766 1767
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1768
	 * needed to accommodate the reservation.  Add the appropriate number
1769
	 * of pages to the hugetlb pool and free the extras back to the buddy
1770 1771 1772
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1773 1774
	 */
	needed += allocated;
1775
	h->resv_huge_pages += delta;
1776
	ret = 0;
1777

1778
	/* Free the needed pages to the hugetlb pool */
1779
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1780 1781
		if ((--needed) < 0)
			break;
1782 1783 1784 1785 1786
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1787
		VM_BUG_ON_PAGE(page_count(page), page);
1788
		enqueue_huge_page(h, page);
1789
	}
1790
free:
1791
	spin_unlock(&hugetlb_lock);
1792 1793

	/* Free unnecessary surplus pages to the buddy allocator */
1794 1795
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1796
	spin_lock(&hugetlb_lock);
1797 1798 1799 1800 1801

	return ret;
}

/*
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1814
 */
1815 1816
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1817 1818 1819
{
	unsigned long nr_pages;

1820
	/* Cannot return gigantic pages currently */
1821
	if (hstate_is_gigantic(h))
1822
		goto out;
1823

1824 1825 1826 1827
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1828
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1829

1830 1831
	/*
	 * We want to release as many surplus pages as possible, spread
1832 1833 1834 1835 1836
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1837 1838 1839 1840
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1841 1842
	 */
	while (nr_pages--) {
1843 1844
		h->resv_huge_pages--;
		unused_resv_pages--;
1845
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1846
			goto out;
1847
		cond_resched_lock(&hugetlb_lock);
1848
	}
1849 1850 1851 1852

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1853 1854
}

1855

1856
/*
1857
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1858
 * are used by the huge page allocation routines to manage reservations.
1859 1860 1861 1862 1863 1864
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1865 1866 1867
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1868 1869 1870 1871 1872 1873
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1874 1875 1876 1877 1878
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1879
 */
1880 1881 1882
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1883
	VMA_END_RESV,
1884
	VMA_ADD_RESV,
1885
};
1886 1887
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1888
				enum vma_resv_mode mode)
1889
{
1890 1891
	struct resv_map *resv;
	pgoff_t idx;
1892
	long ret;
1893

1894 1895
	resv = vma_resv_map(vma);
	if (!resv)
1896
		return 1;
1897

1898
	idx = vma_hugecache_offset(h, vma, addr);
1899 1900
	switch (mode) {
	case VMA_NEEDS_RESV:
1901
		ret = region_chg(resv, idx, idx + 1);
1902 1903 1904 1905
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1906
	case VMA_END_RESV:
1907 1908 1909
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1910 1911 1912 1913 1914 1915 1916 1917
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1918 1919 1920
	default:
		BUG();
	}
1921

1922
	if (vma->vm_flags & VM_MAYSHARE)
1923
		return ret;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1943
	else
1944
		return ret < 0 ? ret : 0;
1945
}
1946 1947

static long vma_needs_reservation(struct hstate *h,
1948
			struct vm_area_struct *vma, unsigned long addr)
1949
{
1950
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1951
}
1952

1953 1954 1955
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1956 1957 1958
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1959
static void vma_end_reservation(struct hstate *h,
1960 1961
			struct vm_area_struct *vma, unsigned long addr)
{
1962
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1963 1964
}

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

2015
struct page *alloc_huge_page(struct vm_area_struct *vma,
2016
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
2017
{
2018
	struct hugepage_subpool *spool = subpool_vma(vma);
2019
	struct hstate *h = hstate_vma(vma);
2020
	struct page *page;
2021 2022
	long map_chg, map_commit;
	long gbl_chg;
2023 2024
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2025

2026
	idx = hstate_index(h);
2027
	/*
2028 2029 2030
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2031
	 */
2032 2033
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2034
		return ERR_PTR(-ENOMEM);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2046
			vma_end_reservation(h, vma, addr);
2047
			return ERR_PTR(-ENOSPC);
2048
		}
L
Linus Torvalds 已提交
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2062
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2063 2064 2065
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2066
	spin_lock(&hugetlb_lock);
2067 2068 2069 2070 2071 2072
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2073
	if (!page) {
2074
		spin_unlock(&hugetlb_lock);
2075
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2076 2077
		if (!page)
			goto out_uncharge_cgroup;
2078 2079 2080 2081
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2082 2083
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2084
		/* Fall through */
K
Ken Chen 已提交
2085
	}
2086 2087
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2088

2089
	set_page_private(page, (unsigned long)spool);
2090

2091 2092
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2107
	return page;
2108 2109 2110 2111

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2112
	if (map_chg || avoid_reserve)
2113
		hugepage_subpool_put_pages(spool, 1);
2114
	vma_end_reservation(h, vma, addr);
2115
	return ERR_PTR(-ENOSPC);
2116 2117
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

2132
int __weak alloc_bootmem_huge_page(struct hstate *h)
2133 2134
{
	struct huge_bootmem_page *m;
2135
	int nr_nodes, node;
2136

2137
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2138 2139
		void *addr;

2140 2141 2142
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2143 2144 2145 2146 2147 2148 2149
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2150
			goto found;
2151 2152 2153 2154 2155
		}
	}
	return 0;

found:
2156
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2157 2158 2159 2160 2161 2162
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2163 2164
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2165 2166 2167 2168 2169 2170 2171
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2172 2173 2174 2175 2176 2177 2178
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2179 2180 2181 2182
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2183 2184
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2185 2186 2187
#else
		page = virt_to_page(m);
#endif
2188
		WARN_ON(page_count(page) != 1);
2189
		prep_compound_huge_page(page, h->order);
2190
		WARN_ON(PageReserved(page));
2191
		prep_new_huge_page(h, page, page_to_nid(page));
2192 2193 2194 2195 2196 2197
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2198
		if (hstate_is_gigantic(h))
2199
			adjust_managed_page_count(page, 1 << h->order);
2200 2201 2202
	}
}

2203
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2204 2205
{
	unsigned long i;
2206

2207
	for (i = 0; i < h->max_huge_pages; ++i) {
2208
		if (hstate_is_gigantic(h)) {
2209 2210
			if (!alloc_bootmem_huge_page(h))
				break;
2211
		} else if (!alloc_fresh_huge_page(h,
2212
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2213 2214
			break;
	}
2215
	h->max_huge_pages = i;
2216 2217 2218 2219 2220 2221 2222
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2223 2224 2225
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2226
		/* oversize hugepages were init'ed in early boot */
2227
		if (!hstate_is_gigantic(h))
2228
			hugetlb_hstate_alloc_pages(h);
2229
	}
2230
	VM_BUG_ON(minimum_order == UINT_MAX);
2231 2232
}

A
Andi Kleen 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2244 2245 2246 2247 2248
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2249
		char buf[32];
2250
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2251 2252
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2253 2254 2255
	}
}

L
Linus Torvalds 已提交
2256
#ifdef CONFIG_HIGHMEM
2257 2258
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2259
{
2260 2261
	int i;

2262
	if (hstate_is_gigantic(h))
2263 2264
		return;

2265
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2266
		struct page *page, *next;
2267 2268 2269
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2270
				return;
L
Linus Torvalds 已提交
2271 2272 2273
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2274
			update_and_free_page(h, page);
2275 2276
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2277 2278 2279 2280
		}
	}
}
#else
2281 2282
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2283 2284 2285 2286
{
}
#endif

2287 2288 2289 2290 2291
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2292 2293
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2294
{
2295
	int nr_nodes, node;
2296 2297 2298

	VM_BUG_ON(delta != -1 && delta != 1);

2299 2300 2301 2302
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2303
		}
2304 2305 2306 2307 2308
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2309
		}
2310 2311
	}
	return 0;
2312

2313 2314 2315 2316
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2317 2318
}

2319
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2320 2321
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2322
{
2323
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2324

2325
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2326 2327
		return h->max_huge_pages;

2328 2329 2330 2331
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2332
	 *
N
Naoya Horiguchi 已提交
2333
	 * We might race with __alloc_buddy_huge_page() here and be unable
2334 2335 2336 2337
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2338
	 */
L
Linus Torvalds 已提交
2339
	spin_lock(&hugetlb_lock);
2340
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2341
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2342 2343 2344
			break;
	}

2345
	while (count > persistent_huge_pages(h)) {
2346 2347 2348 2349 2350 2351
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2352 2353 2354 2355

		/* yield cpu to avoid soft lockup */
		cond_resched();

2356 2357 2358 2359
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2360 2361 2362 2363
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2364 2365 2366
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2367 2368 2369 2370 2371 2372 2373 2374
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2375 2376 2377 2378
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2379
	 * __alloc_buddy_huge_page() is checking the global counter,
2380 2381 2382
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2383
	 */
2384
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2385
	min_count = max(count, min_count);
2386
	try_to_free_low(h, min_count, nodes_allowed);
2387
	while (min_count < persistent_huge_pages(h)) {
2388
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2389
			break;
2390
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2391
	}
2392
	while (count < persistent_huge_pages(h)) {
2393
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2394 2395 2396
			break;
	}
out:
2397
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2398
	spin_unlock(&hugetlb_lock);
2399
	return ret;
L
Linus Torvalds 已提交
2400 2401
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2412 2413 2414
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2415 2416
{
	int i;
2417

2418
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2419 2420 2421
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2422
			return &hstates[i];
2423 2424 2425
		}

	return kobj_to_node_hstate(kobj, nidp);
2426 2427
}

2428
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2429 2430
					struct kobj_attribute *attr, char *buf)
{
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2442
}
2443

2444 2445 2446
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2447 2448
{
	int err;
2449
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2450

2451
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2452 2453 2454 2455
		err = -EINVAL;
		goto out;
	}

2456 2457 2458 2459 2460 2461 2462
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2463
			nodes_allowed = &node_states[N_MEMORY];
2464 2465 2466 2467 2468 2469 2470 2471 2472
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2473
		nodes_allowed = &node_states[N_MEMORY];
2474

2475
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2476

2477
	if (nodes_allowed != &node_states[N_MEMORY])
2478 2479 2480
		NODEMASK_FREE(nodes_allowed);

	return len;
2481 2482 2483
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2484 2485
}

2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2503 2504 2505 2506 2507 2508 2509 2510 2511
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2512
	return nr_hugepages_store_common(false, kobj, buf, len);
2513 2514 2515
}
HSTATE_ATTR(nr_hugepages);

2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2531
	return nr_hugepages_store_common(true, kobj, buf, len);
2532 2533 2534 2535 2536
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2537 2538 2539
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2540
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2541 2542
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2543

2544 2545 2546 2547 2548
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2549
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2550

2551
	if (hstate_is_gigantic(h))
2552 2553
		return -EINVAL;

2554
	err = kstrtoul(buf, 10, &input);
2555
	if (err)
2556
		return err;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2580 2581 2582 2583 2584 2585
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2586
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2587 2588 2589 2590 2591 2592 2593
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2605 2606 2607 2608 2609 2610 2611 2612 2613
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2614 2615 2616
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2617 2618 2619 2620 2621 2622 2623
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2624 2625 2626
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2627 2628
{
	int retval;
2629
	int hi = hstate_index(h);
2630

2631 2632
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2633 2634
		return -ENOMEM;

2635
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2636
	if (retval)
2637
		kobject_put(hstate_kobjs[hi]);
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2652 2653
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2654
		if (err)
2655
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2656 2657 2658
	}
}

2659 2660 2661 2662
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2663 2664 2665
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2666 2667 2668 2669 2670 2671
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2672
static struct node_hstate node_hstates[MAX_NUMNODES];
2673 2674

/*
2675
 * A subset of global hstate attributes for node devices
2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2689
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2712
 * Unregister hstate attributes from a single node device.
2713 2714
 * No-op if no hstate attributes attached.
 */
2715
static void hugetlb_unregister_node(struct node *node)
2716 2717
{
	struct hstate *h;
2718
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2719 2720

	if (!nhs->hugepages_kobj)
2721
		return;		/* no hstate attributes */
2722

2723 2724 2725 2726 2727
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2728
		}
2729
	}
2730 2731 2732 2733 2734 2735 2736

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2737
 * Register hstate attributes for a single node device.
2738 2739
 * No-op if attributes already registered.
 */
2740
static void hugetlb_register_node(struct node *node)
2741 2742
{
	struct hstate *h;
2743
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2744 2745 2746 2747 2748 2749
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2750
							&node->dev.kobj);
2751 2752 2753 2754 2755 2756 2757 2758
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2759 2760
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2761 2762 2763 2764 2765 2766 2767
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2768
 * hugetlb init time:  register hstate attributes for all registered node
2769 2770
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2771
 */
2772
static void __init hugetlb_register_all_nodes(void)
2773 2774 2775
{
	int nid;

2776
	for_each_node_state(nid, N_MEMORY) {
2777
		struct node *node = node_devices[nid];
2778
		if (node->dev.id == nid)
2779 2780 2781 2782
			hugetlb_register_node(node);
	}

	/*
2783
	 * Let the node device driver know we're here so it can
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2803 2804
static int __init hugetlb_init(void)
{
2805 2806
	int i;

2807
	if (!hugepages_supported())
2808
		return 0;
2809

2810 2811 2812 2813
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2814
	}
2815
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2816 2817 2818 2819
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2820 2821

	hugetlb_init_hstates();
2822
	gather_bootmem_prealloc();
2823 2824 2825
	report_hugepages();

	hugetlb_sysfs_init();
2826
	hugetlb_register_all_nodes();
2827
	hugetlb_cgroup_file_init();
2828

2829 2830 2831 2832 2833
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2834
	hugetlb_fault_mutex_table =
2835
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2836
	BUG_ON(!hugetlb_fault_mutex_table);
2837 2838

	for (i = 0; i < num_fault_mutexes; i++)
2839
		mutex_init(&hugetlb_fault_mutex_table[i]);
2840 2841
	return 0;
}
2842
subsys_initcall(hugetlb_init);
2843 2844

/* Should be called on processing a hugepagesz=... option */
2845 2846 2847 2848 2849
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2850
void __init hugetlb_add_hstate(unsigned int order)
2851 2852
{
	struct hstate *h;
2853 2854
	unsigned long i;

2855
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2856
		pr_warn("hugepagesz= specified twice, ignoring\n");
2857 2858
		return;
	}
2859
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2860
	BUG_ON(order == 0);
2861
	h = &hstates[hugetlb_max_hstate++];
2862 2863
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2864 2865 2866 2867
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2868
	INIT_LIST_HEAD(&h->hugepage_activelist);
2869 2870
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2871 2872
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2873

2874 2875 2876
	parsed_hstate = h;
}

2877
static int __init hugetlb_nrpages_setup(char *s)
2878 2879
{
	unsigned long *mhp;
2880
	static unsigned long *last_mhp;
2881

2882 2883 2884 2885 2886 2887
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2888
	/*
2889
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2890 2891
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2892
	else if (!hugetlb_max_hstate)
2893 2894 2895 2896
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2897
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2898
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2899 2900 2901
		return 1;
	}

2902 2903 2904
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2905 2906 2907 2908 2909
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2910
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2911 2912 2913 2914
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2915 2916
	return 1;
}
2917 2918 2919 2920 2921 2922 2923 2924
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2925

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2938 2939 2940
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2941
{
2942
	struct hstate *h = &default_hstate;
2943
	unsigned long tmp = h->max_huge_pages;
2944
	int ret;
2945

2946
	if (!hugepages_supported())
2947
		return -EOPNOTSUPP;
2948

2949 2950
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2951 2952 2953
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2954

2955 2956 2957
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2958 2959
out:
	return ret;
L
Linus Torvalds 已提交
2960
}
2961

2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2979
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2980
			void __user *buffer,
2981 2982
			size_t *length, loff_t *ppos)
{
2983
	struct hstate *h = &default_hstate;
2984
	unsigned long tmp;
2985
	int ret;
2986

2987
	if (!hugepages_supported())
2988
		return -EOPNOTSUPP;
2989

2990
	tmp = h->nr_overcommit_huge_pages;
2991

2992
	if (write && hstate_is_gigantic(h))
2993 2994
		return -EINVAL;

2995 2996
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2997 2998 2999
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
3000 3001 3002 3003 3004 3005

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
3006 3007
out:
	return ret;
3008 3009
}

L
Linus Torvalds 已提交
3010 3011
#endif /* CONFIG_SYSCTL */

3012
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
3013
{
3014
	struct hstate *h = &default_hstate;
3015 3016
	if (!hugepages_supported())
		return;
3017
	seq_printf(m,
3018 3019 3020 3021 3022
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
3023 3024 3025 3026 3027
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
3028 3029 3030 3031
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3032
	struct hstate *h = &default_hstate;
3033 3034
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3035 3036
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3037 3038
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3039 3040 3041
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3042 3043
}

3044 3045 3046 3047 3048
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3049 3050 3051
	if (!hugepages_supported())
		return;

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3062 3063 3064 3065 3066 3067
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3068 3069 3070
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3071 3072 3073 3074 3075 3076
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3077 3078
}

3079
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3102
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3103 3104
			goto out;

3105 3106
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3107 3108 3109 3110 3111 3112
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3113
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3114 3115 3116 3117 3118 3119

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3120 3121
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3122
	struct resv_map *resv = vma_resv_map(vma);
3123 3124 3125 3126 3127

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3128
	 * has a reference to the reservation map it cannot disappear until
3129 3130 3131
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3132
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3133
		kref_get(&resv->refs);
3134 3135
}

3136 3137
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3138
	struct hstate *h = hstate_vma(vma);
3139
	struct resv_map *resv = vma_resv_map(vma);
3140
	struct hugepage_subpool *spool = subpool_vma(vma);
3141
	unsigned long reserve, start, end;
3142
	long gbl_reserve;
3143

3144 3145
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3146

3147 3148
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3149

3150
	reserve = (end - start) - region_count(resv, start, end);
3151

3152 3153 3154
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3155 3156 3157 3158 3159 3160
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3161
	}
3162 3163
}

L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
3170
static int hugetlb_vm_op_fault(struct vm_fault *vmf)
L
Linus Torvalds 已提交
3171 3172
{
	BUG();
N
Nick Piggin 已提交
3173
	return 0;
L
Linus Torvalds 已提交
3174 3175
}

3176
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3177
	.fault = hugetlb_vm_op_fault,
3178
	.open = hugetlb_vm_op_open,
3179
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3180 3181
};

3182 3183
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3184 3185 3186
{
	pte_t entry;

3187
	if (writable) {
3188 3189
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3190
	} else {
3191 3192
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3193 3194 3195
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3196
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3197 3198 3199 3200

	return entry;
}

3201 3202 3203 3204 3205
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3206
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3207
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3208
		update_mmu_cache(vma, address, ptep);
3209 3210
}

3211
bool is_hugetlb_entry_migration(pte_t pte)
3212 3213 3214 3215
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
3216
		return false;
3217 3218
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
3219
		return true;
3220
	else
3221
		return false;
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3236

D
David Gibson 已提交
3237 3238 3239 3240 3241
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3242
	unsigned long addr;
3243
	int cow;
3244 3245
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3246 3247 3248
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3249 3250

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3251

3252 3253 3254 3255 3256
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3257
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3258
		spinlock_t *src_ptl, *dst_ptl;
3259
		src_pte = huge_pte_offset(src, addr, sz);
H
Hugh Dickins 已提交
3260 3261
		if (!src_pte)
			continue;
3262
		dst_pte = huge_pte_alloc(dst, addr, sz);
3263 3264 3265 3266
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3267 3268 3269 3270 3271

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3272 3273 3274
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
3289 3290
				set_huge_swap_pte_at(src, addr, src_pte,
						     entry, sz);
3291
			}
3292
			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3293
		} else {
3294
			if (cow) {
3295
				huge_ptep_set_wrprotect(src, addr, src_pte);
3296 3297 3298
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3299
			entry = huge_ptep_get(src_pte);
3300 3301
			ptepage = pte_page(entry);
			get_page(ptepage);
3302
			page_dup_rmap(ptepage, true);
3303
			set_huge_pte_at(dst, addr, dst_pte, entry);
3304
			hugetlb_count_add(pages_per_huge_page(h), dst);
3305
		}
3306 3307
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3308 3309
	}

3310 3311 3312 3313
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3314 3315
}

3316 3317 3318
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3319 3320 3321
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3322
	pte_t *ptep;
D
David Gibson 已提交
3323
	pte_t pte;
3324
	spinlock_t *ptl;
D
David Gibson 已提交
3325
	struct page *page;
3326 3327
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3328 3329
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3330

D
David Gibson 已提交
3331
	WARN_ON(!is_vm_hugetlb_page(vma));
3332 3333
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3334

3335 3336 3337 3338 3339
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3340
	tlb_start_vma(tlb, vma);
3341
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3342 3343
	address = start;
	for (; address < end; address += sz) {
3344
		ptep = huge_pte_offset(mm, address, sz);
A
Adam Litke 已提交
3345
		if (!ptep)
3346 3347
			continue;

3348
		ptl = huge_pte_lock(h, mm, ptep);
3349 3350 3351 3352
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3353

3354
		pte = huge_ptep_get(ptep);
3355 3356 3357 3358
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3359 3360

		/*
3361 3362
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3363
		 */
3364
		if (unlikely(!pte_present(pte))) {
3365
			huge_pte_clear(mm, address, ptep, sz);
3366 3367
			spin_unlock(ptl);
			continue;
3368
		}
3369 3370

		page = pte_page(pte);
3371 3372 3373 3374 3375 3376
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3377 3378 3379 3380
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3381 3382 3383 3384 3385 3386 3387 3388
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3389
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3390
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3391
		if (huge_pte_dirty(pte))
3392
			set_page_dirty(page);
3393

3394
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3395
		page_remove_rmap(page, true);
3396

3397
		spin_unlock(ptl);
3398
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3399 3400 3401 3402 3403
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3404
	}
3405
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3406
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3407
}
D
David Gibson 已提交
3408

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3421
	 * is to clear it before releasing the i_mmap_rwsem. This works
3422
	 * because in the context this is called, the VMA is about to be
3423
	 * destroyed and the i_mmap_rwsem is held.
3424 3425 3426 3427
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3428
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3429
			  unsigned long end, struct page *ref_page)
3430
{
3431 3432 3433 3434 3435
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3436
	tlb_gather_mmu(&tlb, mm, start, end);
3437 3438
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3439 3440
}

3441 3442 3443 3444 3445 3446
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3447 3448
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3449
{
3450
	struct hstate *h = hstate_vma(vma);
3451 3452 3453 3454 3455 3456 3457 3458
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3459
	address = address & huge_page_mask(h);
3460 3461
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3462
	mapping = vma->vm_file->f_mapping;
3463

3464 3465 3466 3467 3468
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3469
	i_mmap_lock_write(mapping);
3470
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3471 3472 3473 3474
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3475 3476 3477 3478 3479 3480 3481 3482
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3483 3484 3485 3486 3487 3488 3489 3490
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3491 3492
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3493
	}
3494
	i_mmap_unlock_write(mapping);
3495 3496
}

3497 3498
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3499 3500 3501
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3502
 */
3503
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3504 3505
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
3506
{
3507
	pte_t pte;
3508
	struct hstate *h = hstate_vma(vma);
3509
	struct page *old_page, *new_page;
3510
	int ret = 0, outside_reserve = 0;
3511 3512
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3513

3514
	pte = huge_ptep_get(ptep);
3515 3516
	old_page = pte_page(pte);

3517
retry_avoidcopy:
3518 3519
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3520
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3521
		page_move_anon_rmap(old_page, vma);
3522
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3523
		return 0;
3524 3525
	}

3526 3527 3528 3529 3530 3531 3532 3533 3534
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3535
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3536 3537 3538
			old_page != pagecache_page)
		outside_reserve = 1;

3539
	get_page(old_page);
3540

3541 3542 3543 3544
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3545
	spin_unlock(ptl);
3546
	new_page = alloc_huge_page(vma, address, outside_reserve);
3547

3548
	if (IS_ERR(new_page)) {
3549 3550 3551 3552 3553 3554 3555 3556
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3557
			put_page(old_page);
3558
			BUG_ON(huge_pte_none(pte));
3559 3560 3561
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
3562 3563
			ptep = huge_pte_offset(mm, address & huge_page_mask(h),
					       huge_page_size(h));
3564 3565 3566 3567 3568 3569 3570 3571
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3572 3573
		}

3574 3575 3576
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3577 3578
	}

3579 3580 3581 3582
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3583
	if (unlikely(anon_vma_prepare(vma))) {
3584 3585
		ret = VM_FAULT_OOM;
		goto out_release_all;
3586
	}
3587

A
Andrea Arcangeli 已提交
3588 3589
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3590
	__SetPageUptodate(new_page);
3591
	set_page_huge_active(new_page);
3592

3593 3594 3595
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3596

3597
	/*
3598
	 * Retake the page table lock to check for racing updates
3599 3600
	 * before the page tables are altered
	 */
3601
	spin_lock(ptl);
3602 3603
	ptep = huge_pte_offset(mm, address & huge_page_mask(h),
			       huge_page_size(h));
3604
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3605 3606
		ClearPagePrivate(new_page);

3607
		/* Break COW */
3608
		huge_ptep_clear_flush(vma, address, ptep);
3609
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3610 3611
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3612
		page_remove_rmap(old_page, true);
3613
		hugepage_add_new_anon_rmap(new_page, vma, address);
3614 3615 3616
		/* Make the old page be freed below */
		new_page = old_page;
	}
3617
	spin_unlock(ptl);
3618
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3619
out_release_all:
3620
	restore_reserve_on_error(h, vma, address, new_page);
3621
	put_page(new_page);
3622
out_release_old:
3623
	put_page(old_page);
3624

3625 3626
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3627 3628
}

3629
/* Return the pagecache page at a given address within a VMA */
3630 3631
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3632 3633
{
	struct address_space *mapping;
3634
	pgoff_t idx;
3635 3636

	mapping = vma->vm_file->f_mapping;
3637
	idx = vma_hugecache_offset(h, vma, address);
3638 3639 3640 3641

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3642 3643 3644 3645 3646
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3679
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3680 3681
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3682
{
3683
	struct hstate *h = hstate_vma(vma);
3684
	int ret = VM_FAULT_SIGBUS;
3685
	int anon_rmap = 0;
A
Adam Litke 已提交
3686 3687
	unsigned long size;
	struct page *page;
3688
	pte_t new_pte;
3689
	spinlock_t *ptl;
A
Adam Litke 已提交
3690

3691 3692 3693
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3694
	 * COW. Warn that such a situation has occurred as it may not be obvious
3695 3696
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3697
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3698
			   current->pid);
3699 3700 3701
		return ret;
	}

A
Adam Litke 已提交
3702 3703 3704 3705
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3706 3707 3708
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3709
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3710 3711
		if (idx >= size)
			goto out;
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
				.address = address,
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
							idx, address);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3744
		page = alloc_huge_page(vma, address, 0);
3745
		if (IS_ERR(page)) {
3746 3747 3748 3749 3750
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3751 3752
			goto out;
		}
A
Andrea Arcangeli 已提交
3753
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3754
		__SetPageUptodate(page);
3755
		set_page_huge_active(page);
3756

3757
		if (vma->vm_flags & VM_MAYSHARE) {
3758
			int err = huge_add_to_page_cache(page, mapping, idx);
3759 3760 3761 3762 3763 3764
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3765
		} else {
3766
			lock_page(page);
3767 3768 3769 3770
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3771
			anon_rmap = 1;
3772
		}
3773
	} else {
3774 3775 3776 3777 3778 3779
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3780
			ret = VM_FAULT_HWPOISON |
3781
				VM_FAULT_SET_HINDEX(hstate_index(h));
3782 3783
			goto backout_unlocked;
		}
3784
	}
3785

3786 3787 3788 3789 3790 3791
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3792
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3793 3794 3795 3796
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3797
		/* Just decrements count, does not deallocate */
3798
		vma_end_reservation(h, vma, address);
3799
	}
3800

3801
	ptl = huge_pte_lock(h, mm, ptep);
3802
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3803 3804 3805
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3806
	ret = 0;
3807
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3808 3809
		goto backout;

3810 3811
	if (anon_rmap) {
		ClearPagePrivate(page);
3812
		hugepage_add_new_anon_rmap(page, vma, address);
3813
	} else
3814
		page_dup_rmap(page, true);
3815 3816 3817 3818
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3819
	hugetlb_count_add(pages_per_huge_page(h), mm);
3820
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3821
		/* Optimization, do the COW without a second fault */
3822
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3823 3824
	}

3825
	spin_unlock(ptl);
A
Adam Litke 已提交
3826 3827
	unlock_page(page);
out:
3828
	return ret;
A
Adam Litke 已提交
3829 3830

backout:
3831
	spin_unlock(ptl);
3832
backout_unlocked:
A
Adam Litke 已提交
3833
	unlock_page(page);
3834
	restore_reserve_on_error(h, vma, address, page);
A
Adam Litke 已提交
3835 3836
	put_page(page);
	goto out;
3837 3838
}

3839
#ifdef CONFIG_SMP
3840
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3865
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3866 3867 3868 3869 3870 3871 3872 3873
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3874
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3875
			unsigned long address, unsigned int flags)
3876
{
3877
	pte_t *ptep, entry;
3878
	spinlock_t *ptl;
3879
	int ret;
3880 3881
	u32 hash;
	pgoff_t idx;
3882
	struct page *page = NULL;
3883
	struct page *pagecache_page = NULL;
3884
	struct hstate *h = hstate_vma(vma);
3885
	struct address_space *mapping;
3886
	int need_wait_lock = 0;
3887

3888 3889
	address &= huge_page_mask(h);

3890
	ptep = huge_pte_offset(mm, address, huge_page_size(h));
3891 3892
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3893
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3894
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3895 3896
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3897
			return VM_FAULT_HWPOISON_LARGE |
3898
				VM_FAULT_SET_HINDEX(hstate_index(h));
3899 3900 3901 3902
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3903 3904
	}

3905 3906 3907
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3908 3909 3910 3911 3912
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3913 3914
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3915

3916 3917
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3918
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3919
		goto out_mutex;
3920
	}
3921

N
Nick Piggin 已提交
3922
	ret = 0;
3923

3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3934 3935 3936 3937 3938 3939 3940 3941
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3942
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3943 3944
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3945
			goto out_mutex;
3946
		}
3947
		/* Just decrements count, does not deallocate */
3948
		vma_end_reservation(h, vma, address);
3949

3950
		if (!(vma->vm_flags & VM_MAYSHARE))
3951 3952 3953 3954
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3955 3956 3957 3958 3959 3960
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3961 3962 3963 3964 3965 3966 3967
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3968 3969 3970 3971
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3972

3973
	get_page(page);
3974

3975
	if (flags & FAULT_FLAG_WRITE) {
3976
		if (!huge_pte_write(entry)) {
3977 3978
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
3979
			goto out_put_page;
3980
		}
3981
		entry = huge_pte_mkdirty(entry);
3982 3983
	}
	entry = pte_mkyoung(entry);
3984 3985
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3986
		update_mmu_cache(vma, address, ptep);
3987 3988 3989 3990
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3991 3992
out_ptl:
	spin_unlock(ptl);
3993 3994 3995 3996 3997

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3998
out_mutex:
3999
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4000 4001 4002 4003 4004 4005 4006 4007 4008
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
4009
	return ret;
4010 4011
}

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
4023
	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4038
						pages_per_huge_page(h), false);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
	/*
	 * If shared, add to page cache
	 */
	if (vm_shared) {
		struct address_space *mapping = dst_vma->vm_file->f_mapping;
		pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);

		ret = huge_add_to_page_cache(page, mapping, idx);
		if (ret)
			goto out_release_nounlock;
	}

4072 4073 4074 4075 4076 4077 4078
	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

4079 4080 4081 4082 4083 4084
	if (vm_shared) {
		page_dup_rmap(page, true);
	} else {
		ClearPagePrivate(page);
		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
	}
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
4101 4102
	if (vm_shared)
		unlock_page(page);
4103 4104 4105 4106 4107
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
4108 4109 4110
out_release_nounlock:
	if (vm_shared)
		unlock_page(page);
4111 4112 4113 4114
	put_page(page);
	goto out;
}

4115 4116 4117
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
4118
			 long i, unsigned int flags, int *nonblocking)
D
David Gibson 已提交
4119
{
4120 4121
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4122
	unsigned long remainder = *nr_pages;
4123
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
4124 4125

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4126
		pte_t *pte;
4127
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4128
		int absent;
A
Adam Litke 已提交
4129
		struct page *page;
D
David Gibson 已提交
4130

4131 4132 4133 4134 4135 4136 4137 4138 4139
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4140 4141
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4142
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4143
		 * first, for the page indexing below to work.
4144 4145
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4146
		 */
4147 4148
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
				      huge_page_size(h));
4149 4150
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4151 4152 4153 4154
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4155 4156 4157 4158
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4159
		 */
H
Hugh Dickins 已提交
4160 4161
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4162 4163
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4164 4165 4166
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4167

4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4179 4180
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4181
			int ret;
4182
			unsigned int fault_flags = 0;
D
David Gibson 已提交
4183

4184 4185
			if (pte)
				spin_unlock(ptl);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199
			if (flags & FOLL_WRITE)
				fault_flags |= FAULT_FLAG_WRITE;
			if (nonblocking)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY;
			if (flags & FOLL_NOWAIT)
				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
					FAULT_FLAG_RETRY_NOWAIT;
			if (flags & FOLL_TRIED) {
				VM_WARN_ON_ONCE(fault_flags &
						FAULT_FLAG_ALLOW_RETRY);
				fault_flags |= FAULT_FLAG_TRIED;
			}
			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
			if (ret & VM_FAULT_ERROR) {
4200 4201 4202 4203 4204
				int err = vm_fault_to_errno(ret, flags);

				if (err)
					return err;

4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223
				remainder = 0;
				break;
			}
			if (ret & VM_FAULT_RETRY) {
				if (nonblocking)
					*nonblocking = 0;
				*nr_pages = 0;
				/*
				 * VM_FAULT_RETRY must not return an
				 * error, it will return zero
				 * instead.
				 *
				 * No need to update "position" as the
				 * caller will not check it after
				 * *nr_pages is set to 0.
				 */
				return i;
			}
			continue;
A
Adam Litke 已提交
4224 4225
		}

4226
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4227
		page = pte_page(huge_ptep_get(pte));
4228
same_page:
4229
		if (pages) {
H
Hugh Dickins 已提交
4230
			pages[i] = mem_map_offset(page, pfn_offset);
4231
			get_page(pages[i]);
4232
		}
D
David Gibson 已提交
4233 4234 4235 4236 4237

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4238
		++pfn_offset;
D
David Gibson 已提交
4239 4240
		--remainder;
		++i;
4241
		if (vaddr < vma->vm_end && remainder &&
4242
				pfn_offset < pages_per_huge_page(h)) {
4243 4244 4245 4246 4247 4248
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4249
		spin_unlock(ptl);
D
David Gibson 已提交
4250
	}
4251
	*nr_pages = remainder;
4252 4253 4254 4255 4256
	/*
	 * setting position is actually required only if remainder is
	 * not zero but it's faster not to add a "if (remainder)"
	 * branch.
	 */
D
David Gibson 已提交
4257 4258
	*position = vaddr;

H
Hugh Dickins 已提交
4259
	return i ? i : -EFAULT;
D
David Gibson 已提交
4260
}
4261

4262 4263 4264 4265 4266 4267 4268 4269
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4270
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4271 4272 4273 4274 4275 4276
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4277
	struct hstate *h = hstate_vma(vma);
4278
	unsigned long pages = 0;
4279 4280 4281 4282

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4283
	mmu_notifier_invalidate_range_start(mm, start, end);
4284
	i_mmap_lock_write(vma->vm_file->f_mapping);
4285
	for (; address < end; address += huge_page_size(h)) {
4286
		spinlock_t *ptl;
4287
		ptep = huge_pte_offset(mm, address, huge_page_size(h));
4288 4289
		if (!ptep)
			continue;
4290
		ptl = huge_pte_lock(h, mm, ptep);
4291 4292
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4293
			spin_unlock(ptl);
4294
			continue;
4295
		}
4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
4309 4310
				set_huge_swap_pte_at(mm, address, ptep,
						     newpte, huge_page_size(h));
4311 4312 4313 4314 4315 4316
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4317
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4318
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4319
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4320
			set_huge_pte_at(mm, address, ptep, pte);
4321
			pages++;
4322
		}
4323
		spin_unlock(ptl);
4324
	}
4325
	/*
4326
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4327
	 * may have cleared our pud entry and done put_page on the page table:
4328
	 * once we release i_mmap_rwsem, another task can do the final put_page
4329 4330
	 * and that page table be reused and filled with junk.
	 */
4331
	flush_hugetlb_tlb_range(vma, start, end);
4332
	mmu_notifier_invalidate_range(mm, start, end);
4333
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4334
	mmu_notifier_invalidate_range_end(mm, start, end);
4335 4336

	return pages << h->order;
4337 4338
}

4339 4340
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4341
					struct vm_area_struct *vma,
4342
					vm_flags_t vm_flags)
4343
{
4344
	long ret, chg;
4345
	struct hstate *h = hstate_inode(inode);
4346
	struct hugepage_subpool *spool = subpool_inode(inode);
4347
	struct resv_map *resv_map;
4348
	long gbl_reserve;
4349

4350 4351 4352
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4353
	 * without using reserves
4354
	 */
4355
	if (vm_flags & VM_NORESERVE)
4356 4357
		return 0;

4358 4359 4360 4361 4362 4363
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4364
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4365
		resv_map = inode_resv_map(inode);
4366

4367
		chg = region_chg(resv_map, from, to);
4368 4369 4370

	} else {
		resv_map = resv_map_alloc();
4371 4372 4373
		if (!resv_map)
			return -ENOMEM;

4374
		chg = to - from;
4375

4376 4377 4378 4379
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4380 4381 4382 4383
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4384

4385 4386 4387 4388 4389 4390 4391
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4392 4393 4394
		ret = -ENOSPC;
		goto out_err;
	}
4395 4396

	/*
4397
	 * Check enough hugepages are available for the reservation.
4398
	 * Hand the pages back to the subpool if there are not
4399
	 */
4400
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4401
	if (ret < 0) {
4402 4403
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4404
		goto out_err;
K
Ken Chen 已提交
4405
	}
4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4436
	return 0;
4437
out_err:
4438
	if (!vma || vma->vm_flags & VM_MAYSHARE)
4439 4440 4441
		/* Don't call region_abort if region_chg failed */
		if (chg >= 0)
			region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4442 4443
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4444
	return ret;
4445 4446
}

4447 4448
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4449
{
4450
	struct hstate *h = hstate_inode(inode);
4451
	struct resv_map *resv_map = inode_resv_map(inode);
4452
	long chg = 0;
4453
	struct hugepage_subpool *spool = subpool_inode(inode);
4454
	long gbl_reserve;
K
Ken Chen 已提交
4455

4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4467
	spin_lock(&inode->i_lock);
4468
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4469 4470
	spin_unlock(&inode->i_lock);

4471 4472 4473 4474 4475 4476
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4477 4478

	return 0;
4479
}
4480

4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4492 4493
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4507
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4508 4509 4510 4511 4512 4513 4514 4515 4516
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4517 4518
		return true;
	return false;
4519 4520 4521 4522 4523 4524 4525
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4526
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4540
	spinlock_t *ptl;
4541 4542 4543 4544

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4545
	i_mmap_lock_write(mapping);
4546 4547 4548 4549 4550 4551
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
4552 4553
			spte = huge_pte_offset(svma->vm_mm, saddr,
					       vma_mmu_pagesize(svma));
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4564
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4565
	if (pud_none(*pud)) {
4566 4567
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4568
		mm_inc_nr_pmds(mm);
4569
	} else {
4570
		put_page(virt_to_page(spte));
4571
	}
4572
	spin_unlock(ptl);
4573 4574
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4575
	i_mmap_unlock_write(mapping);
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4586
 * called with page table lock held.
4587 4588 4589 4590 4591 4592 4593
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
4594 4595
	p4d_t *p4d = p4d_offset(pgd, *addr);
	pud_t *pud = pud_offset(p4d, *addr);
4596 4597 4598 4599 4600 4601 4602

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4603
	mm_dec_nr_pmds(mm);
4604 4605 4606
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4607 4608 4609 4610 4611 4612
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4613 4614 4615 4616 4617

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4618
#define want_pmd_share()	(0)
4619 4620
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4621 4622 4623 4624 4625
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
4626
	p4d_t *p4d;
4627 4628 4629 4630
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
4631 4632
	p4d = p4d_offset(pgd, addr);
	pud = pud_alloc(mm, p4d, addr);
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4644
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4645 4646 4647 4648

	return pte;
}

4649 4650
pte_t *huge_pte_offset(struct mm_struct *mm,
		       unsigned long addr, unsigned long sz)
4651 4652
{
	pgd_t *pgd;
4653
	p4d_t *p4d;
4654
	pud_t *pud;
4655
	pmd_t *pmd;
4656 4657

	pgd = pgd_offset(mm, addr);
4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668
	if (!pgd_present(*pgd))
		return NULL;
	p4d = p4d_offset(pgd, addr);
	if (!p4d_present(*p4d))
		return NULL;
	pud = pud_offset(p4d, addr);
	if (!pud_present(*pud))
		return NULL;
	if (pud_huge(*pud))
		return (pte_t *)pud;
	pmd = pmd_offset(pud, addr);
4669 4670 4671
	return (pte_t *) pmd;
}

4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

4685 4686 4687 4688 4689 4690 4691 4692
struct page * __weak
follow_huge_pd(struct vm_area_struct *vma,
	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
{
	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
	return NULL;
}

4693
struct page * __weak
4694
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4695
		pmd_t *pmd, int flags)
4696
{
4697 4698
	struct page *page = NULL;
	spinlock_t *ptl;
4699
	pte_t pte;
4700 4701 4702 4703 4704 4705 4706 4707 4708
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
4709 4710
	pte = huge_ptep_get((pte_t *)pmd);
	if (pte_present(pte)) {
4711
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4712 4713 4714
		if (flags & FOLL_GET)
			get_page(page);
	} else {
4715
		if (is_hugetlb_entry_migration(pte)) {
4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4727 4728 4729
	return page;
}

4730
struct page * __weak
4731
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4732
		pud_t *pud, int flags)
4733
{
4734 4735
	if (flags & FOLL_GET)
		return NULL;
4736

4737
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4738 4739
}

4740 4741 4742 4743 4744 4745 4746 4747 4748
struct page * __weak
follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
{
	if (flags & FOLL_GET)
		return NULL;

	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
}

4749 4750
bool isolate_huge_page(struct page *page, struct list_head *list)
{
4751 4752
	bool ret = true;

4753
	VM_BUG_ON_PAGE(!PageHead(page), page);
4754
	spin_lock(&hugetlb_lock);
4755 4756 4757 4758 4759
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4760
	list_move_tail(&page->lru, list);
4761
unlock:
4762
	spin_unlock(&hugetlb_lock);
4763
	return ret;
4764 4765 4766 4767
}

void putback_active_hugepage(struct page *page)
{
4768
	VM_BUG_ON_PAGE(!PageHead(page), page);
4769
	spin_lock(&hugetlb_lock);
4770
	set_page_huge_active(page);
4771 4772 4773 4774
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}