hugetlb.c 88.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
130
	return subpool_inode(file_inode(vma->vm_file));
131 132
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137
 *
 * The region data structures are protected by a combination of the mmap_sem
138
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139
 * must either hold the mmap_sem for write, or the mmap_sem for read and
140
 * the hugetlb_instantiation_mutex:
141
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

322
	return 1UL << huge_page_shift(hstate);
323
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436 437
}

/* Decrement the reserved pages in the hugepage pool by one */
438 439
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
440
{
441 442 443
	if (vma->vm_flags & VM_NORESERVE)
		return;

444
	if (vma->vm_flags & VM_MAYSHARE) {
445
		/* Shared mappings always use reserves */
446
		h->resv_huge_pages--;
447
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 449 450 451
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
452
		h->resv_huge_pages--;
453 454 455
	}
}

456
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 458 459
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460
	if (!(vma->vm_flags & VM_MAYSHARE))
461 462 463 464
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
465
static int vma_has_reserves(struct vm_area_struct *vma)
466
{
467 468
	if (vma->vm_flags & VM_NORESERVE)
		return 0;
469
	if (vma->vm_flags & VM_MAYSHARE)
470 471 472 473
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
474 475
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

510
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
511 512
{
	int nid = page_to_nid(page);
513
	list_move(&page->lru, &h->hugepage_freelists[nid]);
514 515
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
516 517
}

518 519 520 521 522 523 524
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
525
	list_move(&page->lru, &h->hugepage_activelist);
526
	set_page_refcounted(page);
527 528 529 530 531
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

532 533
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
534
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
535
{
536
	struct page *page = NULL;
537
	struct mempolicy *mpol;
538
	nodemask_t *nodemask;
539
	struct zonelist *zonelist;
540 541
	struct zone *zone;
	struct zoneref *z;
542
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
543

544 545 546 547 548
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
549
	if (!vma_has_reserves(vma) &&
550
			h->free_huge_pages - h->resv_huge_pages == 0)
551
		goto err;
552

553
	/* If reserves cannot be used, ensure enough pages are in the pool */
554
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
555
		goto err;
556

557 558 559 560 561
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);

562 563
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
564 565 566 567 568 569 570
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
571
		}
L
Linus Torvalds 已提交
572
	}
573

574
	mpol_cond_put(mpol);
575 576
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
577
	return page;
578 579 580

err:
	return NULL;
L
Linus Torvalds 已提交
581 582
}

583
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
584 585
{
	int i;
586

587 588
	VM_BUG_ON(h->order >= MAX_ORDER);

589 590 591
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
592 593 594 595
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
596
	}
597
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
598 599
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
600
	arch_release_hugepage(page);
601
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
602 603
}

604 605 606 607 608 609 610 611 612 613 614
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

615 616
static void free_huge_page(struct page *page)
{
617 618 619 620
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
621
	struct hstate *h = page_hstate(page);
622
	int nid = page_to_nid(page);
623 624
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
625

626
	set_page_private(page, 0);
627
	page->mapping = NULL;
628
	BUG_ON(page_count(page));
629
	BUG_ON(page_mapcount(page));
630 631

	spin_lock(&hugetlb_lock);
632 633
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
634
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
635 636
		/* remove the page from active list */
		list_del(&page->lru);
637 638 639
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
640
	} else {
641
		arch_clear_hugepage_flags(page);
642
		enqueue_huge_page(h, page);
643
	}
644
	spin_unlock(&hugetlb_lock);
645
	hugepage_subpool_put_pages(spool, 1);
646 647
}

648
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
649
{
650
	INIT_LIST_HEAD(&page->lru);
651 652
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
653
	set_hugetlb_cgroup(page, NULL);
654 655
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
656 657 658 659
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

660 661 662 663 664 665 666 667 668 669 670
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
671
		set_page_count(p, 0);
672 673 674 675
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
676 677 678 679 680
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
681 682 683 684 685 686 687 688 689 690 691 692
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
693 694
EXPORT_SYMBOL_GPL(PageHuge);

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

712
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
713 714
{
	struct page *page;
715

716 717 718
	if (h->order >= MAX_ORDER)
		return NULL;

719
	page = alloc_pages_exact_node(nid,
720 721
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
722
		huge_page_order(h));
L
Linus Torvalds 已提交
723
	if (page) {
724
		if (arch_prepare_hugepage(page)) {
725
			__free_pages(page, huge_page_order(h));
726
			return NULL;
727
		}
728
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
729
	}
730 731 732 733

	return page;
}

734
/*
735 736 737 738 739
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
740
 */
741
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
742
{
743
	nid = next_node(nid, *nodes_allowed);
744
	if (nid == MAX_NUMNODES)
745
		nid = first_node(*nodes_allowed);
746 747 748 749 750
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

751 752 753 754 755 756 757
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

758
/*
759 760 761 762
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
763
 */
764 765
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
766
{
767 768 769 770 771 772
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
773 774

	return nid;
775 776
}

777
/*
778 779 780 781
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
782
 */
783
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
784
{
785 786 787 788 789 790
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
791 792

	return nid;
793 794
}

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

829 830 831 832 833 834
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
835 836
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
837
{
838
	int nr_nodes, node;
839 840
	int ret = 0;

841
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
842 843 844 845
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
846 847
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
848
			struct page *page =
849
				list_entry(h->hugepage_freelists[node].next,
850 851 852
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
853
			h->free_huge_pages_node[node]--;
854 855
			if (acct_surplus) {
				h->surplus_huge_pages--;
856
				h->surplus_huge_pages_node[node]--;
857
			}
858 859
			update_and_free_page(h, page);
			ret = 1;
860
			break;
861
		}
862
	}
863 864 865 866

	return ret;
}

867
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
868 869
{
	struct page *page;
870
	unsigned int r_nid;
871

872 873 874
	if (h->order >= MAX_ORDER)
		return NULL;

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
899
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
900 901 902
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
903 904
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
905 906 907
	}
	spin_unlock(&hugetlb_lock);

908 909 910 911 912 913 914 915
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
916

917 918
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
919
		page = NULL;
920 921
	}

922
	spin_lock(&hugetlb_lock);
923
	if (page) {
924
		INIT_LIST_HEAD(&page->lru);
925
		r_nid = page_to_nid(page);
926
		set_compound_page_dtor(page, free_huge_page);
927
		set_hugetlb_cgroup(page, NULL);
928 929 930
		/*
		 * We incremented the global counters already
		 */
931 932
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
933
		__count_vm_event(HTLB_BUDDY_PGALLOC);
934
	} else {
935 936
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
937
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
938
	}
939
	spin_unlock(&hugetlb_lock);
940 941 942 943

	return page;
}

944 945 946 947 948 949 950 951 952 953 954 955 956
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

957
	if (!page)
958 959 960 961 962
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

963
/*
L
Lucas De Marchi 已提交
964
 * Increase the hugetlb pool such that it can accommodate a reservation
965 966
 * of size 'delta'.
 */
967
static int gather_surplus_pages(struct hstate *h, int delta)
968 969 970 971 972
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
973
	bool alloc_ok = true;
974

975
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
976
	if (needed <= 0) {
977
		h->resv_huge_pages += delta;
978
		return 0;
979
	}
980 981 982 983 984 985 986 987

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
988
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
989 990 991 992
		if (!page) {
			alloc_ok = false;
			break;
		}
993 994
		list_add(&page->lru, &surplus_list);
	}
995
	allocated += i;
996 997 998 999 1000 1001

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1002 1003
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1014 1015
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1016
	 * needed to accommodate the reservation.  Add the appropriate number
1017
	 * of pages to the hugetlb pool and free the extras back to the buddy
1018 1019 1020
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1021 1022
	 */
	needed += allocated;
1023
	h->resv_huge_pages += delta;
1024
	ret = 0;
1025

1026
	/* Free the needed pages to the hugetlb pool */
1027
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1028 1029
		if ((--needed) < 0)
			break;
1030 1031 1032 1033 1034 1035
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1036
		enqueue_huge_page(h, page);
1037
	}
1038
free:
1039
	spin_unlock(&hugetlb_lock);
1040 1041

	/* Free unnecessary surplus pages to the buddy allocator */
1042 1043
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1044
	spin_lock(&hugetlb_lock);
1045 1046 1047 1048 1049 1050 1051 1052

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1053
 * Called with hugetlb_lock held.
1054
 */
1055 1056
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1057 1058 1059
{
	unsigned long nr_pages;

1060
	/* Uncommit the reservation */
1061
	h->resv_huge_pages -= unused_resv_pages;
1062

1063 1064 1065 1066
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1067
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1068

1069 1070
	/*
	 * We want to release as many surplus pages as possible, spread
1071 1072 1073 1074 1075
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1076 1077
	 */
	while (nr_pages--) {
1078
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1079
			break;
1080 1081 1082
	}
}

1083 1084 1085
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1086 1087 1088 1089 1090 1091
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1092
 */
1093
static long vma_needs_reservation(struct hstate *h,
1094
			struct vm_area_struct *vma, unsigned long addr)
1095 1096 1097 1098
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1099
	if (vma->vm_flags & VM_MAYSHARE) {
1100
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1101 1102 1103
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1104 1105
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1106

1107
	} else  {
1108
		long err;
1109
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1110 1111 1112 1113 1114 1115 1116
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1117
}
1118 1119
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1120 1121 1122 1123
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1124
	if (vma->vm_flags & VM_MAYSHARE) {
1125
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1126
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1127 1128

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1129
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1130 1131 1132 1133
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1134 1135 1136
	}
}

1137
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1138
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1139
{
1140
	struct hugepage_subpool *spool = subpool_vma(vma);
1141
	struct hstate *h = hstate_vma(vma);
1142
	struct page *page;
1143
	long chg;
1144 1145
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1146

1147
	idx = hstate_index(h);
1148
	/*
1149 1150 1151 1152 1153 1154
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1155
	 */
1156
	chg = vma_needs_reservation(h, vma, addr);
1157
	if (chg < 0)
1158
		return ERR_PTR(-ENOMEM);
1159
	if (chg)
1160
		if (hugepage_subpool_get_pages(spool, chg))
1161
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1162

1163 1164 1165 1166 1167
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1168
	spin_lock(&hugetlb_lock);
1169
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1170
	if (!page) {
1171
		spin_unlock(&hugetlb_lock);
1172
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1173
		if (!page) {
1174 1175 1176
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1177
			hugepage_subpool_put_pages(spool, chg);
1178
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1179
		}
1180 1181
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1182
		/* Fall through */
K
Ken Chen 已提交
1183
	}
1184 1185
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1186

1187
	set_page_private(page, (unsigned long)spool);
1188

1189
	vma_commit_reservation(h, vma, addr);
1190
	return page;
1191 1192
}

1193
int __weak alloc_bootmem_huge_page(struct hstate *h)
1194 1195
{
	struct huge_bootmem_page *m;
1196
	int nr_nodes, node;
1197

1198
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1199 1200
		void *addr;

1201
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1202 1203 1204 1205 1206 1207 1208 1209 1210
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1211
			goto found;
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1224 1225 1226 1227 1228 1229 1230 1231
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1232 1233 1234 1235 1236 1237 1238
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1239 1240 1241 1242 1243 1244 1245 1246 1247
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1248 1249
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1250
		prep_compound_huge_page(page, h->order);
1251
		prep_new_huge_page(h, page, page_to_nid(page));
1252 1253 1254 1255 1256 1257 1258
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1259
			adjust_managed_page_count(page, 1 << h->order);
1260 1261 1262
	}
}

1263
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1264 1265
{
	unsigned long i;
1266

1267
	for (i = 0; i < h->max_huge_pages; ++i) {
1268 1269 1270
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1271
		} else if (!alloc_fresh_huge_page(h,
1272
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1273 1274
			break;
	}
1275
	h->max_huge_pages = i;
1276 1277 1278 1279 1280 1281 1282
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1283 1284 1285
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1286 1287 1288
	}
}

A
Andi Kleen 已提交
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1300 1301 1302 1303 1304
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1305
		char buf[32];
1306
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1307 1308
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1309 1310 1311
	}
}

L
Linus Torvalds 已提交
1312
#ifdef CONFIG_HIGHMEM
1313 1314
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1315
{
1316 1317
	int i;

1318 1319 1320
	if (h->order >= MAX_ORDER)
		return;

1321
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1322
		struct page *page, *next;
1323 1324 1325
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1326
				return;
L
Linus Torvalds 已提交
1327 1328 1329
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1330
			update_and_free_page(h, page);
1331 1332
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1333 1334 1335 1336
		}
	}
}
#else
1337 1338
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1339 1340 1341 1342
{
}
#endif

1343 1344 1345 1346 1347
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1348 1349
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1350
{
1351
	int nr_nodes, node;
1352 1353 1354

	VM_BUG_ON(delta != -1 && delta != 1);

1355 1356 1357 1358
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1359
		}
1360 1361 1362 1363 1364
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1365
		}
1366 1367
	}
	return 0;
1368

1369 1370 1371 1372
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1373 1374
}

1375
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1376 1377
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1378
{
1379
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1380

1381 1382 1383
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1384 1385 1386 1387
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1388 1389 1390 1391 1392 1393
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1394
	 */
L
Linus Torvalds 已提交
1395
	spin_lock(&hugetlb_lock);
1396
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1397
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1398 1399 1400
			break;
	}

1401
	while (count > persistent_huge_pages(h)) {
1402 1403 1404 1405 1406 1407
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1408
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1409 1410 1411 1412
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1413 1414 1415
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1416 1417 1418 1419 1420 1421 1422 1423
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1424 1425 1426 1427 1428 1429 1430 1431
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1432
	 */
1433
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1434
	min_count = max(count, min_count);
1435
	try_to_free_low(h, min_count, nodes_allowed);
1436
	while (min_count < persistent_huge_pages(h)) {
1437
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1438 1439
			break;
	}
1440
	while (count < persistent_huge_pages(h)) {
1441
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1442 1443 1444
			break;
	}
out:
1445
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1446
	spin_unlock(&hugetlb_lock);
1447
	return ret;
L
Linus Torvalds 已提交
1448 1449
}

1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1460 1461 1462
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1463 1464
{
	int i;
1465

1466
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1467 1468 1469
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1470
			return &hstates[i];
1471 1472 1473
		}

	return kobj_to_node_hstate(kobj, nidp);
1474 1475
}

1476
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1477 1478
					struct kobj_attribute *attr, char *buf)
{
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1490
}
1491

1492 1493 1494
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1495 1496
{
	int err;
1497
	int nid;
1498
	unsigned long count;
1499
	struct hstate *h;
1500
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1501

1502
	err = kstrtoul(buf, 10, &count);
1503
	if (err)
1504
		goto out;
1505

1506
	h = kobj_to_hstate(kobj, &nid);
1507 1508 1509 1510 1511
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1512 1513 1514 1515 1516 1517 1518
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1519
			nodes_allowed = &node_states[N_MEMORY];
1520 1521 1522 1523 1524 1525 1526 1527 1528
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1529
		nodes_allowed = &node_states[N_MEMORY];
1530

1531
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1532

1533
	if (nodes_allowed != &node_states[N_MEMORY])
1534 1535 1536
		NODEMASK_FREE(nodes_allowed);

	return len;
1537 1538 1539
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1552 1553 1554
}
HSTATE_ATTR(nr_hugepages);

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1576 1577 1578
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1579
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1580 1581
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1582

1583 1584 1585 1586 1587
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1588
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1589

1590 1591 1592
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1593
	err = kstrtoul(buf, 10, &input);
1594
	if (err)
1595
		return err;
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1619 1620 1621 1622 1623 1624
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1625
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1626 1627 1628 1629 1630 1631 1632
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1644 1645 1646 1647 1648 1649 1650 1651 1652
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1653 1654 1655
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1656 1657 1658 1659 1660 1661 1662
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1663 1664 1665
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1666 1667
{
	int retval;
1668
	int hi = hstate_index(h);
1669

1670 1671
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1672 1673
		return -ENOMEM;

1674
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1675
	if (retval)
1676
		kobject_put(hstate_kobjs[hi]);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1691 1692
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1693
		if (err)
1694
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1695 1696 1697
	}
}

1698 1699 1700 1701
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1702 1703 1704
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1705 1706 1707 1708 1709 1710 1711 1712 1713
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1714
 * A subset of global hstate attributes for node devices
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1728
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1751
 * Unregister hstate attributes from a single node device.
1752 1753
 * No-op if no hstate attributes attached.
 */
1754
static void hugetlb_unregister_node(struct node *node)
1755 1756
{
	struct hstate *h;
1757
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1758 1759

	if (!nhs->hugepages_kobj)
1760
		return;		/* no hstate attributes */
1761

1762 1763 1764 1765 1766
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1767
		}
1768
	}
1769 1770 1771 1772 1773 1774

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1775
 * hugetlb module exit:  unregister hstate attributes from node devices
1776 1777 1778 1779 1780 1781 1782
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1783
	 * disable node device registrations.
1784 1785 1786 1787 1788 1789 1790
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1791
		hugetlb_unregister_node(node_devices[nid]);
1792 1793 1794
}

/*
1795
 * Register hstate attributes for a single node device.
1796 1797
 * No-op if attributes already registered.
 */
1798
static void hugetlb_register_node(struct node *node)
1799 1800
{
	struct hstate *h;
1801
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1802 1803 1804 1805 1806 1807
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1808
							&node->dev.kobj);
1809 1810 1811 1812 1813 1814 1815 1816
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1817 1818
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1819 1820 1821 1822 1823 1824 1825
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1826
 * hugetlb init time:  register hstate attributes for all registered node
1827 1828
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1829 1830 1831 1832 1833
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1834
	for_each_node_state(nid, N_MEMORY) {
1835
		struct node *node = node_devices[nid];
1836
		if (node->dev.id == nid)
1837 1838 1839 1840
			hugetlb_register_node(node);
	}

	/*
1841
	 * Let the node device driver know we're here so it can
1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1863 1864 1865 1866
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1867 1868
	hugetlb_unregister_all_nodes();

1869
	for_each_hstate(h) {
1870
		kobject_put(hstate_kobjs[hstate_index(h)]);
1871 1872 1873 1874 1875 1876 1877 1878
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1879 1880 1881 1882 1883 1884
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1885

1886 1887 1888 1889
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1890
	}
1891
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1892 1893
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1894 1895

	hugetlb_init_hstates();
1896
	gather_bootmem_prealloc();
1897 1898 1899
	report_hugepages();

	hugetlb_sysfs_init();
1900
	hugetlb_register_all_nodes();
1901
	hugetlb_cgroup_file_init();
1902

1903 1904 1905 1906 1907 1908 1909 1910
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1911 1912
	unsigned long i;

1913
	if (size_to_hstate(PAGE_SIZE << order)) {
1914
		pr_warning("hugepagesz= specified twice, ignoring\n");
1915 1916
		return;
	}
1917
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1918
	BUG_ON(order == 0);
1919
	h = &hstates[hugetlb_max_hstate++];
1920 1921
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1922 1923 1924 1925
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1926
	INIT_LIST_HEAD(&h->hugepage_activelist);
1927 1928
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1929 1930
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1931

1932 1933 1934
	parsed_hstate = h;
}

1935
static int __init hugetlb_nrpages_setup(char *s)
1936 1937
{
	unsigned long *mhp;
1938
	static unsigned long *last_mhp;
1939 1940

	/*
1941
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1942 1943
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1944
	if (!hugetlb_max_hstate)
1945 1946 1947 1948
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1949
	if (mhp == last_mhp) {
1950 1951
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
1952 1953 1954
		return 1;
	}

1955 1956 1957
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1958 1959 1960 1961 1962
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1963
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1964 1965 1966 1967
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1968 1969
	return 1;
}
1970 1971 1972 1973 1974 1975 1976 1977
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1991 1992 1993
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1994
{
1995 1996
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1997
	int ret;
1998

1999
	tmp = h->max_huge_pages;
2000

2001 2002 2003
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2004 2005
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2006 2007 2008
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2009

2010
	if (write) {
2011 2012
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2013 2014 2015
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2016
			nodes_allowed = &node_states[N_MEMORY];
2017 2018 2019
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2020
		if (nodes_allowed != &node_states[N_MEMORY])
2021 2022
			NODEMASK_FREE(nodes_allowed);
	}
2023 2024
out:
	return ret;
L
Linus Torvalds 已提交
2025
}
2026

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2044
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2045
			void __user *buffer,
2046 2047
			size_t *length, loff_t *ppos)
{
2048
	proc_dointvec(table, write, buffer, length, ppos);
2049 2050 2051 2052 2053 2054 2055
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2056
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2057
			void __user *buffer,
2058 2059
			size_t *length, loff_t *ppos)
{
2060
	struct hstate *h = &default_hstate;
2061
	unsigned long tmp;
2062
	int ret;
2063

2064
	tmp = h->nr_overcommit_huge_pages;
2065

2066 2067 2068
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2069 2070
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2071 2072 2073
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2074 2075 2076 2077 2078 2079

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2080 2081
out:
	return ret;
2082 2083
}

L
Linus Torvalds 已提交
2084 2085
#endif /* CONFIG_SYSCTL */

2086
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2087
{
2088
	struct hstate *h = &default_hstate;
2089
	seq_printf(m,
2090 2091 2092 2093 2094
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2095 2096 2097 2098 2099
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2100 2101 2102 2103
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2104
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2105 2106
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2107 2108
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2109 2110 2111
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2112 2113
}

2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2129 2130 2131
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2132 2133 2134 2135 2136 2137
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2138 2139
}

2140
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2163
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2164 2165
			goto out;

2166 2167
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2168 2169 2170 2171 2172 2173
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2174
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2175 2176 2177 2178 2179 2180

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2181 2182 2183 2184 2185 2186 2187 2188
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2189
	 * has a reference to the reservation map it cannot disappear until
2190 2191 2192 2193 2194 2195 2196
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2197 2198 2199 2200 2201 2202 2203 2204 2205
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2206 2207
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2208
	struct hstate *h = hstate_vma(vma);
2209
	struct resv_map *reservations = vma_resv_map(vma);
2210
	struct hugepage_subpool *spool = subpool_vma(vma);
2211 2212 2213 2214 2215
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2216 2217
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2218 2219 2220 2221

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2222
		resv_map_put(vma);
2223

2224
		if (reserve) {
2225
			hugetlb_acct_memory(h, -reserve);
2226
			hugepage_subpool_put_pages(spool, reserve);
2227
		}
2228
	}
2229 2230
}

L
Linus Torvalds 已提交
2231 2232 2233 2234 2235 2236
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2237
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2238 2239
{
	BUG();
N
Nick Piggin 已提交
2240
	return 0;
L
Linus Torvalds 已提交
2241 2242
}

2243
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2244
	.fault = hugetlb_vm_op_fault,
2245
	.open = hugetlb_vm_op_open,
2246
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2247 2248
};

2249 2250
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2251 2252 2253
{
	pte_t entry;

2254
	if (writable) {
2255 2256
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2257
	} else {
2258 2259
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2260 2261 2262
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2263
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2264 2265 2266 2267

	return entry;
}

2268 2269 2270 2271 2272
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2273
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2274
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2275
		update_mmu_cache(vma, address, ptep);
2276 2277 2278
}


D
David Gibson 已提交
2279 2280 2281 2282 2283
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2284
	unsigned long addr;
2285
	int cow;
2286 2287
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2288 2289

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2290

2291
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2292 2293 2294
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2295
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2296 2297
		if (!dst_pte)
			goto nomem;
2298 2299 2300 2301 2302

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2303
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2304
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2305
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2306
			if (cow)
2307 2308
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2309 2310
			ptepage = pte_page(entry);
			get_page(ptepage);
2311
			page_dup_rmap(ptepage);
2312 2313 2314
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2315
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2316 2317 2318 2319 2320 2321 2322
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2323 2324 2325 2326 2327 2328 2329
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2330
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2331
		return 1;
2332
	else
N
Naoya Horiguchi 已提交
2333 2334 2335
		return 0;
}

2336 2337 2338 2339 2340 2341 2342
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2343
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2344
		return 1;
2345
	else
2346 2347 2348
		return 0;
}

2349 2350 2351
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2352
{
2353
	int force_flush = 0;
D
David Gibson 已提交
2354 2355
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2356
	pte_t *ptep;
D
David Gibson 已提交
2357 2358
	pte_t pte;
	struct page *page;
2359 2360
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2361 2362
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2363

D
David Gibson 已提交
2364
	WARN_ON(!is_vm_hugetlb_page(vma));
2365 2366
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2367

2368
	tlb_start_vma(tlb, vma);
2369
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2370
again:
2371
	spin_lock(&mm->page_table_lock);
2372
	for (address = start; address < end; address += sz) {
2373
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2374
		if (!ptep)
2375 2376
			continue;

2377 2378 2379
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2380 2381 2382 2383 2384 2385 2386
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2387
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2388
			huge_pte_clear(mm, address, ptep);
2389
			continue;
2390
		}
2391 2392

		page = pte_page(pte);
2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2410
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2411
		tlb_remove_tlb_entry(tlb, ptep, address);
2412
		if (huge_pte_dirty(pte))
2413
			set_page_dirty(page);
2414

2415 2416 2417 2418
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2419 2420 2421
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2422
	}
2423
	spin_unlock(&mm->page_table_lock);
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2434
	}
2435
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2436
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2437
}
D
David Gibson 已提交
2438

2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2458
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2459
			  unsigned long end, struct page *ref_page)
2460
{
2461 2462 2463 2464 2465
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2466
	tlb_gather_mmu(&tlb, mm, start, end);
2467 2468
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2469 2470
}

2471 2472 2473 2474 2475 2476
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2477 2478
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2479
{
2480
	struct hstate *h = hstate_vma(vma);
2481 2482 2483 2484 2485 2486 2487 2488
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2489
	address = address & huge_page_mask(h);
2490 2491
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2492
	mapping = file_inode(vma->vm_file)->i_mapping;
2493

2494 2495 2496 2497 2498
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2499
	mutex_lock(&mapping->i_mmap_mutex);
2500
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2513 2514
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2515
	}
2516
	mutex_unlock(&mapping->i_mmap_mutex);
2517 2518 2519 2520

	return 1;
}

2521 2522
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2523 2524 2525
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2526
 */
2527
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2528 2529
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2530
{
2531
	struct hstate *h = hstate_vma(vma);
2532
	struct page *old_page, *new_page;
2533
	int outside_reserve = 0;
2534 2535
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2536 2537 2538

	old_page = pte_page(pte);

2539
retry_avoidcopy:
2540 2541
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2542 2543
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2544
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2545
		return 0;
2546 2547
	}

2548 2549 2550 2551 2552 2553 2554 2555 2556
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2557
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2558 2559 2560 2561
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2562
	page_cache_get(old_page);
2563 2564 2565

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2566
	new_page = alloc_huge_page(vma, address, outside_reserve);
2567

2568
	if (IS_ERR(new_page)) {
2569
		long err = PTR_ERR(new_page);
2570
		page_cache_release(old_page);
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2583
				spin_lock(&mm->page_table_lock);
2584 2585 2586 2587 2588 2589 2590 2591
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2592 2593 2594 2595
			}
			WARN_ON_ONCE(1);
		}

2596 2597
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2598 2599 2600 2601
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2602 2603
	}

2604 2605 2606 2607
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2608
	if (unlikely(anon_vma_prepare(vma))) {
2609 2610
		page_cache_release(new_page);
		page_cache_release(old_page);
2611 2612
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2613
		return VM_FAULT_OOM;
2614
	}
2615

A
Andrea Arcangeli 已提交
2616 2617
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2618
	__SetPageUptodate(new_page);
2619

2620 2621 2622
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2623 2624 2625 2626 2627
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2628
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2629
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2630
		/* Break COW */
2631
		huge_ptep_clear_flush(vma, address, ptep);
2632 2633
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2634
		page_remove_rmap(old_page);
2635
		hugepage_add_new_anon_rmap(new_page, vma, address);
2636 2637 2638
		/* Make the old page be freed below */
		new_page = old_page;
	}
2639 2640 2641 2642
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
2643 2644
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2645
	return 0;
2646 2647
}

2648
/* Return the pagecache page at a given address within a VMA */
2649 2650
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2651 2652
{
	struct address_space *mapping;
2653
	pgoff_t idx;
2654 2655

	mapping = vma->vm_file->f_mapping;
2656
	idx = vma_hugecache_offset(h, vma, address);
2657 2658 2659 2660

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2661 2662 2663 2664 2665
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2681
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2682
			unsigned long address, pte_t *ptep, unsigned int flags)
2683
{
2684
	struct hstate *h = hstate_vma(vma);
2685
	int ret = VM_FAULT_SIGBUS;
2686
	int anon_rmap = 0;
2687
	pgoff_t idx;
A
Adam Litke 已提交
2688 2689 2690
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2691
	pte_t new_pte;
A
Adam Litke 已提交
2692

2693 2694 2695
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2696
	 * COW. Warn that such a situation has occurred as it may not be obvious
2697 2698
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2699 2700
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2701 2702 2703
		return ret;
	}

A
Adam Litke 已提交
2704
	mapping = vma->vm_file->f_mapping;
2705
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2706 2707 2708 2709 2710

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2711 2712 2713
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2714
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2715 2716
		if (idx >= size)
			goto out;
2717
		page = alloc_huge_page(vma, address, 0);
2718
		if (IS_ERR(page)) {
2719 2720 2721 2722 2723
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2724 2725
			goto out;
		}
A
Andrea Arcangeli 已提交
2726
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2727
		__SetPageUptodate(page);
2728

2729
		if (vma->vm_flags & VM_MAYSHARE) {
2730
			int err;
K
Ken Chen 已提交
2731
			struct inode *inode = mapping->host;
2732 2733 2734 2735 2736 2737 2738 2739

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2740 2741

			spin_lock(&inode->i_lock);
2742
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2743
			spin_unlock(&inode->i_lock);
2744
		} else {
2745
			lock_page(page);
2746 2747 2748 2749
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2750
			anon_rmap = 1;
2751
		}
2752
	} else {
2753 2754 2755 2756 2757 2758
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2759
			ret = VM_FAULT_HWPOISON |
2760
				VM_FAULT_SET_HINDEX(hstate_index(h));
2761 2762
			goto backout_unlocked;
		}
2763
	}
2764

2765 2766 2767 2768 2769 2770
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2771
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2772 2773 2774 2775
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2776

2777
	spin_lock(&mm->page_table_lock);
2778
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2779 2780 2781
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2782
	ret = 0;
2783
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2784 2785
		goto backout;

2786 2787 2788 2789
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2790 2791 2792 2793
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2794
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2795
		/* Optimization, do the COW without a second fault */
2796
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2797 2798
	}

2799
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2800 2801
	unlock_page(page);
out:
2802
	return ret;
A
Adam Litke 已提交
2803 2804 2805

backout:
	spin_unlock(&mm->page_table_lock);
2806
backout_unlocked:
A
Adam Litke 已提交
2807 2808 2809
	unlock_page(page);
	put_page(page);
	goto out;
2810 2811
}

2812
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2813
			unsigned long address, unsigned int flags)
2814 2815 2816
{
	pte_t *ptep;
	pte_t entry;
2817
	int ret;
2818
	struct page *page = NULL;
2819
	struct page *pagecache_page = NULL;
2820
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2821
	struct hstate *h = hstate_vma(vma);
2822

2823 2824
	address &= huge_page_mask(h);

2825 2826 2827
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2828
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2829
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2830 2831
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2832
			return VM_FAULT_HWPOISON_LARGE |
2833
				VM_FAULT_SET_HINDEX(hstate_index(h));
2834 2835
	}

2836
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2837 2838 2839
	if (!ptep)
		return VM_FAULT_OOM;

2840 2841 2842 2843 2844 2845
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2846 2847
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2848
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2849
		goto out_mutex;
2850
	}
2851

N
Nick Piggin 已提交
2852
	ret = 0;
2853

2854 2855 2856 2857 2858 2859 2860 2861
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2862
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2863 2864
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2865
			goto out_mutex;
2866
		}
2867

2868
		if (!(vma->vm_flags & VM_MAYSHARE))
2869 2870 2871 2872
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2873 2874 2875 2876 2877 2878 2879 2880
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2881
	get_page(page);
2882
	if (page != pagecache_page)
2883 2884
		lock_page(page);

2885 2886
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2887 2888 2889 2890
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2891
	if (flags & FAULT_FLAG_WRITE) {
2892
		if (!huge_pte_write(entry)) {
2893 2894
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2895 2896
			goto out_page_table_lock;
		}
2897
		entry = huge_pte_mkdirty(entry);
2898 2899
	}
	entry = pte_mkyoung(entry);
2900 2901
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2902
		update_mmu_cache(vma, address, ptep);
2903 2904

out_page_table_lock:
2905
	spin_unlock(&mm->page_table_lock);
2906 2907 2908 2909 2910

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2911 2912
	if (page != pagecache_page)
		unlock_page(page);
2913
	put_page(page);
2914

2915
out_mutex:
2916
	mutex_unlock(&hugetlb_instantiation_mutex);
2917 2918

	return ret;
2919 2920
}

2921 2922 2923 2924
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
2925
{
2926 2927
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
2928
	unsigned long remainder = *nr_pages;
2929
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2930

2931
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2932
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2933
		pte_t *pte;
H
Hugh Dickins 已提交
2934
		int absent;
A
Adam Litke 已提交
2935
		struct page *page;
D
David Gibson 已提交
2936

A
Adam Litke 已提交
2937 2938
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2939
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2940 2941
		 * first, for the page indexing below to work.
		 */
2942
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2943 2944 2945 2946
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2947 2948 2949 2950
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2951
		 */
H
Hugh Dickins 已提交
2952 2953
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2954 2955 2956
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2969 2970
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2971
			int ret;
D
David Gibson 已提交
2972

A
Adam Litke 已提交
2973
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2974 2975
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2976
			spin_lock(&mm->page_table_lock);
2977
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2978
				continue;
D
David Gibson 已提交
2979

A
Adam Litke 已提交
2980 2981 2982 2983
			remainder = 0;
			break;
		}

2984
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2985
		page = pte_page(huge_ptep_get(pte));
2986
same_page:
2987
		if (pages) {
H
Hugh Dickins 已提交
2988
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2989
			get_page(pages[i]);
2990
		}
D
David Gibson 已提交
2991 2992 2993 2994 2995

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2996
		++pfn_offset;
D
David Gibson 已提交
2997 2998
		--remainder;
		++i;
2999
		if (vaddr < vma->vm_end && remainder &&
3000
				pfn_offset < pages_per_huge_page(h)) {
3001 3002 3003 3004 3005 3006
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3007
	}
3008
	spin_unlock(&mm->page_table_lock);
3009
	*nr_pages = remainder;
D
David Gibson 已提交
3010 3011
	*position = vaddr;

H
Hugh Dickins 已提交
3012
	return i ? i : -EFAULT;
D
David Gibson 已提交
3013
}
3014

3015
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3016 3017 3018 3019 3020 3021
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3022
	struct hstate *h = hstate_vma(vma);
3023
	unsigned long pages = 0;
3024 3025 3026 3027

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3028
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3029
	spin_lock(&mm->page_table_lock);
3030
	for (; address < end; address += huge_page_size(h)) {
3031 3032 3033
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3034 3035
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3036
			continue;
3037
		}
3038
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3039
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3040
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3041
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3042
			set_huge_pte_at(mm, address, ptep, pte);
3043
			pages++;
3044 3045 3046
		}
	}
	spin_unlock(&mm->page_table_lock);
3047 3048 3049 3050 3051 3052
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3053
	flush_tlb_range(vma, start, end);
3054
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3055 3056

	return pages << h->order;
3057 3058
}

3059 3060
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3061
					struct vm_area_struct *vma,
3062
					vm_flags_t vm_flags)
3063
{
3064
	long ret, chg;
3065
	struct hstate *h = hstate_inode(inode);
3066
	struct hugepage_subpool *spool = subpool_inode(inode);
3067

3068 3069 3070
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3071
	 * without using reserves
3072
	 */
3073
	if (vm_flags & VM_NORESERVE)
3074 3075
		return 0;

3076 3077 3078 3079 3080 3081
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3082
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3083
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3084 3085 3086 3087 3088
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3089
		chg = to - from;
3090

3091 3092 3093 3094
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3095 3096 3097 3098
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3099

3100
	/* There must be enough pages in the subpool for the mapping */
3101 3102 3103 3104
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3105 3106

	/*
3107
	 * Check enough hugepages are available for the reservation.
3108
	 * Hand the pages back to the subpool if there are not
3109
	 */
3110
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3111
	if (ret < 0) {
3112
		hugepage_subpool_put_pages(spool, chg);
3113
		goto out_err;
K
Ken Chen 已提交
3114
	}
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3127
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3128
		region_add(&inode->i_mapping->private_list, from, to);
3129
	return 0;
3130
out_err:
3131 3132
	if (vma)
		resv_map_put(vma);
3133
	return ret;
3134 3135 3136 3137
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3138
	struct hstate *h = hstate_inode(inode);
3139
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3140
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3141 3142

	spin_lock(&inode->i_lock);
3143
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3144 3145
	spin_unlock(&inode->i_lock);

3146
	hugepage_subpool_put_pages(spool, (chg - freed));
3147
	hugetlb_acct_memory(h, -(chg - freed));
3148
}
3149

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3270 3271 3272 3273 3274 3275 3276
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3277 3278
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3360 3361
#ifdef CONFIG_MEMORY_FAILURE

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3376 3377 3378 3379
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3380
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3381 3382 3383
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3384
	int ret = -EBUSY;
3385 3386

	spin_lock(&hugetlb_lock);
3387
	if (is_hugepage_on_freelist(hpage)) {
3388 3389 3390 3391 3392 3393 3394
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3395
		set_page_refcounted(hpage);
3396 3397 3398 3399
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3400
	spin_unlock(&hugetlb_lock);
3401
	return ret;
3402
}
3403
#endif