hugetlb.c 64.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
237
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238

239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

252 253 254 255 256 257 258
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
259
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260

261 262 263 264 265 266 267 268 269
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
270 271 272 273 274 275 276 277 278
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
279
 */
280 281 282 283 284 285 286 287 288 289 290
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

291 292 293 294 295
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

296
static struct resv_map *resv_map_alloc(void)
297 298 299 300 301 302 303 304 305 306 307
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

308
static void resv_map_release(struct kref *ref)
309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
320
	if (!(vma->vm_flags & VM_MAYSHARE))
321 322
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
323
	return NULL;
324 325
}

326
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 328
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
329
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330

331 332
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
333 334 335 336 337
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
338
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339 340

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 342 343 344 345
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 347

	return (get_vma_private_data(vma) & flag) != 0;
348 349 350
}

/* Decrement the reserved pages in the hugepage pool by one */
351 352
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
353
{
354 355 356
	if (vma->vm_flags & VM_NORESERVE)
		return;

357
	if (vma->vm_flags & VM_MAYSHARE) {
358
		/* Shared mappings always use reserves */
359
		h->resv_huge_pages--;
360
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 362 363 364
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
365
		h->resv_huge_pages--;
366 367 368
	}
}

369
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 371 372
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
373
	if (!(vma->vm_flags & VM_MAYSHARE))
374 375 376 377
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
378
static int vma_has_reserves(struct vm_area_struct *vma)
379
{
380
	if (vma->vm_flags & VM_MAYSHARE)
381 382 383 384
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
399 400
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
401 402 403
{
	int i;

H
Hannes Eder 已提交
404 405 406 407
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
408

409
	might_sleep();
410
	for (i = 0; i < sz/PAGE_SIZE; i++) {
411
		cond_resched();
412
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 414 415
	}
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
433
static void copy_huge_page(struct page *dst, struct page *src,
434
			   unsigned long addr, struct vm_area_struct *vma)
435 436
{
	int i;
437
	struct hstate *h = hstate_vma(vma);
438

H
Hannes Eder 已提交
439 440 441 442
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
443

444
	might_sleep();
445
	for (i = 0; i < pages_per_huge_page(h); i++) {
446
		cond_resched();
447
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 449 450
	}
}

451
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
452 453
{
	int nid = page_to_nid(page);
454 455 456
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
457 458
}

459 460
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
461
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
462
{
463
	int nid;
L
Linus Torvalds 已提交
464
	struct page *page = NULL;
465
	struct mempolicy *mpol;
466
	nodemask_t *nodemask;
467
	struct zonelist *zonelist = huge_zonelist(vma, address,
468
					htlb_alloc_mask, &mpol, &nodemask);
469 470
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
471

472 473 474 475 476
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
477
	if (!vma_has_reserves(vma) &&
478
			h->free_huge_pages - h->resv_huge_pages == 0)
479 480
		return NULL;

481
	/* If reserves cannot be used, ensure enough pages are in the pool */
482
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 484
		return NULL;

485 486
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
487 488
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 490
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
491 492
					  struct page, lru);
			list_del(&page->lru);
493 494
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
495 496

			if (!avoid_reserve)
497
				decrement_hugepage_resv_vma(h, vma);
498

K
Ken Chen 已提交
499
			break;
A
Andrew Morton 已提交
500
		}
L
Linus Torvalds 已提交
501
	}
502
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
503 504 505
	return page;
}

506
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
507 508
{
	int i;
509

510 511
	VM_BUG_ON(h->order >= MAX_ORDER);

512 513 514
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
515 516 517 518 519 520
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
521
	arch_release_hugepage(page);
522
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
523 524
}

525 526 527 528 529 530 531 532 533 534 535
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

536 537
static void free_huge_page(struct page *page)
{
538 539 540 541
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
542
	struct hstate *h = page_hstate(page);
543
	int nid = page_to_nid(page);
544
	struct address_space *mapping;
545

546
	mapping = (struct address_space *) page_private(page);
547
	set_page_private(page, 0);
548
	BUG_ON(page_count(page));
549 550 551
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
552
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 554 555
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
556
	} else {
557
		enqueue_huge_page(h, page);
558
	}
559
	spin_unlock(&hugetlb_lock);
560
	if (mapping)
561
		hugetlb_put_quota(mapping, 1);
562 563
}

564
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 566 567
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
568 569
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
570 571 572 573
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

602
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
603 604
{
	struct page *page;
605

606 607 608
	if (h->order >= MAX_ORDER)
		return NULL;

609
	page = alloc_pages_exact_node(nid,
610 611
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
612
		huge_page_order(h));
L
Linus Torvalds 已提交
613
	if (page) {
614
		if (arch_prepare_hugepage(page)) {
615
			__free_pages(page, huge_page_order(h));
616
			return NULL;
617
		}
618
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
619
	}
620 621 622 623

	return page;
}

624
/*
625 626 627 628 629
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
630
 */
631
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
632
{
633
	nid = next_node(nid, *nodes_allowed);
634
	if (nid == MAX_NUMNODES)
635
		nid = first_node(*nodes_allowed);
636 637 638 639 640
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

641 642 643 644 645 646 647
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

648
/*
649 650 651 652
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
653
 */
654 655
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
656
{
657 658 659 660 661 662
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
663 664

	return nid;
665 666
}

667
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
668 669 670 671 672 673
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

674
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
675
	next_nid = start_nid;
676 677

	do {
678
		page = alloc_fresh_huge_page_node(h, next_nid);
679
		if (page) {
680
			ret = 1;
681 682
			break;
		}
683
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
684
	} while (next_nid != start_nid);
685

686 687 688 689 690
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

691
	return ret;
L
Linus Torvalds 已提交
692 693
}

694
/*
695 696 697 698
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
699
 */
700
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
701
{
702 703 704 705 706 707
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
708 709

	return nid;
710 711 712 713 714 715 716 717
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
718 719
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
720 721 722 723 724
{
	int start_nid;
	int next_nid;
	int ret = 0;

725
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
726 727 728
	next_nid = start_nid;

	do {
729 730 731 732 733 734
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
735 736 737 738 739 740
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
741 742 743 744
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
745 746
			update_and_free_page(h, page);
			ret = 1;
747
			break;
748
		}
749
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
750
	} while (next_nid != start_nid);
751 752 753 754

	return ret;
}

755 756
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
757 758
{
	struct page *page;
759
	unsigned int nid;
760

761 762 763
	if (h->order >= MAX_ORDER)
		return NULL;

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
788
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
789 790 791
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
792 793
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
794 795 796
	}
	spin_unlock(&hugetlb_lock);

797 798
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
799
					huge_page_order(h));
800

801 802 803 804 805
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

806
	spin_lock(&hugetlb_lock);
807
	if (page) {
808 809 810 811 812 813
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
814
		nid = page_to_nid(page);
815
		set_compound_page_dtor(page, free_huge_page);
816 817 818
		/*
		 * We incremented the global counters already
		 */
819 820
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
821
		__count_vm_event(HTLB_BUDDY_PGALLOC);
822
	} else {
823 824
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
825
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
826
	}
827
	spin_unlock(&hugetlb_lock);
828 829 830 831

	return page;
}

832 833 834 835
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
836
static int gather_surplus_pages(struct hstate *h, int delta)
837 838 839 840 841 842
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

843
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
844
	if (needed <= 0) {
845
		h->resv_huge_pages += delta;
846
		return 0;
847
	}
848 849 850 851 852 853 854 855

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
856
		page = alloc_buddy_huge_page(h, NULL, 0);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
877 878
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
879 880 881 882 883 884 885
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
886 887 888
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
889 890
	 */
	needed += allocated;
891
	h->resv_huge_pages += delta;
892 893
	ret = 0;
free:
894
	/* Free the needed pages to the hugetlb pool */
895
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
896 897
		if ((--needed) < 0)
			break;
898
		list_del(&page->lru);
899
		enqueue_huge_page(h, page);
900 901 902 903 904 905 906
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
907
			/*
908 909 910
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
911 912 913
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
914
			free_huge_page(page);
915
		}
916
		spin_lock(&hugetlb_lock);
917 918 919 920 921 922 923 924 925
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
926
 * Called with hugetlb_lock held.
927
 */
928 929
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
930 931 932
{
	unsigned long nr_pages;

933
	/* Uncommit the reservation */
934
	h->resv_huge_pages -= unused_resv_pages;
935

936 937 938 939
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

940
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
941

942 943 944 945 946 947 948 949 950
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the frees across the
	 * on-line nodes for us and will handle the hstate accounting.
	 */
	while (nr_pages--) {
951
		if (!free_pool_huge_page(h, &node_online_map, 1))
952
			break;
953 954 955
	}
}

956 957 958 959 960 961 962 963 964
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
965
static long vma_needs_reservation(struct hstate *h,
966
			struct vm_area_struct *vma, unsigned long addr)
967 968 969 970
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

971
	if (vma->vm_flags & VM_MAYSHARE) {
972
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
973 974 975
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

976 977
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
978

979
	} else  {
980
		long err;
981
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 983 984 985 986 987 988
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
989
}
990 991
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
992 993 994 995
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

996
	if (vma->vm_flags & VM_MAYSHARE) {
997
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
998
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
999 1000

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1002 1003 1004 1005
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1006 1007 1008
	}
}

1009
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1010
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1011
{
1012
	struct hstate *h = hstate_vma(vma);
1013
	struct page *page;
1014 1015
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1016
	long chg;
1017 1018 1019 1020 1021

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1022 1023
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1024
	 */
1025
	chg = vma_needs_reservation(h, vma, addr);
1026 1027 1028
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1029 1030
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1031 1032

	spin_lock(&hugetlb_lock);
1033
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1034
	spin_unlock(&hugetlb_lock);
1035

K
Ken Chen 已提交
1036
	if (!page) {
1037
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1038
		if (!page) {
1039
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
1040 1041 1042
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
1043

1044 1045
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1046

1047
	vma_commit_reservation(h, vma, addr);
1048

1049
	return page;
1050 1051
}

1052
int __weak alloc_bootmem_huge_page(struct hstate *h)
1053 1054 1055 1056 1057 1058 1059 1060
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1061 1062
				NODE_DATA(hstate_next_node_to_alloc(h,
							&node_online_map)),
1063 1064 1065 1066 1067 1068 1069 1070 1071
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1072
			goto found;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1086 1087 1088 1089 1090 1091 1092 1093
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1104
		prep_compound_huge_page(page, h->order);
1105 1106 1107 1108
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1109
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1110 1111
{
	unsigned long i;
1112

1113
	for (i = 0; i < h->max_huge_pages; ++i) {
1114 1115 1116
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1117
		} else if (!alloc_fresh_huge_page(h, &node_online_map))
L
Linus Torvalds 已提交
1118 1119
			break;
	}
1120
	h->max_huge_pages = i;
1121 1122 1123 1124 1125 1126 1127
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1128 1129 1130
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1131 1132 1133
	}
}

A
Andi Kleen 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1145 1146 1147 1148 1149
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1150 1151 1152 1153 1154
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1155 1156 1157
	}
}

L
Linus Torvalds 已提交
1158
#ifdef CONFIG_HIGHMEM
1159 1160
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1161
{
1162 1163
	int i;

1164 1165 1166
	if (h->order >= MAX_ORDER)
		return;

1167
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1168
		struct page *page, *next;
1169 1170 1171
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1172
				return;
L
Linus Torvalds 已提交
1173 1174 1175
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1176
			update_and_free_page(h, page);
1177 1178
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1179 1180 1181 1182
		}
	}
}
#else
1183 1184
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1185 1186 1187 1188
{
}
#endif

1189 1190 1191 1192 1193
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1194 1195
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1196
{
1197
	int start_nid, next_nid;
1198 1199 1200 1201
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1202
	if (delta < 0)
1203
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1204
	else
1205
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1206 1207 1208 1209 1210 1211 1212 1213
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1214
			if (!h->surplus_huge_pages_node[nid]) {
1215 1216
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1217
				continue;
1218
			}
1219 1220 1221 1222 1223 1224
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1225
						h->nr_huge_pages_node[nid]) {
1226 1227
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1228
				continue;
1229
			}
1230
		}
1231 1232 1233 1234 1235

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1236
	} while (next_nid != start_nid);
1237 1238 1239 1240

	return ret;
}

1241
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1242 1243
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1244
{
1245
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1246

1247 1248 1249
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1250 1251 1252 1253
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1254 1255 1256 1257 1258 1259
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1260
	 */
L
Linus Torvalds 已提交
1261
	spin_lock(&hugetlb_lock);
1262
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1263
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1264 1265 1266
			break;
	}

1267
	while (count > persistent_huge_pages(h)) {
1268 1269 1270 1271 1272 1273
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1274
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1287 1288 1289 1290 1291 1292 1293 1294
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1295
	 */
1296
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1297
	min_count = max(count, min_count);
1298
	try_to_free_low(h, min_count, nodes_allowed);
1299
	while (min_count < persistent_huge_pages(h)) {
1300
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1301 1302
			break;
	}
1303
	while (count < persistent_huge_pages(h)) {
1304
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1305 1306 1307
			break;
	}
out:
1308
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1309
	spin_unlock(&hugetlb_lock);
1310
	return ret;
L
Linus Torvalds 已提交
1311 1312
}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

1350
	h->max_huge_pages = set_max_huge_pages(h, input, &node_online_map);
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1466 1467 1468 1469 1470 1471
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1472

1473 1474 1475 1476
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1477
	}
1478 1479 1480
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1481 1482 1483

	hugetlb_init_hstates();

1484 1485
	gather_bootmem_prealloc();

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1498 1499
	unsigned long i;

1500 1501 1502 1503 1504 1505 1506 1507 1508
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1509 1510 1511 1512
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1513 1514
	h->next_nid_to_alloc = first_node(node_online_map);
	h->next_nid_to_free = first_node(node_online_map);
1515 1516
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1517

1518 1519 1520
	parsed_hstate = h;
}

1521
static int __init hugetlb_nrpages_setup(char *s)
1522 1523
{
	unsigned long *mhp;
1524
	static unsigned long *last_mhp;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1535 1536 1537 1538 1539 1540
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1541 1542 1543
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1554 1555
	return 1;
}
1556 1557 1558 1559 1560 1561 1562 1563
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1564

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1577
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1578
			   void __user *buffer,
L
Linus Torvalds 已提交
1579 1580
			   size_t *length, loff_t *ppos)
{
1581 1582 1583 1584 1585 1586 1587 1588
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1589
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1590 1591

	if (write)
1592 1593
		h->max_huge_pages = set_max_huge_pages(h, tmp,
							&node_online_map);
1594

L
Linus Torvalds 已提交
1595 1596
	return 0;
}
1597 1598

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1599
			void __user *buffer,
1600 1601
			size_t *length, loff_t *ppos)
{
1602
	proc_dointvec(table, write, buffer, length, ppos);
1603 1604 1605 1606 1607 1608 1609
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1610
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1611
			void __user *buffer,
1612 1613
			size_t *length, loff_t *ppos)
{
1614
	struct hstate *h = &default_hstate;
1615 1616 1617 1618 1619 1620 1621
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1622
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1623 1624 1625 1626 1627 1628 1629

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1630 1631 1632
	return 0;
}

L
Linus Torvalds 已提交
1633 1634
#endif /* CONFIG_SYSCTL */

1635
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1636
{
1637
	struct hstate *h = &default_hstate;
1638
	seq_printf(m,
1639 1640 1641 1642 1643
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1644 1645 1646 1647 1648
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1649 1650 1651 1652
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1653
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1654 1655
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1656 1657
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1658 1659 1660
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1661 1662 1663 1664 1665
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1666 1667
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1668 1669
}

1670
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1693
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1694 1695
			goto out;

1696 1697
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1698 1699 1700 1701 1702 1703
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1704
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1705 1706 1707 1708 1709 1710

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1727 1728
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1729
	struct hstate *h = hstate_vma(vma);
1730 1731 1732 1733 1734 1735
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1736 1737
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1738 1739 1740 1741 1742 1743

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1744
		if (reserve) {
1745
			hugetlb_acct_memory(h, -reserve);
1746 1747
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1748
	}
1749 1750
}

L
Linus Torvalds 已提交
1751 1752 1753 1754 1755 1756
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1757
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1758 1759
{
	BUG();
N
Nick Piggin 已提交
1760
	return 0;
L
Linus Torvalds 已提交
1761 1762
}

1763
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1764
	.fault = hugetlb_vm_op_fault,
1765
	.open = hugetlb_vm_op_open,
1766
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1767 1768
};

1769 1770
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1771 1772 1773
{
	pte_t entry;

1774
	if (writable) {
D
David Gibson 已提交
1775 1776 1777
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1778
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1779 1780 1781 1782 1783 1784 1785
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1786 1787 1788 1789 1790
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1791 1792
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1793 1794
		update_mmu_cache(vma, address, entry);
	}
1795 1796 1797
}


D
David Gibson 已提交
1798 1799 1800 1801 1802
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1803
	unsigned long addr;
1804
	int cow;
1805 1806
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1807 1808

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1809

1810
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1811 1812 1813
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1814
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1815 1816
		if (!dst_pte)
			goto nomem;
1817 1818 1819 1820 1821

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1822
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1823
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1824
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1825
			if (cow)
1826 1827
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1828 1829 1830 1831 1832
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1833
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1834 1835 1836 1837 1838 1839 1840
	}
	return 0;

nomem:
	return -ENOMEM;
}

1841
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1842
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1843 1844 1845
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1846
	pte_t *ptep;
D
David Gibson 已提交
1847 1848
	pte_t pte;
	struct page *page;
1849
	struct page *tmp;
1850 1851 1852
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1853 1854 1855 1856 1857
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1858
	LIST_HEAD(page_list);
D
David Gibson 已提交
1859 1860

	WARN_ON(!is_vm_hugetlb_page(vma));
1861 1862
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1863

A
Andrea Arcangeli 已提交
1864
	mmu_notifier_invalidate_range_start(mm, start, end);
1865
	spin_lock(&mm->page_table_lock);
1866
	for (address = start; address < end; address += sz) {
1867
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1868
		if (!ptep)
1869 1870
			continue;

1871 1872 1873
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1895
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1896
		if (huge_pte_none(pte))
D
David Gibson 已提交
1897
			continue;
1898

D
David Gibson 已提交
1899
		page = pte_page(pte);
1900 1901
		if (pte_dirty(pte))
			set_page_dirty(page);
1902
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1903
	}
L
Linus Torvalds 已提交
1904
	spin_unlock(&mm->page_table_lock);
1905
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1906
	mmu_notifier_invalidate_range_end(mm, start, end);
1907 1908 1909 1910
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1911
}
D
David Gibson 已提交
1912

1913
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1914
			  unsigned long end, struct page *ref_page)
1915
{
1916 1917 1918
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1919 1920
}

1921 1922 1923 1924 1925 1926
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1927 1928
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1929
{
1930
	struct hstate *h = hstate_vma(vma);
1931 1932 1933 1934 1935 1936 1937 1938 1939
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1940
	address = address & huge_page_mask(h);
1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1959
				address, address + huge_page_size(h),
1960 1961 1962 1963 1964 1965
				page);
	}

	return 1;
}

1966
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1967 1968
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1969
{
1970
	struct hstate *h = hstate_vma(vma);
1971
	struct page *old_page, *new_page;
1972
	int avoidcopy;
1973
	int outside_reserve = 0;
1974 1975 1976

	old_page = pte_page(pte);

1977
retry_avoidcopy:
1978 1979 1980 1981 1982
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1983
		return 0;
1984 1985
	}

1986 1987 1988 1989 1990 1991 1992 1993 1994
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
1995
	if (!(vma->vm_flags & VM_MAYSHARE) &&
1996 1997 1998 1999
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2000
	page_cache_get(old_page);
2001
	new_page = alloc_huge_page(vma, address, outside_reserve);
2002

2003
	if (IS_ERR(new_page)) {
2004
		page_cache_release(old_page);
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2023
		return -PTR_ERR(new_page);
2024 2025 2026
	}

	spin_unlock(&mm->page_table_lock);
2027
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2028
	__SetPageUptodate(new_page);
2029 2030
	spin_lock(&mm->page_table_lock);

2031
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2032
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2033
		/* Break COW */
2034
		huge_ptep_clear_flush(vma, address, ptep);
2035 2036 2037 2038 2039 2040 2041
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2042
	return 0;
2043 2044
}

2045
/* Return the pagecache page at a given address within a VMA */
2046 2047
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2048 2049
{
	struct address_space *mapping;
2050
	pgoff_t idx;
2051 2052

	mapping = vma->vm_file->f_mapping;
2053
	idx = vma_hugecache_offset(h, vma, address);
2054 2055 2056 2057

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2058 2059 2060 2061 2062
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2078
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2079
			unsigned long address, pte_t *ptep, unsigned int flags)
2080
{
2081
	struct hstate *h = hstate_vma(vma);
2082
	int ret = VM_FAULT_SIGBUS;
2083
	pgoff_t idx;
A
Adam Litke 已提交
2084 2085 2086
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2087
	pte_t new_pte;
A
Adam Litke 已提交
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2101
	mapping = vma->vm_file->f_mapping;
2102
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2103 2104 2105 2106 2107

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2108 2109 2110
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2111
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2112 2113
		if (idx >= size)
			goto out;
2114
		page = alloc_huge_page(vma, address, 0);
2115 2116
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2117 2118
			goto out;
		}
2119
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2120
		__SetPageUptodate(page);
2121

2122
		if (vma->vm_flags & VM_MAYSHARE) {
2123
			int err;
K
Ken Chen 已提交
2124
			struct inode *inode = mapping->host;
2125 2126 2127 2128 2129 2130 2131 2132

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2133 2134

			spin_lock(&inode->i_lock);
2135
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2136
			spin_unlock(&inode->i_lock);
2137 2138 2139
		} else
			lock_page(page);
	}
2140

2141 2142 2143 2144 2145 2146
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2147
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2148 2149 2150 2151
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2152

2153
	spin_lock(&mm->page_table_lock);
2154
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2155 2156 2157
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2158
	ret = 0;
2159
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2160 2161
		goto backout;

2162 2163 2164 2165
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2166
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2167
		/* Optimization, do the COW without a second fault */
2168
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2169 2170
	}

2171
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2172 2173
	unlock_page(page);
out:
2174
	return ret;
A
Adam Litke 已提交
2175 2176 2177

backout:
	spin_unlock(&mm->page_table_lock);
2178
backout_unlocked:
A
Adam Litke 已提交
2179 2180 2181
	unlock_page(page);
	put_page(page);
	goto out;
2182 2183
}

2184
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2185
			unsigned long address, unsigned int flags)
2186 2187 2188
{
	pte_t *ptep;
	pte_t entry;
2189
	int ret;
2190
	struct page *pagecache_page = NULL;
2191
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2192
	struct hstate *h = hstate_vma(vma);
2193

2194
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2195 2196 2197
	if (!ptep)
		return VM_FAULT_OOM;

2198 2199 2200 2201 2202 2203
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2204 2205
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2206
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2207
		goto out_mutex;
2208
	}
2209

N
Nick Piggin 已提交
2210
	ret = 0;
2211

2212 2213 2214 2215 2216 2217 2218 2219
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2220
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2221 2222
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2223
			goto out_mutex;
2224
		}
2225

2226
		if (!(vma->vm_flags & VM_MAYSHARE))
2227 2228 2229 2230
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2231 2232
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2233 2234 2235 2236
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2237
	if (flags & FAULT_FLAG_WRITE) {
2238
		if (!pte_write(entry)) {
2239 2240
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2241 2242 2243 2244 2245
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2246 2247
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2248 2249 2250
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2251
	spin_unlock(&mm->page_table_lock);
2252 2253 2254 2255 2256 2257

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2258
out_mutex:
2259
	mutex_unlock(&hugetlb_instantiation_mutex);
2260 2261

	return ret;
2262 2263
}

A
Andi Kleen 已提交
2264 2265 2266 2267 2268 2269 2270 2271 2272
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2273 2274
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2275
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2276
			unsigned int flags)
D
David Gibson 已提交
2277
{
2278 2279
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2280
	int remainder = *length;
2281
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2282

2283
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2284
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2285
		pte_t *pte;
H
Hugh Dickins 已提交
2286
		int absent;
A
Adam Litke 已提交
2287
		struct page *page;
D
David Gibson 已提交
2288

A
Adam Litke 已提交
2289 2290
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2291
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2292 2293
		 * first, for the page indexing below to work.
		 */
2294
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2295 2296 2297 2298
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2299 2300 2301 2302
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2303
		 */
H
Hugh Dickins 已提交
2304 2305
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2306 2307 2308
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2309

H
Hugh Dickins 已提交
2310 2311
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2312
			int ret;
D
David Gibson 已提交
2313

A
Adam Litke 已提交
2314
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2315 2316
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2317
			spin_lock(&mm->page_table_lock);
2318
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2319
				continue;
D
David Gibson 已提交
2320

A
Adam Litke 已提交
2321 2322 2323 2324
			remainder = 0;
			break;
		}

2325
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2326
		page = pte_page(huge_ptep_get(pte));
2327
same_page:
2328
		if (pages) {
H
Hugh Dickins 已提交
2329
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2330
			get_page(pages[i]);
2331
		}
D
David Gibson 已提交
2332 2333 2334 2335 2336

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2337
		++pfn_offset;
D
David Gibson 已提交
2338 2339
		--remainder;
		++i;
2340
		if (vaddr < vma->vm_end && remainder &&
2341
				pfn_offset < pages_per_huge_page(h)) {
2342 2343 2344 2345 2346 2347
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2348
	}
2349
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2350 2351 2352
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2353
	return i ? i : -EFAULT;
D
David Gibson 已提交
2354
}
2355 2356 2357 2358 2359 2360 2361 2362

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2363
	struct hstate *h = hstate_vma(vma);
2364 2365 2366 2367

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2368
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2369
	spin_lock(&mm->page_table_lock);
2370
	for (; address < end; address += huge_page_size(h)) {
2371 2372 2373
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2374 2375
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2376
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2377 2378 2379 2380 2381 2382
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2383
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2384 2385 2386 2387

	flush_tlb_range(vma, start, end);
}

2388 2389
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2390 2391
					struct vm_area_struct *vma,
					int acctflag)
2392
{
2393
	long ret, chg;
2394
	struct hstate *h = hstate_inode(inode);
2395

2396 2397 2398 2399 2400 2401 2402 2403
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2404 2405 2406 2407 2408 2409
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2410
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2411
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2412 2413 2414 2415 2416
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2417
		chg = to - from;
2418

2419 2420 2421 2422
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2423 2424
	if (chg < 0)
		return chg;
2425

2426
	/* There must be enough filesystem quota for the mapping */
2427 2428
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2429 2430

	/*
2431 2432
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2433
	 */
2434
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2435 2436
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2437
		return ret;
K
Ken Chen 已提交
2438
	}
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2451
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2452
		region_add(&inode->i_mapping->private_list, from, to);
2453 2454 2455 2456 2457
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2458
	struct hstate *h = hstate_inode(inode);
2459
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2460 2461

	spin_lock(&inode->i_lock);
2462
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2463 2464
	spin_unlock(&inode->i_lock);

2465
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2466
	hugetlb_acct_memory(h, -(chg - freed));
2467
}