hugetlb.c 91.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437
}

438
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 440 441
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442
	if (!(vma->vm_flags & VM_MAYSHARE))
443 444 445 446
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
447
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
464 465

	/* Shared mappings always use reserves */
466
	if (vma->vm_flags & VM_MAYSHARE)
467
		return 1;
468 469 470 471 472

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
473 474
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
475

476
	return 0;
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

513
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
514 515
{
	int nid = page_to_nid(page);
516
	list_move(&page->lru, &h->hugepage_freelists[nid]);
517 518
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
519 520
}

521 522 523 524
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

525 526 527 528 529 530 531 532
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
533
		return NULL;
534
	list_move(&page->lru, &h->hugepage_activelist);
535
	set_page_refcounted(page);
536 537 538 539 540
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

541 542 543 544 545 546 547 548 549
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

550 551
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
552 553
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
554
{
555
	struct page *page = NULL;
556
	struct mempolicy *mpol;
557
	nodemask_t *nodemask;
558
	struct zonelist *zonelist;
559 560
	struct zone *zone;
	struct zoneref *z;
561
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
562

563 564 565 566 567
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
568
	if (!vma_has_reserves(vma, chg) &&
569
			h->free_huge_pages - h->resv_huge_pages == 0)
570
		goto err;
571

572
	/* If reserves cannot be used, ensure enough pages are in the pool */
573
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
574
		goto err;
575

576 577 578
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
579
					htlb_alloc_mask(h), &mpol, &nodemask);
580

581 582
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
583
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
584 585
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
586 587 588 589 590
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

591
				SetPagePrivate(page);
592
				h->resv_huge_pages--;
593 594
				break;
			}
A
Andrew Morton 已提交
595
		}
L
Linus Torvalds 已提交
596
	}
597

598
	mpol_cond_put(mpol);
599 600
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
601
	return page;
602 603 604

err:
	return NULL;
L
Linus Torvalds 已提交
605 606
}

607
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
608 609
{
	int i;
610

611 612
	VM_BUG_ON(h->order >= MAX_ORDER);

613 614 615
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
616 617 618 619
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
620
	}
621
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
622 623
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
624
	arch_release_hugepage(page);
625
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
626 627
}

628 629 630 631 632 633 634 635 636 637 638
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

639 640
static void free_huge_page(struct page *page)
{
641 642 643 644
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
645
	struct hstate *h = page_hstate(page);
646
	int nid = page_to_nid(page);
647 648
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
649
	bool restore_reserve;
650

651
	set_page_private(page, 0);
652
	page->mapping = NULL;
653
	BUG_ON(page_count(page));
654
	BUG_ON(page_mapcount(page));
655
	restore_reserve = PagePrivate(page);
656 657

	spin_lock(&hugetlb_lock);
658 659
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
660 661 662
	if (restore_reserve)
		h->resv_huge_pages++;

663
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
664 665
		/* remove the page from active list */
		list_del(&page->lru);
666 667 668
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
669
	} else {
670
		arch_clear_hugepage_flags(page);
671
		enqueue_huge_page(h, page);
672
	}
673
	spin_unlock(&hugetlb_lock);
674
	hugepage_subpool_put_pages(spool, 1);
675 676
}

677
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
678
{
679
	INIT_LIST_HEAD(&page->lru);
680 681
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
682
	set_hugetlb_cgroup(page, NULL);
683 684
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
685 686 687 688
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

689 690 691 692 693 694 695 696 697 698 699
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
700
		set_page_count(p, 0);
701 702 703 704
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
705 706 707 708 709
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
710 711 712 713 714 715 716 717 718 719 720 721
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
722 723
EXPORT_SYMBOL_GPL(PageHuge);

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

741
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
742 743
{
	struct page *page;
744

745 746 747
	if (h->order >= MAX_ORDER)
		return NULL;

748
	page = alloc_pages_exact_node(nid,
749
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
750
						__GFP_REPEAT|__GFP_NOWARN,
751
		huge_page_order(h));
L
Linus Torvalds 已提交
752
	if (page) {
753
		if (arch_prepare_hugepage(page)) {
754
			__free_pages(page, huge_page_order(h));
755
			return NULL;
756
		}
757
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
758
	}
759 760 761 762

	return page;
}

763
/*
764 765 766 767 768
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
769
 */
770
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
771
{
772
	nid = next_node(nid, *nodes_allowed);
773
	if (nid == MAX_NUMNODES)
774
		nid = first_node(*nodes_allowed);
775 776 777 778 779
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

780 781 782 783 784 785 786
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

787
/*
788 789 790 791
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
792
 */
793 794
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
795
{
796 797 798 799 800 801
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
802 803

	return nid;
804 805
}

806
/*
807 808 809 810
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
811
 */
812
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
813
{
814 815 816 817 818 819
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
820 821

	return nid;
822 823
}

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

858 859 860 861 862 863
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
864 865
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
866
{
867
	int nr_nodes, node;
868 869
	int ret = 0;

870
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
871 872 873 874
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
875 876
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
877
			struct page *page =
878
				list_entry(h->hugepage_freelists[node].next,
879 880 881
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
882
			h->free_huge_pages_node[node]--;
883 884
			if (acct_surplus) {
				h->surplus_huge_pages--;
885
				h->surplus_huge_pages_node[node]--;
886
			}
887 888
			update_and_free_page(h, page);
			ret = 1;
889
			break;
890
		}
891
	}
892 893 894 895

	return ret;
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

934
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
935 936
{
	struct page *page;
937
	unsigned int r_nid;
938

939 940 941
	if (h->order >= MAX_ORDER)
		return NULL;

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
966
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
967 968 969
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
970 971
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
972 973 974
	}
	spin_unlock(&hugetlb_lock);

975
	if (nid == NUMA_NO_NODE)
976
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
977 978 979 980
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
981
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
982
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
983

984 985
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
986
		page = NULL;
987 988
	}

989
	spin_lock(&hugetlb_lock);
990
	if (page) {
991
		INIT_LIST_HEAD(&page->lru);
992
		r_nid = page_to_nid(page);
993
		set_compound_page_dtor(page, free_huge_page);
994
		set_hugetlb_cgroup(page, NULL);
995 996 997
		/*
		 * We incremented the global counters already
		 */
998 999
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1000
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1001
	} else {
1002 1003
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1004
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1005
	}
1006
	spin_unlock(&hugetlb_lock);
1007 1008 1009 1010

	return page;
}

1011 1012 1013 1014 1015 1016 1017
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1018
	struct page *page = NULL;
1019 1020

	spin_lock(&hugetlb_lock);
1021 1022
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1023 1024
	spin_unlock(&hugetlb_lock);

1025
	if (!page)
1026 1027 1028 1029 1030
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1031
/*
L
Lucas De Marchi 已提交
1032
 * Increase the hugetlb pool such that it can accommodate a reservation
1033 1034
 * of size 'delta'.
 */
1035
static int gather_surplus_pages(struct hstate *h, int delta)
1036 1037 1038 1039 1040
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1041
	bool alloc_ok = true;
1042

1043
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1044
	if (needed <= 0) {
1045
		h->resv_huge_pages += delta;
1046
		return 0;
1047
	}
1048 1049 1050 1051 1052 1053 1054 1055

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1056
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1057 1058 1059 1060
		if (!page) {
			alloc_ok = false;
			break;
		}
1061 1062
		list_add(&page->lru, &surplus_list);
	}
1063
	allocated += i;
1064 1065 1066 1067 1068 1069

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1070 1071
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1082 1083
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1084
	 * needed to accommodate the reservation.  Add the appropriate number
1085
	 * of pages to the hugetlb pool and free the extras back to the buddy
1086 1087 1088
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1089 1090
	 */
	needed += allocated;
1091
	h->resv_huge_pages += delta;
1092
	ret = 0;
1093

1094
	/* Free the needed pages to the hugetlb pool */
1095
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1096 1097
		if ((--needed) < 0)
			break;
1098 1099 1100 1101 1102 1103
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1104
		enqueue_huge_page(h, page);
1105
	}
1106
free:
1107
	spin_unlock(&hugetlb_lock);
1108 1109

	/* Free unnecessary surplus pages to the buddy allocator */
1110 1111
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1112
	spin_lock(&hugetlb_lock);
1113 1114 1115 1116 1117 1118 1119 1120

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1121
 * Called with hugetlb_lock held.
1122
 */
1123 1124
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1125 1126 1127
{
	unsigned long nr_pages;

1128
	/* Uncommit the reservation */
1129
	h->resv_huge_pages -= unused_resv_pages;
1130

1131 1132 1133 1134
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1135
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1136

1137 1138
	/*
	 * We want to release as many surplus pages as possible, spread
1139 1140 1141 1142 1143
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1144 1145
	 */
	while (nr_pages--) {
1146
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1147
			break;
1148 1149 1150
	}
}

1151 1152 1153
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1154 1155 1156 1157 1158 1159
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1160
 */
1161
static long vma_needs_reservation(struct hstate *h,
1162
			struct vm_area_struct *vma, unsigned long addr)
1163 1164 1165 1166
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1167
	if (vma->vm_flags & VM_MAYSHARE) {
1168
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1169 1170 1171
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1172 1173
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1174

1175
	} else  {
1176
		long err;
1177
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1178
		struct resv_map *resv = vma_resv_map(vma);
1179

1180
		err = region_chg(&resv->regions, idx, idx + 1);
1181 1182 1183 1184
		if (err < 0)
			return err;
		return 0;
	}
1185
}
1186 1187
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1188 1189 1190 1191
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1192
	if (vma->vm_flags & VM_MAYSHARE) {
1193
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1194
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1195 1196

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1197
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1198
		struct resv_map *resv = vma_resv_map(vma);
1199 1200

		/* Mark this page used in the map. */
1201
		region_add(&resv->regions, idx, idx + 1);
1202 1203 1204
	}
}

1205
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1206
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1207
{
1208
	struct hugepage_subpool *spool = subpool_vma(vma);
1209
	struct hstate *h = hstate_vma(vma);
1210
	struct page *page;
1211
	long chg;
1212 1213
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1214

1215
	idx = hstate_index(h);
1216
	/*
1217 1218 1219 1220 1221 1222
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1223
	 */
1224
	chg = vma_needs_reservation(h, vma, addr);
1225
	if (chg < 0)
1226
		return ERR_PTR(-ENOMEM);
1227 1228
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1229
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1230

1231 1232
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1233 1234
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1235 1236
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1237
	spin_lock(&hugetlb_lock);
1238
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1239
	if (!page) {
1240
		spin_unlock(&hugetlb_lock);
1241
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1242
		if (!page) {
1243 1244 1245
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1246 1247
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1248
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1249
		}
1250 1251
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1252
		/* Fall through */
K
Ken Chen 已提交
1253
	}
1254 1255
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1256

1257
	set_page_private(page, (unsigned long)spool);
1258

1259
	vma_commit_reservation(h, vma, addr);
1260
	return page;
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1277
int __weak alloc_bootmem_huge_page(struct hstate *h)
1278 1279
{
	struct huge_bootmem_page *m;
1280
	int nr_nodes, node;
1281

1282
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1283 1284
		void *addr;

1285
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1286 1287 1288 1289 1290 1291 1292 1293 1294
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1295
			goto found;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1308 1309 1310 1311 1312 1313 1314 1315
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1316 1317 1318 1319 1320 1321 1322
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1323 1324 1325 1326 1327 1328 1329 1330 1331
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1332 1333
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1334
		prep_compound_huge_page(page, h->order);
1335
		prep_new_huge_page(h, page, page_to_nid(page));
1336 1337 1338 1339 1340 1341 1342
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1343
			adjust_managed_page_count(page, 1 << h->order);
1344 1345 1346
	}
}

1347
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1348 1349
{
	unsigned long i;
1350

1351
	for (i = 0; i < h->max_huge_pages; ++i) {
1352 1353 1354
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1355
		} else if (!alloc_fresh_huge_page(h,
1356
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1357 1358
			break;
	}
1359
	h->max_huge_pages = i;
1360 1361 1362 1363 1364 1365 1366
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1367 1368 1369
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1370 1371 1372
	}
}

A
Andi Kleen 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1384 1385 1386 1387 1388
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1389
		char buf[32];
1390
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1391 1392
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1393 1394 1395
	}
}

L
Linus Torvalds 已提交
1396
#ifdef CONFIG_HIGHMEM
1397 1398
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1399
{
1400 1401
	int i;

1402 1403 1404
	if (h->order >= MAX_ORDER)
		return;

1405
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1406
		struct page *page, *next;
1407 1408 1409
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1410
				return;
L
Linus Torvalds 已提交
1411 1412 1413
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1414
			update_and_free_page(h, page);
1415 1416
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1417 1418 1419 1420
		}
	}
}
#else
1421 1422
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1423 1424 1425 1426
{
}
#endif

1427 1428 1429 1430 1431
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1432 1433
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1434
{
1435
	int nr_nodes, node;
1436 1437 1438

	VM_BUG_ON(delta != -1 && delta != 1);

1439 1440 1441 1442
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1443
		}
1444 1445 1446 1447 1448
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1449
		}
1450 1451
	}
	return 0;
1452

1453 1454 1455 1456
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1457 1458
}

1459
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1460 1461
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1462
{
1463
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1464

1465 1466 1467
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1468 1469 1470 1471
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1472 1473 1474 1475 1476 1477
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1478
	 */
L
Linus Torvalds 已提交
1479
	spin_lock(&hugetlb_lock);
1480
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1481
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1482 1483 1484
			break;
	}

1485
	while (count > persistent_huge_pages(h)) {
1486 1487 1488 1489 1490 1491
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1492
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1493 1494 1495 1496
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1497 1498 1499
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1500 1501 1502 1503 1504 1505 1506 1507
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1508 1509 1510 1511 1512 1513 1514 1515
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1516
	 */
1517
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1518
	min_count = max(count, min_count);
1519
	try_to_free_low(h, min_count, nodes_allowed);
1520
	while (min_count < persistent_huge_pages(h)) {
1521
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1522 1523
			break;
	}
1524
	while (count < persistent_huge_pages(h)) {
1525
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1526 1527 1528
			break;
	}
out:
1529
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1530
	spin_unlock(&hugetlb_lock);
1531
	return ret;
L
Linus Torvalds 已提交
1532 1533
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1544 1545 1546
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1547 1548
{
	int i;
1549

1550
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1551 1552 1553
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1554
			return &hstates[i];
1555 1556 1557
		}

	return kobj_to_node_hstate(kobj, nidp);
1558 1559
}

1560
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1561 1562
					struct kobj_attribute *attr, char *buf)
{
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1574
}
1575

1576 1577 1578
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1579 1580
{
	int err;
1581
	int nid;
1582
	unsigned long count;
1583
	struct hstate *h;
1584
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1585

1586
	err = kstrtoul(buf, 10, &count);
1587
	if (err)
1588
		goto out;
1589

1590
	h = kobj_to_hstate(kobj, &nid);
1591 1592 1593 1594 1595
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1596 1597 1598 1599 1600 1601 1602
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1603
			nodes_allowed = &node_states[N_MEMORY];
1604 1605 1606 1607 1608 1609 1610 1611 1612
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1613
		nodes_allowed = &node_states[N_MEMORY];
1614

1615
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1616

1617
	if (nodes_allowed != &node_states[N_MEMORY])
1618 1619 1620
		NODEMASK_FREE(nodes_allowed);

	return len;
1621 1622 1623
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1636 1637 1638
}
HSTATE_ATTR(nr_hugepages);

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1660 1661 1662
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1663
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1664 1665
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1666

1667 1668 1669 1670 1671
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1672
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1673

1674 1675 1676
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1677
	err = kstrtoul(buf, 10, &input);
1678
	if (err)
1679
		return err;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1703 1704 1705 1706 1707 1708
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1709
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1710 1711 1712 1713 1714 1715 1716
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1728 1729 1730 1731 1732 1733 1734 1735 1736
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1737 1738 1739
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1740 1741 1742 1743 1744 1745 1746
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1747 1748 1749
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1750 1751
{
	int retval;
1752
	int hi = hstate_index(h);
1753

1754 1755
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1756 1757
		return -ENOMEM;

1758
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1759
	if (retval)
1760
		kobject_put(hstate_kobjs[hi]);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1775 1776
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1777
		if (err)
1778
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1779 1780 1781
	}
}

1782 1783 1784 1785
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1786 1787 1788
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1789 1790 1791 1792 1793 1794 1795 1796 1797
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1798
 * A subset of global hstate attributes for node devices
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1812
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1835
 * Unregister hstate attributes from a single node device.
1836 1837
 * No-op if no hstate attributes attached.
 */
1838
static void hugetlb_unregister_node(struct node *node)
1839 1840
{
	struct hstate *h;
1841
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1842 1843

	if (!nhs->hugepages_kobj)
1844
		return;		/* no hstate attributes */
1845

1846 1847 1848 1849 1850
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1851
		}
1852
	}
1853 1854 1855 1856 1857 1858

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1859
 * hugetlb module exit:  unregister hstate attributes from node devices
1860 1861 1862 1863 1864 1865 1866
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1867
	 * disable node device registrations.
1868 1869 1870 1871 1872 1873 1874
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1875
		hugetlb_unregister_node(node_devices[nid]);
1876 1877 1878
}

/*
1879
 * Register hstate attributes for a single node device.
1880 1881
 * No-op if attributes already registered.
 */
1882
static void hugetlb_register_node(struct node *node)
1883 1884
{
	struct hstate *h;
1885
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1886 1887 1888 1889 1890 1891
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1892
							&node->dev.kobj);
1893 1894 1895 1896 1897 1898 1899 1900
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1901 1902
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1903 1904 1905 1906 1907 1908 1909
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1910
 * hugetlb init time:  register hstate attributes for all registered node
1911 1912
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1913 1914 1915 1916 1917
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1918
	for_each_node_state(nid, N_MEMORY) {
1919
		struct node *node = node_devices[nid];
1920
		if (node->dev.id == nid)
1921 1922 1923 1924
			hugetlb_register_node(node);
	}

	/*
1925
	 * Let the node device driver know we're here so it can
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1947 1948 1949 1950
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1951 1952
	hugetlb_unregister_all_nodes();

1953
	for_each_hstate(h) {
1954
		kobject_put(hstate_kobjs[hstate_index(h)]);
1955 1956 1957 1958 1959 1960 1961 1962
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1963 1964 1965 1966 1967 1968
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1969

1970 1971 1972 1973
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1974
	}
1975
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1976 1977
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1978 1979

	hugetlb_init_hstates();
1980
	gather_bootmem_prealloc();
1981 1982 1983
	report_hugepages();

	hugetlb_sysfs_init();
1984
	hugetlb_register_all_nodes();
1985
	hugetlb_cgroup_file_init();
1986

1987 1988 1989 1990 1991 1992 1993 1994
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1995 1996
	unsigned long i;

1997
	if (size_to_hstate(PAGE_SIZE << order)) {
1998
		pr_warning("hugepagesz= specified twice, ignoring\n");
1999 2000
		return;
	}
2001
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2002
	BUG_ON(order == 0);
2003
	h = &hstates[hugetlb_max_hstate++];
2004 2005
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2006 2007 2008 2009
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2010
	INIT_LIST_HEAD(&h->hugepage_activelist);
2011 2012
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2013 2014
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2015

2016 2017 2018
	parsed_hstate = h;
}

2019
static int __init hugetlb_nrpages_setup(char *s)
2020 2021
{
	unsigned long *mhp;
2022
	static unsigned long *last_mhp;
2023 2024

	/*
2025
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2026 2027
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2028
	if (!hugetlb_max_hstate)
2029 2030 2031 2032
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2033
	if (mhp == last_mhp) {
2034 2035
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2036 2037 2038
		return 1;
	}

2039 2040 2041
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2042 2043 2044 2045 2046
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2047
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2048 2049 2050 2051
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2052 2053
	return 1;
}
2054 2055 2056 2057 2058 2059 2060 2061
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2075 2076 2077
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2078
{
2079 2080
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2081
	int ret;
2082

2083
	tmp = h->max_huge_pages;
2084

2085 2086 2087
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2088 2089
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2090 2091 2092
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2093

2094
	if (write) {
2095 2096
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2097 2098 2099
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2100
			nodes_allowed = &node_states[N_MEMORY];
2101 2102 2103
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2104
		if (nodes_allowed != &node_states[N_MEMORY])
2105 2106
			NODEMASK_FREE(nodes_allowed);
	}
2107 2108
out:
	return ret;
L
Linus Torvalds 已提交
2109
}
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2128
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2129
			void __user *buffer,
2130 2131
			size_t *length, loff_t *ppos)
{
2132
	struct hstate *h = &default_hstate;
2133
	unsigned long tmp;
2134
	int ret;
2135

2136
	tmp = h->nr_overcommit_huge_pages;
2137

2138 2139 2140
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2141 2142
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2143 2144 2145
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2146 2147 2148 2149 2150 2151

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2152 2153
out:
	return ret;
2154 2155
}

L
Linus Torvalds 已提交
2156 2157
#endif /* CONFIG_SYSCTL */

2158
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2159
{
2160
	struct hstate *h = &default_hstate;
2161
	seq_printf(m,
2162 2163 2164 2165 2166
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2167 2168 2169 2170 2171
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2172 2173 2174 2175
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2176
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2177 2178
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2179 2180
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2181 2182 2183
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2184 2185
}

2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2201 2202 2203
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2204 2205 2206 2207 2208 2209
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2210 2211
}

2212
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2235
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2236 2237
			goto out;

2238 2239
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2240 2241 2242 2243 2244 2245
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2246
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2247 2248 2249 2250 2251 2252

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2253 2254
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2255
	struct resv_map *resv = vma_resv_map(vma);
2256 2257 2258 2259 2260

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2261
	 * has a reference to the reservation map it cannot disappear until
2262 2263 2264
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2265 2266
	if (resv)
		kref_get(&resv->refs);
2267 2268
}

2269 2270
static void resv_map_put(struct vm_area_struct *vma)
{
2271
	struct resv_map *resv = vma_resv_map(vma);
2272

2273
	if (!resv)
2274
		return;
2275
	kref_put(&resv->refs, resv_map_release);
2276 2277
}

2278 2279
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2280
	struct hstate *h = hstate_vma(vma);
2281
	struct resv_map *resv = vma_resv_map(vma);
2282
	struct hugepage_subpool *spool = subpool_vma(vma);
2283 2284 2285 2286
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2287
	if (resv) {
2288 2289
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2290 2291

		reserve = (end - start) -
2292
			region_count(&resv->regions, start, end);
2293

2294
		resv_map_put(vma);
2295

2296
		if (reserve) {
2297
			hugetlb_acct_memory(h, -reserve);
2298
			hugepage_subpool_put_pages(spool, reserve);
2299
		}
2300
	}
2301 2302
}

L
Linus Torvalds 已提交
2303 2304 2305 2306 2307 2308
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2309
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2310 2311
{
	BUG();
N
Nick Piggin 已提交
2312
	return 0;
L
Linus Torvalds 已提交
2313 2314
}

2315
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2316
	.fault = hugetlb_vm_op_fault,
2317
	.open = hugetlb_vm_op_open,
2318
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2319 2320
};

2321 2322
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2323 2324 2325
{
	pte_t entry;

2326
	if (writable) {
2327 2328
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2329
	} else {
2330 2331
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2332 2333 2334
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2335
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2336 2337 2338 2339

	return entry;
}

2340 2341 2342 2343 2344
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2345
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2346
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2347
		update_mmu_cache(vma, address, ptep);
2348 2349 2350
}


D
David Gibson 已提交
2351 2352 2353 2354 2355
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2356
	unsigned long addr;
2357
	int cow;
2358 2359
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2360 2361

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2362

2363
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2364 2365 2366
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2367
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2368 2369
		if (!dst_pte)
			goto nomem;
2370 2371 2372 2373 2374

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2375
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2376
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2377
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2378
			if (cow)
2379 2380
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2381 2382
			ptepage = pte_page(entry);
			get_page(ptepage);
2383
			page_dup_rmap(ptepage);
2384 2385 2386
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2387
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2388 2389 2390 2391 2392 2393 2394
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2395 2396 2397 2398 2399 2400 2401
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2402
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2403
		return 1;
2404
	else
N
Naoya Horiguchi 已提交
2405 2406 2407
		return 0;
}

2408 2409 2410 2411 2412 2413 2414
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2415
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2416
		return 1;
2417
	else
2418 2419 2420
		return 0;
}

2421 2422 2423
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2424
{
2425
	int force_flush = 0;
D
David Gibson 已提交
2426 2427
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2428
	pte_t *ptep;
D
David Gibson 已提交
2429 2430
	pte_t pte;
	struct page *page;
2431 2432
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2433 2434
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2435

D
David Gibson 已提交
2436
	WARN_ON(!is_vm_hugetlb_page(vma));
2437 2438
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2439

2440
	tlb_start_vma(tlb, vma);
2441
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2442
again:
2443
	spin_lock(&mm->page_table_lock);
2444
	for (address = start; address < end; address += sz) {
2445
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2446
		if (!ptep)
2447 2448
			continue;

2449 2450 2451
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2452 2453 2454 2455 2456 2457 2458
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2459
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2460
			huge_pte_clear(mm, address, ptep);
2461
			continue;
2462
		}
2463 2464

		page = pte_page(pte);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2482
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2483
		tlb_remove_tlb_entry(tlb, ptep, address);
2484
		if (huge_pte_dirty(pte))
2485
			set_page_dirty(page);
2486

2487 2488 2489 2490
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2491 2492 2493
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2494
	}
2495
	spin_unlock(&mm->page_table_lock);
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2506
	}
2507
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2508
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2509
}
D
David Gibson 已提交
2510

2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2530
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2531
			  unsigned long end, struct page *ref_page)
2532
{
2533 2534 2535 2536 2537
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2538
	tlb_gather_mmu(&tlb, mm, start, end);
2539 2540
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2541 2542
}

2543 2544 2545 2546 2547 2548
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2549 2550
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2551
{
2552
	struct hstate *h = hstate_vma(vma);
2553 2554 2555 2556 2557 2558 2559 2560
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2561
	address = address & huge_page_mask(h);
2562 2563
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2564
	mapping = file_inode(vma->vm_file)->i_mapping;
2565

2566 2567 2568 2569 2570
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2571
	mutex_lock(&mapping->i_mmap_mutex);
2572
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2585 2586
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2587
	}
2588
	mutex_unlock(&mapping->i_mmap_mutex);
2589 2590 2591 2592

	return 1;
}

2593 2594
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2595 2596 2597
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2598
 */
2599
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2600 2601
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2602
{
2603
	struct hstate *h = hstate_vma(vma);
2604
	struct page *old_page, *new_page;
2605
	int outside_reserve = 0;
2606 2607
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2608 2609 2610

	old_page = pte_page(pte);

2611
retry_avoidcopy:
2612 2613
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2614 2615
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2616
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2617
		return 0;
2618 2619
	}

2620 2621 2622 2623 2624 2625 2626 2627 2628
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2629
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2630 2631 2632
			old_page != pagecache_page)
		outside_reserve = 1;

2633
	page_cache_get(old_page);
2634 2635 2636

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2637
	new_page = alloc_huge_page(vma, address, outside_reserve);
2638

2639
	if (IS_ERR(new_page)) {
2640
		long err = PTR_ERR(new_page);
2641
		page_cache_release(old_page);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2654
				spin_lock(&mm->page_table_lock);
2655 2656 2657 2658 2659 2660 2661 2662
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2663 2664 2665 2666
			}
			WARN_ON_ONCE(1);
		}

2667 2668
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2669 2670 2671 2672
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2673 2674
	}

2675 2676 2677 2678
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2679
	if (unlikely(anon_vma_prepare(vma))) {
2680 2681
		page_cache_release(new_page);
		page_cache_release(old_page);
2682 2683
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2684
		return VM_FAULT_OOM;
2685
	}
2686

A
Andrea Arcangeli 已提交
2687 2688
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2689
	__SetPageUptodate(new_page);
2690

2691 2692 2693
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2694 2695 2696 2697 2698
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2699
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2700
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2701 2702
		ClearPagePrivate(new_page);

2703
		/* Break COW */
2704
		huge_ptep_clear_flush(vma, address, ptep);
2705 2706
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2707
		page_remove_rmap(old_page);
2708
		hugepage_add_new_anon_rmap(new_page, vma, address);
2709 2710 2711
		/* Make the old page be freed below */
		new_page = old_page;
	}
2712 2713
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2714 2715
	page_cache_release(new_page);
	page_cache_release(old_page);
2716 2717 2718

	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
N
Nick Piggin 已提交
2719
	return 0;
2720 2721
}

2722
/* Return the pagecache page at a given address within a VMA */
2723 2724
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2725 2726
{
	struct address_space *mapping;
2727
	pgoff_t idx;
2728 2729

	mapping = vma->vm_file->f_mapping;
2730
	idx = vma_hugecache_offset(h, vma, address);
2731 2732 2733 2734

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2735 2736 2737 2738 2739
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2755
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2756
			unsigned long address, pte_t *ptep, unsigned int flags)
2757
{
2758
	struct hstate *h = hstate_vma(vma);
2759
	int ret = VM_FAULT_SIGBUS;
2760
	int anon_rmap = 0;
2761
	pgoff_t idx;
A
Adam Litke 已提交
2762 2763 2764
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2765
	pte_t new_pte;
A
Adam Litke 已提交
2766

2767 2768 2769
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2770
	 * COW. Warn that such a situation has occurred as it may not be obvious
2771 2772
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2773 2774
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2775 2776 2777
		return ret;
	}

A
Adam Litke 已提交
2778
	mapping = vma->vm_file->f_mapping;
2779
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2780 2781 2782 2783 2784

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2785 2786 2787
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2788
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2789 2790
		if (idx >= size)
			goto out;
2791
		page = alloc_huge_page(vma, address, 0);
2792
		if (IS_ERR(page)) {
2793 2794 2795 2796 2797
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2798 2799
			goto out;
		}
A
Andrea Arcangeli 已提交
2800
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2801
		__SetPageUptodate(page);
2802

2803
		if (vma->vm_flags & VM_MAYSHARE) {
2804
			int err;
K
Ken Chen 已提交
2805
			struct inode *inode = mapping->host;
2806 2807 2808 2809 2810 2811 2812 2813

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2814
			ClearPagePrivate(page);
K
Ken Chen 已提交
2815 2816

			spin_lock(&inode->i_lock);
2817
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2818
			spin_unlock(&inode->i_lock);
2819
		} else {
2820
			lock_page(page);
2821 2822 2823 2824
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2825
			anon_rmap = 1;
2826
		}
2827
	} else {
2828 2829 2830 2831 2832 2833
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2834
			ret = VM_FAULT_HWPOISON |
2835
				VM_FAULT_SET_HINDEX(hstate_index(h));
2836 2837
			goto backout_unlocked;
		}
2838
	}
2839

2840 2841 2842 2843 2844 2845
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2846
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2847 2848 2849 2850
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2851

2852
	spin_lock(&mm->page_table_lock);
2853
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2854 2855 2856
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2857
	ret = 0;
2858
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2859 2860
		goto backout;

2861 2862
	if (anon_rmap) {
		ClearPagePrivate(page);
2863
		hugepage_add_new_anon_rmap(page, vma, address);
2864
	}
2865 2866
	else
		page_dup_rmap(page);
2867 2868 2869 2870
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2871
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2872
		/* Optimization, do the COW without a second fault */
2873
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2874 2875
	}

2876
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2877 2878
	unlock_page(page);
out:
2879
	return ret;
A
Adam Litke 已提交
2880 2881 2882

backout:
	spin_unlock(&mm->page_table_lock);
2883
backout_unlocked:
A
Adam Litke 已提交
2884 2885 2886
	unlock_page(page);
	put_page(page);
	goto out;
2887 2888
}

2889
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2890
			unsigned long address, unsigned int flags)
2891 2892 2893
{
	pte_t *ptep;
	pte_t entry;
2894
	int ret;
2895
	struct page *page = NULL;
2896
	struct page *pagecache_page = NULL;
2897
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2898
	struct hstate *h = hstate_vma(vma);
2899

2900 2901
	address &= huge_page_mask(h);

2902 2903 2904
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2905
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2906
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2907 2908
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2909
			return VM_FAULT_HWPOISON_LARGE |
2910
				VM_FAULT_SET_HINDEX(hstate_index(h));
2911 2912
	}

2913
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2914 2915 2916
	if (!ptep)
		return VM_FAULT_OOM;

2917 2918 2919 2920 2921 2922
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2923 2924
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2925
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2926
		goto out_mutex;
2927
	}
2928

N
Nick Piggin 已提交
2929
	ret = 0;
2930

2931 2932 2933 2934 2935 2936 2937 2938
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2939
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2940 2941
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2942
			goto out_mutex;
2943
		}
2944

2945
		if (!(vma->vm_flags & VM_MAYSHARE))
2946 2947 2948 2949
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2950 2951 2952 2953 2954 2955 2956 2957
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2958
	get_page(page);
2959
	if (page != pagecache_page)
2960 2961
		lock_page(page);

2962 2963
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2964 2965 2966 2967
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2968
	if (flags & FAULT_FLAG_WRITE) {
2969
		if (!huge_pte_write(entry)) {
2970 2971
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2972 2973
			goto out_page_table_lock;
		}
2974
		entry = huge_pte_mkdirty(entry);
2975 2976
	}
	entry = pte_mkyoung(entry);
2977 2978
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2979
		update_mmu_cache(vma, address, ptep);
2980 2981

out_page_table_lock:
2982
	spin_unlock(&mm->page_table_lock);
2983 2984 2985 2986 2987

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2988 2989
	if (page != pagecache_page)
		unlock_page(page);
2990
	put_page(page);
2991

2992
out_mutex:
2993
	mutex_unlock(&hugetlb_instantiation_mutex);
2994 2995

	return ret;
2996 2997
}

2998 2999 3000 3001
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3002
{
3003 3004
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3005
	unsigned long remainder = *nr_pages;
3006
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3007

3008
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
3009
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3010
		pte_t *pte;
H
Hugh Dickins 已提交
3011
		int absent;
A
Adam Litke 已提交
3012
		struct page *page;
D
David Gibson 已提交
3013

A
Adam Litke 已提交
3014 3015
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3016
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3017 3018
		 * first, for the page indexing below to work.
		 */
3019
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
3020 3021 3022 3023
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3024 3025 3026 3027
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3028
		 */
H
Hugh Dickins 已提交
3029 3030
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
3031 3032 3033
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3034

3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3046 3047
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3048
			int ret;
D
David Gibson 已提交
3049

A
Adam Litke 已提交
3050
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
3051 3052
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
3053
			spin_lock(&mm->page_table_lock);
3054
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3055
				continue;
D
David Gibson 已提交
3056

A
Adam Litke 已提交
3057 3058 3059 3060
			remainder = 0;
			break;
		}

3061
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3062
		page = pte_page(huge_ptep_get(pte));
3063
same_page:
3064
		if (pages) {
H
Hugh Dickins 已提交
3065
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
3066
			get_page(pages[i]);
3067
		}
D
David Gibson 已提交
3068 3069 3070 3071 3072

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3073
		++pfn_offset;
D
David Gibson 已提交
3074 3075
		--remainder;
		++i;
3076
		if (vaddr < vma->vm_end && remainder &&
3077
				pfn_offset < pages_per_huge_page(h)) {
3078 3079 3080 3081 3082 3083
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3084
	}
3085
	spin_unlock(&mm->page_table_lock);
3086
	*nr_pages = remainder;
D
David Gibson 已提交
3087 3088
	*position = vaddr;

H
Hugh Dickins 已提交
3089
	return i ? i : -EFAULT;
D
David Gibson 已提交
3090
}
3091

3092
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3093 3094 3095 3096 3097 3098
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3099
	struct hstate *h = hstate_vma(vma);
3100
	unsigned long pages = 0;
3101 3102 3103 3104

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3105
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3106
	spin_lock(&mm->page_table_lock);
3107
	for (; address < end; address += huge_page_size(h)) {
3108 3109 3110
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3111 3112
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3113
			continue;
3114
		}
3115
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3116
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3117
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3118
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3119
			set_huge_pte_at(mm, address, ptep, pte);
3120
			pages++;
3121 3122 3123
		}
	}
	spin_unlock(&mm->page_table_lock);
3124 3125 3126 3127 3128 3129
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3130
	flush_tlb_range(vma, start, end);
3131
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3132 3133

	return pages << h->order;
3134 3135
}

3136 3137
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3138
					struct vm_area_struct *vma,
3139
					vm_flags_t vm_flags)
3140
{
3141
	long ret, chg;
3142
	struct hstate *h = hstate_inode(inode);
3143
	struct hugepage_subpool *spool = subpool_inode(inode);
3144

3145 3146 3147
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3148
	 * without using reserves
3149
	 */
3150
	if (vm_flags & VM_NORESERVE)
3151 3152
		return 0;

3153 3154 3155 3156 3157 3158
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3159
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3160
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3161 3162 3163 3164 3165
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3166
		chg = to - from;
3167

3168 3169 3170 3171
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3172 3173 3174 3175
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3176

3177
	/* There must be enough pages in the subpool for the mapping */
3178 3179 3180 3181
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3182 3183

	/*
3184
	 * Check enough hugepages are available for the reservation.
3185
	 * Hand the pages back to the subpool if there are not
3186
	 */
3187
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3188
	if (ret < 0) {
3189
		hugepage_subpool_put_pages(spool, chg);
3190
		goto out_err;
K
Ken Chen 已提交
3191
	}
3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3204
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3205
		region_add(&inode->i_mapping->private_list, from, to);
3206
	return 0;
3207
out_err:
3208 3209
	if (vma)
		resv_map_put(vma);
3210
	return ret;
3211 3212 3213 3214
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3215
	struct hstate *h = hstate_inode(inode);
3216
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3217
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3218 3219

	spin_lock(&inode->i_lock);
3220
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3221 3222
	spin_unlock(&inode->i_lock);

3223
	hugepage_subpool_put_pages(spool, (chg - freed));
3224
	hugetlb_acct_memory(h, -(chg - freed));
3225
}
3226

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3347 3348 3349 3350 3351 3352 3353
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3354 3355
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3437 3438
#ifdef CONFIG_MEMORY_FAILURE

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3453 3454 3455 3456
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3457
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3458 3459 3460
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3461
	int ret = -EBUSY;
3462 3463

	spin_lock(&hugetlb_lock);
3464
	if (is_hugepage_on_freelist(hpage)) {
3465 3466 3467 3468 3469 3470 3471
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3472
		set_page_refcounted(hpage);
3473 3474 3475 3476
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3477
	spin_unlock(&hugetlb_lock);
3478
	return ret;
3479
}
3480
#endif
3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	VM_BUG_ON(!PageHead(page));
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON(!PageHead(page));
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

bool is_hugepage_active(struct page *page)
{
	VM_BUG_ON(!PageHuge(page));
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}