hugetlb.c 92.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137
 *
138 139
 * The region data structures are embedded into a resv_map and
 * protected by a resv_map's lock
140 141 142 143 144 145 146
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

147
static long region_add(struct resv_map *resv, long f, long t)
148
{
149
	struct list_head *head = &resv->regions;
150 151
	struct file_region *rg, *nrg, *trg;

152
	spin_lock(&resv->lock);
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
182
	spin_unlock(&resv->lock);
183 184 185
	return 0;
}

186
static long region_chg(struct resv_map *resv, long f, long t)
187
{
188
	struct list_head *head = &resv->regions;
189
	struct file_region *rg, *nrg = NULL;
190 191
	long chg = 0;

192 193
retry:
	spin_lock(&resv->lock);
194 195 196 197 198 199 200 201 202
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
203 204 205 206 207 208 209 210 211 212 213
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
214

215 216 217
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
218 219 220 221 222 223 224 225 226 227 228 229
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
230
			goto out;
231

L
Lucas De Marchi 已提交
232
		/* We overlap with this area, if it extends further than
233 234 235 236 237 238 239 240
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
241 242 243 244 245 246 247 248

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
249 250 251
	return chg;
}

252
static long region_truncate(struct resv_map *resv, long end)
253
{
254
	struct list_head *head = &resv->regions;
255 256 257
	struct file_region *rg, *trg;
	long chg = 0;

258
	spin_lock(&resv->lock);
259 260 261 262 263
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
264
		goto out;
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
281 282 283

out:
	spin_unlock(&resv->lock);
284 285 286
	return chg;
}

287
static long region_count(struct resv_map *resv, long f, long t)
288
{
289
	struct list_head *head = &resv->regions;
290 291 292
	struct file_region *rg;
	long chg = 0;

293
	spin_lock(&resv->lock);
294 295
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
296 297
		long seg_from;
		long seg_to;
298 299 300 301 302 303 304 305 306 307 308

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
309
	spin_unlock(&resv->lock);
310 311 312 313

	return chg;
}

314 315 316 317
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
318 319
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
320
{
321 322
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
323 324
}

325 326 327 328 329 330
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

344
	return 1UL << huge_page_shift(hstate);
345
}
346
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
347

348 349 350 351 352 353 354 355 356 357 358 359 360
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

361 362 363 364 365 366 367
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
368
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
369

370 371 372 373 374 375 376 377 378
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
379 380 381 382 383 384 385 386 387
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
388
 */
389 390 391 392 393 394 395 396 397 398 399
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

400
struct resv_map *resv_map_alloc(void)
401 402 403 404 405 406
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
407
	spin_lock_init(&resv_map->lock);
408 409 410 411 412
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

413
void resv_map_release(struct kref *ref)
414 415 416 417
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
418
	region_truncate(resv_map, 0);
419 420 421
	kfree(resv_map);
}

422 423 424 425 426
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

427
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
428 429
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
430 431 432 433 434 435 436
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
437 438
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
439
	}
440 441
}

442
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
443 444
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
445
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
446

447 448
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
449 450 451 452 453
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
454
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455 456

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
457 458 459 460 461
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
462 463

	return (get_vma_private_data(vma) & flag) != 0;
464 465
}

466
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
467 468 469
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
470
	if (!(vma->vm_flags & VM_MAYSHARE))
471 472 473 474
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
475
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
476
{
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
492 493

	/* Shared mappings always use reserves */
494
	if (vma->vm_flags & VM_MAYSHARE)
495
		return 1;
496 497 498 499 500

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
501 502
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
503

504
	return 0;
505 506
}

507
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
508 509
{
	int nid = page_to_nid(page);
510
	list_move(&page->lru, &h->hugepage_freelists[nid]);
511 512
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
513 514
}

515 516 517 518
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

519 520 521 522 523 524 525 526
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
527
		return NULL;
528
	list_move(&page->lru, &h->hugepage_activelist);
529
	set_page_refcounted(page);
530 531 532 533 534
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

535 536 537 538 539 540 541 542 543
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

544 545
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
546 547
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
548
{
549
	struct page *page = NULL;
550
	struct mempolicy *mpol;
551
	nodemask_t *nodemask;
552
	struct zonelist *zonelist;
553 554
	struct zone *zone;
	struct zoneref *z;
555
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
556

557 558 559 560 561
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
562
	if (!vma_has_reserves(vma, chg) &&
563
			h->free_huge_pages - h->resv_huge_pages == 0)
564
		goto err;
565

566
	/* If reserves cannot be used, ensure enough pages are in the pool */
567
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
568
		goto err;
569

570
retry_cpuset:
571
	cpuset_mems_cookie = read_mems_allowed_begin();
572
	zonelist = huge_zonelist(vma, address,
573
					htlb_alloc_mask(h), &mpol, &nodemask);
574

575 576
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
577
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
578 579
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
580 581 582 583 584
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

585
				SetPagePrivate(page);
586
				h->resv_huge_pages--;
587 588
				break;
			}
A
Andrew Morton 已提交
589
		}
L
Linus Torvalds 已提交
590
	}
591

592
	mpol_cond_put(mpol);
593
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
594
		goto retry_cpuset;
L
Linus Torvalds 已提交
595
	return page;
596 597 598

err:
	return NULL;
L
Linus Torvalds 已提交
599 600
}

601
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
602 603
{
	int i;
604

605 606
	VM_BUG_ON(h->order >= MAX_ORDER);

607 608 609
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
610 611 612 613
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
614
	}
615
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
616 617
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
618
	arch_release_hugepage(page);
619
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
620 621
}

622 623 624 625 626 627 628 629 630 631 632
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

633 634
static void free_huge_page(struct page *page)
{
635 636 637 638
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
639
	struct hstate *h = page_hstate(page);
640
	int nid = page_to_nid(page);
641 642
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
643
	bool restore_reserve;
644

645
	set_page_private(page, 0);
646
	page->mapping = NULL;
647
	BUG_ON(page_count(page));
648
	BUG_ON(page_mapcount(page));
649
	restore_reserve = PagePrivate(page);
650
	ClearPagePrivate(page);
651 652

	spin_lock(&hugetlb_lock);
653 654
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
655 656 657
	if (restore_reserve)
		h->resv_huge_pages++;

658
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
659 660
		/* remove the page from active list */
		list_del(&page->lru);
661 662 663
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
664
	} else {
665
		arch_clear_hugepage_flags(page);
666
		enqueue_huge_page(h, page);
667
	}
668
	spin_unlock(&hugetlb_lock);
669
	hugepage_subpool_put_pages(spool, 1);
670 671
}

672
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
673
{
674
	INIT_LIST_HEAD(&page->lru);
675 676
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
677
	set_hugetlb_cgroup(page, NULL);
678 679
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
680 681 682 683
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

684 685 686 687 688 689 690 691 692
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
693
	__ClearPageReserved(page);
694 695
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
696 697 698 699 700 701 702 703 704 705 706 707 708
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
709
		set_page_count(p, 0);
710 711 712 713
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
714 715 716 717 718
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
719 720 721 722 723 724
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
725
	return get_compound_page_dtor(page) == free_huge_page;
726
}
727 728
EXPORT_SYMBOL_GPL(PageHuge);

729 730 731 732 733 734 735 736 737
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

738
	return get_compound_page_dtor(page_head) == free_huge_page;
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

758
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
759 760
{
	struct page *page;
761

762 763 764
	if (h->order >= MAX_ORDER)
		return NULL;

765
	page = alloc_pages_exact_node(nid,
766
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
767
						__GFP_REPEAT|__GFP_NOWARN,
768
		huge_page_order(h));
L
Linus Torvalds 已提交
769
	if (page) {
770
		if (arch_prepare_hugepage(page)) {
771
			__free_pages(page, huge_page_order(h));
772
			return NULL;
773
		}
774
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
775
	}
776 777 778 779

	return page;
}

780
/*
781 782 783 784 785
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
786
 */
787
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
788
{
789
	nid = next_node(nid, *nodes_allowed);
790
	if (nid == MAX_NUMNODES)
791
		nid = first_node(*nodes_allowed);
792 793 794 795 796
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

797 798 799 800 801 802 803
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

804
/*
805 806 807 808
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
809
 */
810 811
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
812
{
813 814 815 816 817 818
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
819 820

	return nid;
821 822
}

823
/*
824 825 826 827
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
828
 */
829
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
830
{
831 832 833 834 835 836
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
837 838

	return nid;
839 840
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

875 876 877 878 879 880
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
881 882
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
883
{
884
	int nr_nodes, node;
885 886
	int ret = 0;

887
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
888 889 890 891
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
892 893
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
894
			struct page *page =
895
				list_entry(h->hugepage_freelists[node].next,
896 897 898
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
899
			h->free_huge_pages_node[node]--;
900 901
			if (acct_surplus) {
				h->surplus_huge_pages--;
902
				h->surplus_huge_pages_node[node]--;
903
			}
904 905
			update_and_free_page(h, page);
			ret = 1;
906
			break;
907
		}
908
	}
909 910 911 912

	return ret;
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

951
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
952 953
{
	struct page *page;
954
	unsigned int r_nid;
955

956 957 958
	if (h->order >= MAX_ORDER)
		return NULL;

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
983
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
984 985 986
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
987 988
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
989 990 991
	}
	spin_unlock(&hugetlb_lock);

992
	if (nid == NUMA_NO_NODE)
993
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
994 995 996 997
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
998
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
999
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1000

1001 1002
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1003
		page = NULL;
1004 1005
	}

1006
	spin_lock(&hugetlb_lock);
1007
	if (page) {
1008
		INIT_LIST_HEAD(&page->lru);
1009
		r_nid = page_to_nid(page);
1010
		set_compound_page_dtor(page, free_huge_page);
1011
		set_hugetlb_cgroup(page, NULL);
1012 1013 1014
		/*
		 * We incremented the global counters already
		 */
1015 1016
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1017
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1018
	} else {
1019 1020
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1021
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1022
	}
1023
	spin_unlock(&hugetlb_lock);
1024 1025 1026 1027

	return page;
}

1028 1029 1030 1031 1032 1033 1034
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1035
	struct page *page = NULL;
1036 1037

	spin_lock(&hugetlb_lock);
1038 1039
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1040 1041
	spin_unlock(&hugetlb_lock);

1042
	if (!page)
1043 1044 1045 1046 1047
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1048
/*
L
Lucas De Marchi 已提交
1049
 * Increase the hugetlb pool such that it can accommodate a reservation
1050 1051
 * of size 'delta'.
 */
1052
static int gather_surplus_pages(struct hstate *h, int delta)
1053 1054 1055 1056 1057
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1058
	bool alloc_ok = true;
1059

1060
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1061
	if (needed <= 0) {
1062
		h->resv_huge_pages += delta;
1063
		return 0;
1064
	}
1065 1066 1067 1068 1069 1070 1071 1072

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1073
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1074 1075 1076 1077
		if (!page) {
			alloc_ok = false;
			break;
		}
1078 1079
		list_add(&page->lru, &surplus_list);
	}
1080
	allocated += i;
1081 1082 1083 1084 1085 1086

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1087 1088
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1099 1100
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1101
	 * needed to accommodate the reservation.  Add the appropriate number
1102
	 * of pages to the hugetlb pool and free the extras back to the buddy
1103 1104 1105
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1106 1107
	 */
	needed += allocated;
1108
	h->resv_huge_pages += delta;
1109
	ret = 0;
1110

1111
	/* Free the needed pages to the hugetlb pool */
1112
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1113 1114
		if ((--needed) < 0)
			break;
1115 1116 1117 1118 1119
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1120
		VM_BUG_ON_PAGE(page_count(page), page);
1121
		enqueue_huge_page(h, page);
1122
	}
1123
free:
1124
	spin_unlock(&hugetlb_lock);
1125 1126

	/* Free unnecessary surplus pages to the buddy allocator */
1127 1128
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1129
	spin_lock(&hugetlb_lock);
1130 1131 1132 1133 1134 1135 1136 1137

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1138
 * Called with hugetlb_lock held.
1139
 */
1140 1141
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1142 1143 1144
{
	unsigned long nr_pages;

1145
	/* Uncommit the reservation */
1146
	h->resv_huge_pages -= unused_resv_pages;
1147

1148 1149 1150 1151
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1152
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1153

1154 1155
	/*
	 * We want to release as many surplus pages as possible, spread
1156 1157 1158 1159 1160
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1161 1162
	 */
	while (nr_pages--) {
1163
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1164
			break;
1165 1166 1167
	}
}

1168 1169 1170
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1171 1172 1173 1174 1175 1176
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1177
 */
1178
static long vma_needs_reservation(struct hstate *h,
1179
			struct vm_area_struct *vma, unsigned long addr)
1180
{
1181 1182 1183
	struct resv_map *resv;
	pgoff_t idx;
	long chg;
1184

1185 1186
	resv = vma_resv_map(vma);
	if (!resv)
1187
		return 1;
1188

1189 1190
	idx = vma_hugecache_offset(h, vma, addr);
	chg = region_chg(resv, idx, idx + 1);
1191

1192 1193 1194 1195
	if (vma->vm_flags & VM_MAYSHARE)
		return chg;
	else
		return chg < 0 ? chg : 0;
1196
}
1197 1198
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1199
{
1200 1201
	struct resv_map *resv;
	pgoff_t idx;
1202

1203 1204 1205
	resv = vma_resv_map(vma);
	if (!resv)
		return;
1206

1207 1208
	idx = vma_hugecache_offset(h, vma, addr);
	region_add(resv, idx, idx + 1);
1209 1210
}

1211
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1212
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1213
{
1214
	struct hugepage_subpool *spool = subpool_vma(vma);
1215
	struct hstate *h = hstate_vma(vma);
1216
	struct page *page;
1217
	long chg;
1218 1219
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1220

1221
	idx = hstate_index(h);
1222
	/*
1223 1224 1225 1226 1227 1228
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1229
	 */
1230
	chg = vma_needs_reservation(h, vma, addr);
1231
	if (chg < 0)
1232
		return ERR_PTR(-ENOMEM);
1233 1234
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1235
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1236

1237 1238
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1239 1240
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1241 1242
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1243
	spin_lock(&hugetlb_lock);
1244
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1245
	if (!page) {
1246
		spin_unlock(&hugetlb_lock);
1247
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1248
		if (!page) {
1249 1250 1251
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1252 1253
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1254
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1255
		}
1256 1257
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1258
		/* Fall through */
K
Ken Chen 已提交
1259
	}
1260 1261
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1262

1263
	set_page_private(page, (unsigned long)spool);
1264

1265
	vma_commit_reservation(h, vma, addr);
1266
	return page;
1267 1268
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1283
int __weak alloc_bootmem_huge_page(struct hstate *h)
1284 1285
{
	struct huge_bootmem_page *m;
1286
	int nr_nodes, node;
1287

1288
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1289 1290
		void *addr;

1291 1292 1293
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1294 1295 1296 1297 1298 1299 1300
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1301
			goto found;
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1314 1315 1316 1317 1318 1319 1320 1321
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1322 1323 1324 1325 1326 1327 1328
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1329 1330 1331 1332
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1333 1334
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1335 1336 1337
#else
		page = virt_to_page(m);
#endif
1338
		WARN_ON(page_count(page) != 1);
1339
		prep_compound_huge_page(page, h->order);
1340
		WARN_ON(PageReserved(page));
1341
		prep_new_huge_page(h, page, page_to_nid(page));
1342 1343 1344 1345 1346 1347 1348
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1349
			adjust_managed_page_count(page, 1 << h->order);
1350 1351 1352
	}
}

1353
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1354 1355
{
	unsigned long i;
1356

1357
	for (i = 0; i < h->max_huge_pages; ++i) {
1358 1359 1360
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1361
		} else if (!alloc_fresh_huge_page(h,
1362
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1363 1364
			break;
	}
1365
	h->max_huge_pages = i;
1366 1367 1368 1369 1370 1371 1372
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1373 1374 1375
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1376 1377 1378
	}
}

A
Andi Kleen 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1390 1391 1392 1393 1394
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1395
		char buf[32];
1396
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1397 1398
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1399 1400 1401
	}
}

L
Linus Torvalds 已提交
1402
#ifdef CONFIG_HIGHMEM
1403 1404
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1405
{
1406 1407
	int i;

1408 1409 1410
	if (h->order >= MAX_ORDER)
		return;

1411
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1412
		struct page *page, *next;
1413 1414 1415
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1416
				return;
L
Linus Torvalds 已提交
1417 1418 1419
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1420
			update_and_free_page(h, page);
1421 1422
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1423 1424 1425 1426
		}
	}
}
#else
1427 1428
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1429 1430 1431 1432
{
}
#endif

1433 1434 1435 1436 1437
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1438 1439
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1440
{
1441
	int nr_nodes, node;
1442 1443 1444

	VM_BUG_ON(delta != -1 && delta != 1);

1445 1446 1447 1448
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1449
		}
1450 1451 1452 1453 1454
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1455
		}
1456 1457
	}
	return 0;
1458

1459 1460 1461 1462
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1463 1464
}

1465
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1466 1467
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1468
{
1469
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1470

1471 1472 1473
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1474 1475 1476 1477
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1478 1479 1480 1481 1482 1483
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1484
	 */
L
Linus Torvalds 已提交
1485
	spin_lock(&hugetlb_lock);
1486
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1487
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1488 1489 1490
			break;
	}

1491
	while (count > persistent_huge_pages(h)) {
1492 1493 1494 1495 1496 1497
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1498
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1499 1500 1501 1502
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1503 1504 1505
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1506 1507 1508 1509 1510 1511 1512 1513
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1514 1515 1516 1517 1518 1519 1520 1521
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1522
	 */
1523
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1524
	min_count = max(count, min_count);
1525
	try_to_free_low(h, min_count, nodes_allowed);
1526
	while (min_count < persistent_huge_pages(h)) {
1527
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1528 1529
			break;
	}
1530
	while (count < persistent_huge_pages(h)) {
1531
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1532 1533 1534
			break;
	}
out:
1535
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1536
	spin_unlock(&hugetlb_lock);
1537
	return ret;
L
Linus Torvalds 已提交
1538 1539
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1550 1551 1552
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1553 1554
{
	int i;
1555

1556
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1557 1558 1559
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1560
			return &hstates[i];
1561 1562 1563
		}

	return kobj_to_node_hstate(kobj, nidp);
1564 1565
}

1566
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1567 1568
					struct kobj_attribute *attr, char *buf)
{
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1580
}
1581

1582 1583 1584
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1585 1586
{
	int err;
1587
	int nid;
1588
	unsigned long count;
1589
	struct hstate *h;
1590
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1591

1592
	err = kstrtoul(buf, 10, &count);
1593
	if (err)
1594
		goto out;
1595

1596
	h = kobj_to_hstate(kobj, &nid);
1597 1598 1599 1600 1601
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1602 1603 1604 1605 1606 1607 1608
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1609
			nodes_allowed = &node_states[N_MEMORY];
1610 1611 1612 1613 1614 1615 1616 1617 1618
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1619
		nodes_allowed = &node_states[N_MEMORY];
1620

1621
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1622

1623
	if (nodes_allowed != &node_states[N_MEMORY])
1624 1625 1626
		NODEMASK_FREE(nodes_allowed);

	return len;
1627 1628 1629
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1642 1643 1644
}
HSTATE_ATTR(nr_hugepages);

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1666 1667 1668
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1669
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1670 1671
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1672

1673 1674 1675 1676 1677
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1678
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1679

1680 1681 1682
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1683
	err = kstrtoul(buf, 10, &input);
1684
	if (err)
1685
		return err;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1709 1710 1711 1712 1713 1714
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1715
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1716 1717 1718 1719 1720 1721 1722
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1734 1735 1736 1737 1738 1739 1740 1741 1742
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1743 1744 1745
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1746 1747 1748 1749 1750 1751 1752
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1753 1754 1755
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1756 1757
{
	int retval;
1758
	int hi = hstate_index(h);
1759

1760 1761
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1762 1763
		return -ENOMEM;

1764
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1765
	if (retval)
1766
		kobject_put(hstate_kobjs[hi]);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1781 1782
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1783
		if (err)
1784
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1785 1786 1787
	}
}

1788 1789 1790 1791
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1792 1793 1794
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1795 1796 1797 1798 1799 1800 1801 1802 1803
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1804
 * A subset of global hstate attributes for node devices
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1818
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1841
 * Unregister hstate attributes from a single node device.
1842 1843
 * No-op if no hstate attributes attached.
 */
1844
static void hugetlb_unregister_node(struct node *node)
1845 1846
{
	struct hstate *h;
1847
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1848 1849

	if (!nhs->hugepages_kobj)
1850
		return;		/* no hstate attributes */
1851

1852 1853 1854 1855 1856
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1857
		}
1858
	}
1859 1860 1861 1862 1863 1864

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1865
 * hugetlb module exit:  unregister hstate attributes from node devices
1866 1867 1868 1869 1870 1871 1872
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1873
	 * disable node device registrations.
1874 1875 1876 1877 1878 1879 1880
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1881
		hugetlb_unregister_node(node_devices[nid]);
1882 1883 1884
}

/*
1885
 * Register hstate attributes for a single node device.
1886 1887
 * No-op if attributes already registered.
 */
1888
static void hugetlb_register_node(struct node *node)
1889 1890
{
	struct hstate *h;
1891
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1892 1893 1894 1895 1896 1897
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1898
							&node->dev.kobj);
1899 1900 1901 1902 1903 1904 1905 1906
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1907 1908
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1909 1910 1911 1912 1913 1914 1915
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1916
 * hugetlb init time:  register hstate attributes for all registered node
1917 1918
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1919 1920 1921 1922 1923
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1924
	for_each_node_state(nid, N_MEMORY) {
1925
		struct node *node = node_devices[nid];
1926
		if (node->dev.id == nid)
1927 1928 1929 1930
			hugetlb_register_node(node);
	}

	/*
1931
	 * Let the node device driver know we're here so it can
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1953 1954 1955 1956
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1957 1958
	hugetlb_unregister_all_nodes();

1959
	for_each_hstate(h) {
1960
		kobject_put(hstate_kobjs[hstate_index(h)]);
1961 1962 1963 1964 1965 1966 1967 1968
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1969 1970 1971 1972 1973 1974
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1975

1976 1977 1978 1979
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1980
	}
1981
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1982 1983
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1984 1985

	hugetlb_init_hstates();
1986
	gather_bootmem_prealloc();
1987 1988 1989
	report_hugepages();

	hugetlb_sysfs_init();
1990
	hugetlb_register_all_nodes();
1991
	hugetlb_cgroup_file_init();
1992

1993 1994 1995 1996 1997 1998 1999 2000
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2001 2002
	unsigned long i;

2003
	if (size_to_hstate(PAGE_SIZE << order)) {
2004
		pr_warning("hugepagesz= specified twice, ignoring\n");
2005 2006
		return;
	}
2007
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2008
	BUG_ON(order == 0);
2009
	h = &hstates[hugetlb_max_hstate++];
2010 2011
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2012 2013 2014 2015
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2016
	INIT_LIST_HEAD(&h->hugepage_activelist);
2017 2018
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2019 2020
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2021

2022 2023 2024
	parsed_hstate = h;
}

2025
static int __init hugetlb_nrpages_setup(char *s)
2026 2027
{
	unsigned long *mhp;
2028
	static unsigned long *last_mhp;
2029 2030

	/*
2031
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2032 2033
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2034
	if (!hugetlb_max_hstate)
2035 2036 2037 2038
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2039
	if (mhp == last_mhp) {
2040 2041
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2042 2043 2044
		return 1;
	}

2045 2046 2047
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2048 2049 2050 2051 2052
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2053
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2054 2055 2056 2057
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2058 2059
	return 1;
}
2060 2061 2062 2063 2064 2065 2066 2067
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2068

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2081 2082 2083
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2084
{
2085 2086
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2087
	int ret;
2088

2089
	tmp = h->max_huge_pages;
2090

2091 2092 2093
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2094 2095
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2096 2097 2098
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2099

2100
	if (write) {
2101 2102
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2103 2104 2105
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2106
			nodes_allowed = &node_states[N_MEMORY];
2107 2108 2109
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2110
		if (nodes_allowed != &node_states[N_MEMORY])
2111 2112
			NODEMASK_FREE(nodes_allowed);
	}
2113 2114
out:
	return ret;
L
Linus Torvalds 已提交
2115
}
2116

2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2134
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2135
			void __user *buffer,
2136 2137
			size_t *length, loff_t *ppos)
{
2138
	struct hstate *h = &default_hstate;
2139
	unsigned long tmp;
2140
	int ret;
2141

2142
	tmp = h->nr_overcommit_huge_pages;
2143

2144 2145 2146
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2147 2148
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2149 2150 2151
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2152 2153 2154 2155 2156 2157

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2158 2159
out:
	return ret;
2160 2161
}

L
Linus Torvalds 已提交
2162 2163
#endif /* CONFIG_SYSCTL */

2164
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2165
{
2166
	struct hstate *h = &default_hstate;
2167
	seq_printf(m,
2168 2169 2170 2171 2172
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2173 2174 2175 2176 2177
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2178 2179 2180 2181
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2182
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2183 2184
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2185 2186
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2187 2188 2189
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2190 2191
}

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2207 2208 2209
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2210 2211 2212 2213 2214 2215
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2216 2217
}

2218
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2241
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2242 2243
			goto out;

2244 2245
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2246 2247 2248 2249 2250 2251
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2252
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2253 2254 2255 2256 2257 2258

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2259 2260
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2261
	struct resv_map *resv = vma_resv_map(vma);
2262 2263 2264 2265 2266

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2267
	 * has a reference to the reservation map it cannot disappear until
2268 2269 2270
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2271
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2272
		kref_get(&resv->refs);
2273 2274
}

2275 2276
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2277
	struct hstate *h = hstate_vma(vma);
2278
	struct resv_map *resv = vma_resv_map(vma);
2279
	struct hugepage_subpool *spool = subpool_vma(vma);
2280
	unsigned long reserve, start, end;
2281

2282 2283
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2284

2285 2286
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2287

2288
	reserve = (end - start) - region_count(resv, start, end);
2289

2290 2291 2292 2293 2294
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
		hugetlb_acct_memory(h, -reserve);
		hugepage_subpool_put_pages(spool, reserve);
2295
	}
2296 2297
}

L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2304
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2305 2306
{
	BUG();
N
Nick Piggin 已提交
2307
	return 0;
L
Linus Torvalds 已提交
2308 2309
}

2310
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2311
	.fault = hugetlb_vm_op_fault,
2312
	.open = hugetlb_vm_op_open,
2313
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2314 2315
};

2316 2317
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2318 2319 2320
{
	pte_t entry;

2321
	if (writable) {
2322 2323
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2324
	} else {
2325 2326
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2327 2328 2329
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2330
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2331 2332 2333 2334

	return entry;
}

2335 2336 2337 2338 2339
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2340
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2341
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2342
		update_mmu_cache(vma, address, ptep);
2343 2344 2345
}


D
David Gibson 已提交
2346 2347 2348 2349 2350
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2351
	unsigned long addr;
2352
	int cow;
2353 2354
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2355 2356 2357
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2358 2359

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2360

2361 2362 2363 2364 2365
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2366
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2367
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2368 2369 2370
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2371
		dst_pte = huge_pte_alloc(dst, addr, sz);
2372 2373 2374 2375
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2376 2377 2378 2379 2380

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2381 2382 2383
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2384
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2385
			if (cow)
2386 2387
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2388 2389
			ptepage = pte_page(entry);
			get_page(ptepage);
2390
			page_dup_rmap(ptepage);
2391 2392
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2393 2394
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2395 2396
	}

2397 2398 2399 2400
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2401 2402
}

N
Naoya Horiguchi 已提交
2403 2404 2405 2406 2407 2408 2409
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2410
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2411
		return 1;
2412
	else
N
Naoya Horiguchi 已提交
2413 2414 2415
		return 0;
}

2416 2417 2418 2419 2420 2421 2422
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2423
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2424
		return 1;
2425
	else
2426 2427 2428
		return 0;
}

2429 2430 2431
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2432
{
2433
	int force_flush = 0;
D
David Gibson 已提交
2434 2435
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2436
	pte_t *ptep;
D
David Gibson 已提交
2437
	pte_t pte;
2438
	spinlock_t *ptl;
D
David Gibson 已提交
2439
	struct page *page;
2440 2441
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2442 2443
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2444

D
David Gibson 已提交
2445
	WARN_ON(!is_vm_hugetlb_page(vma));
2446 2447
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2448

2449
	tlb_start_vma(tlb, vma);
2450
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2451
again:
2452
	for (address = start; address < end; address += sz) {
2453
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2454
		if (!ptep)
2455 2456
			continue;

2457
		ptl = huge_pte_lock(h, mm, ptep);
2458
		if (huge_pmd_unshare(mm, &address, ptep))
2459
			goto unlock;
2460

2461 2462
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2463
			goto unlock;
2464 2465 2466 2467

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2468
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2469
			huge_pte_clear(mm, address, ptep);
2470
			goto unlock;
2471
		}
2472 2473

		page = pte_page(pte);
2474 2475 2476 2477 2478 2479 2480
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2481
				goto unlock;
2482 2483 2484 2485 2486 2487 2488 2489 2490

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2491
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2492
		tlb_remove_tlb_entry(tlb, ptep, address);
2493
		if (huge_pte_dirty(pte))
2494
			set_page_dirty(page);
2495

2496 2497
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2498 2499
		if (force_flush) {
			spin_unlock(ptl);
2500
			break;
2501
		}
2502
		/* Bail out after unmapping reference page if supplied */
2503 2504
		if (ref_page) {
			spin_unlock(ptl);
2505
			break;
2506 2507 2508
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2509
	}
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2520
	}
2521
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2522
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2523
}
D
David Gibson 已提交
2524

2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2544
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2545
			  unsigned long end, struct page *ref_page)
2546
{
2547 2548 2549 2550 2551
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2552
	tlb_gather_mmu(&tlb, mm, start, end);
2553 2554
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2555 2556
}

2557 2558 2559 2560 2561 2562
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2563 2564
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2565
{
2566
	struct hstate *h = hstate_vma(vma);
2567 2568 2569 2570 2571 2572 2573 2574
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2575
	address = address & huge_page_mask(h);
2576 2577
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2578
	mapping = file_inode(vma->vm_file)->i_mapping;
2579

2580 2581 2582 2583 2584
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2585
	mutex_lock(&mapping->i_mmap_mutex);
2586
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2599 2600
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2601
	}
2602
	mutex_unlock(&mapping->i_mmap_mutex);
2603 2604 2605 2606

	return 1;
}

2607 2608
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2609 2610 2611
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2612
 */
2613
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2614
			unsigned long address, pte_t *ptep, pte_t pte,
2615
			struct page *pagecache_page, spinlock_t *ptl)
2616
{
2617
	struct hstate *h = hstate_vma(vma);
2618
	struct page *old_page, *new_page;
2619
	int outside_reserve = 0;
2620 2621
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2622 2623 2624

	old_page = pte_page(pte);

2625
retry_avoidcopy:
2626 2627
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2628 2629
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2630
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2631
		return 0;
2632 2633
	}

2634 2635 2636 2637 2638 2639 2640 2641 2642
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2643
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2644 2645 2646
			old_page != pagecache_page)
		outside_reserve = 1;

2647
	page_cache_get(old_page);
2648

2649 2650
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2651
	new_page = alloc_huge_page(vma, address, outside_reserve);
2652

2653
	if (IS_ERR(new_page)) {
2654
		long err = PTR_ERR(new_page);
2655
		page_cache_release(old_page);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2668
				spin_lock(ptl);
2669 2670 2671 2672
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
2673 2674
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2675 2676
				 */
				return 0;
2677 2678 2679 2680
			}
			WARN_ON_ONCE(1);
		}

2681
		/* Caller expects lock to be held */
2682
		spin_lock(ptl);
2683 2684 2685 2686
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2687 2688
	}

2689 2690 2691 2692
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2693
	if (unlikely(anon_vma_prepare(vma))) {
2694 2695
		page_cache_release(new_page);
		page_cache_release(old_page);
2696
		/* Caller expects lock to be held */
2697
		spin_lock(ptl);
2698
		return VM_FAULT_OOM;
2699
	}
2700

A
Andrea Arcangeli 已提交
2701 2702
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2703
	__SetPageUptodate(new_page);
2704

2705 2706 2707
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2708
	/*
2709
	 * Retake the page table lock to check for racing updates
2710 2711
	 * before the page tables are altered
	 */
2712
	spin_lock(ptl);
2713
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2714
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2715 2716
		ClearPagePrivate(new_page);

2717
		/* Break COW */
2718
		huge_ptep_clear_flush(vma, address, ptep);
2719 2720
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2721
		page_remove_rmap(old_page);
2722
		hugepage_add_new_anon_rmap(new_page, vma, address);
2723 2724 2725
		/* Make the old page be freed below */
		new_page = old_page;
	}
2726
	spin_unlock(ptl);
2727
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2728 2729
	page_cache_release(new_page);
	page_cache_release(old_page);
2730 2731

	/* Caller expects lock to be held */
2732
	spin_lock(ptl);
N
Nick Piggin 已提交
2733
	return 0;
2734 2735
}

2736
/* Return the pagecache page at a given address within a VMA */
2737 2738
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2739 2740
{
	struct address_space *mapping;
2741
	pgoff_t idx;
2742 2743

	mapping = vma->vm_file->f_mapping;
2744
	idx = vma_hugecache_offset(h, vma, address);
2745 2746 2747 2748

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2749 2750 2751 2752 2753
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2769
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2770
			unsigned long address, pte_t *ptep, unsigned int flags)
2771
{
2772
	struct hstate *h = hstate_vma(vma);
2773
	int ret = VM_FAULT_SIGBUS;
2774
	int anon_rmap = 0;
2775
	pgoff_t idx;
A
Adam Litke 已提交
2776 2777 2778
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2779
	pte_t new_pte;
2780
	spinlock_t *ptl;
A
Adam Litke 已提交
2781

2782 2783 2784
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2785
	 * COW. Warn that such a situation has occurred as it may not be obvious
2786 2787
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2788 2789
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2790 2791 2792
		return ret;
	}

A
Adam Litke 已提交
2793
	mapping = vma->vm_file->f_mapping;
2794
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2795 2796 2797 2798 2799

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2800 2801 2802
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2803
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2804 2805
		if (idx >= size)
			goto out;
2806
		page = alloc_huge_page(vma, address, 0);
2807
		if (IS_ERR(page)) {
2808 2809 2810 2811 2812
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2813 2814
			goto out;
		}
A
Andrea Arcangeli 已提交
2815
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2816
		__SetPageUptodate(page);
2817

2818
		if (vma->vm_flags & VM_MAYSHARE) {
2819
			int err;
K
Ken Chen 已提交
2820
			struct inode *inode = mapping->host;
2821 2822 2823 2824 2825 2826 2827 2828

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2829
			ClearPagePrivate(page);
K
Ken Chen 已提交
2830 2831

			spin_lock(&inode->i_lock);
2832
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2833
			spin_unlock(&inode->i_lock);
2834
		} else {
2835
			lock_page(page);
2836 2837 2838 2839
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2840
			anon_rmap = 1;
2841
		}
2842
	} else {
2843 2844 2845 2846 2847 2848
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2849
			ret = VM_FAULT_HWPOISON |
2850
				VM_FAULT_SET_HINDEX(hstate_index(h));
2851 2852
			goto backout_unlocked;
		}
2853
	}
2854

2855 2856 2857 2858 2859 2860
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2861
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2862 2863 2864 2865
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2866

2867 2868
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2869
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2870 2871 2872
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2873
	ret = 0;
2874
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2875 2876
		goto backout;

2877 2878
	if (anon_rmap) {
		ClearPagePrivate(page);
2879
		hugepage_add_new_anon_rmap(page, vma, address);
2880
	}
2881 2882
	else
		page_dup_rmap(page);
2883 2884 2885 2886
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2887
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2888
		/* Optimization, do the COW without a second fault */
2889
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2890 2891
	}

2892
	spin_unlock(ptl);
A
Adam Litke 已提交
2893 2894
	unlock_page(page);
out:
2895
	return ret;
A
Adam Litke 已提交
2896 2897

backout:
2898
	spin_unlock(ptl);
2899
backout_unlocked:
A
Adam Litke 已提交
2900 2901 2902
	unlock_page(page);
	put_page(page);
	goto out;
2903 2904
}

2905
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2906
			unsigned long address, unsigned int flags)
2907 2908 2909
{
	pte_t *ptep;
	pte_t entry;
2910
	spinlock_t *ptl;
2911
	int ret;
2912
	struct page *page = NULL;
2913
	struct page *pagecache_page = NULL;
2914
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2915
	struct hstate *h = hstate_vma(vma);
2916

2917 2918
	address &= huge_page_mask(h);

2919 2920 2921
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2922
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2923
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2924 2925
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2926
			return VM_FAULT_HWPOISON_LARGE |
2927
				VM_FAULT_SET_HINDEX(hstate_index(h));
2928 2929
	}

2930
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2931 2932 2933
	if (!ptep)
		return VM_FAULT_OOM;

2934 2935 2936 2937 2938 2939
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2940 2941
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2942
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2943
		goto out_mutex;
2944
	}
2945

N
Nick Piggin 已提交
2946
	ret = 0;
2947

2948 2949 2950 2951 2952 2953 2954 2955
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2956
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2957 2958
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2959
			goto out_mutex;
2960
		}
2961

2962
		if (!(vma->vm_flags & VM_MAYSHARE))
2963 2964 2965 2966
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2967 2968 2969 2970 2971 2972 2973 2974
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2975
	get_page(page);
2976
	if (page != pagecache_page)
2977 2978
		lock_page(page);

2979 2980
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2981
	/* Check for a racing update before calling hugetlb_cow */
2982
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2983
		goto out_ptl;
2984 2985


2986
	if (flags & FAULT_FLAG_WRITE) {
2987
		if (!huge_pte_write(entry)) {
2988
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2989 2990
					pagecache_page, ptl);
			goto out_ptl;
2991
		}
2992
		entry = huge_pte_mkdirty(entry);
2993 2994
	}
	entry = pte_mkyoung(entry);
2995 2996
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2997
		update_mmu_cache(vma, address, ptep);
2998

2999 3000
out_ptl:
	spin_unlock(ptl);
3001 3002 3003 3004 3005

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3006 3007
	if (page != pagecache_page)
		unlock_page(page);
3008
	put_page(page);
3009

3010
out_mutex:
3011
	mutex_unlock(&hugetlb_instantiation_mutex);
3012 3013

	return ret;
3014 3015
}

3016 3017 3018 3019
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3020
{
3021 3022
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3023
	unsigned long remainder = *nr_pages;
3024
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3025 3026

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3027
		pte_t *pte;
3028
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3029
		int absent;
A
Adam Litke 已提交
3030
		struct page *page;
D
David Gibson 已提交
3031

A
Adam Litke 已提交
3032 3033
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3034
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3035
		 * first, for the page indexing below to work.
3036 3037
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3038
		 */
3039
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3040 3041
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3042 3043 3044 3045
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3046 3047 3048 3049
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3050
		 */
H
Hugh Dickins 已提交
3051 3052
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3053 3054
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3055 3056 3057
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3070 3071
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3072
			int ret;
D
David Gibson 已提交
3073

3074 3075
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3076 3077
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3078
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3079
				continue;
D
David Gibson 已提交
3080

A
Adam Litke 已提交
3081 3082 3083 3084
			remainder = 0;
			break;
		}

3085
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3086
		page = pte_page(huge_ptep_get(pte));
3087
same_page:
3088
		if (pages) {
H
Hugh Dickins 已提交
3089
			pages[i] = mem_map_offset(page, pfn_offset);
3090
			get_page_foll(pages[i]);
3091
		}
D
David Gibson 已提交
3092 3093 3094 3095 3096

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3097
		++pfn_offset;
D
David Gibson 已提交
3098 3099
		--remainder;
		++i;
3100
		if (vaddr < vma->vm_end && remainder &&
3101
				pfn_offset < pages_per_huge_page(h)) {
3102 3103 3104 3105 3106 3107
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3108
		spin_unlock(ptl);
D
David Gibson 已提交
3109
	}
3110
	*nr_pages = remainder;
D
David Gibson 已提交
3111 3112
	*position = vaddr;

H
Hugh Dickins 已提交
3113
	return i ? i : -EFAULT;
D
David Gibson 已提交
3114
}
3115

3116
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3117 3118 3119 3120 3121 3122
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3123
	struct hstate *h = hstate_vma(vma);
3124
	unsigned long pages = 0;
3125 3126 3127 3128

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3129
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3130
	for (; address < end; address += huge_page_size(h)) {
3131
		spinlock_t *ptl;
3132 3133 3134
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3135
		ptl = huge_pte_lock(h, mm, ptep);
3136 3137
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3138
			spin_unlock(ptl);
3139
			continue;
3140
		}
3141
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3142
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3143
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3144
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3145
			set_huge_pte_at(mm, address, ptep, pte);
3146
			pages++;
3147
		}
3148
		spin_unlock(ptl);
3149
	}
3150 3151 3152 3153 3154 3155
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3156
	flush_tlb_range(vma, start, end);
3157
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3158 3159

	return pages << h->order;
3160 3161
}

3162 3163
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3164
					struct vm_area_struct *vma,
3165
					vm_flags_t vm_flags)
3166
{
3167
	long ret, chg;
3168
	struct hstate *h = hstate_inode(inode);
3169
	struct hugepage_subpool *spool = subpool_inode(inode);
3170
	struct resv_map *resv_map;
3171

3172 3173 3174
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3175
	 * without using reserves
3176
	 */
3177
	if (vm_flags & VM_NORESERVE)
3178 3179
		return 0;

3180 3181 3182 3183 3184 3185
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3186
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3187
		resv_map = inode_resv_map(inode);
3188

3189
		chg = region_chg(resv_map, from, to);
3190 3191 3192

	} else {
		resv_map = resv_map_alloc();
3193 3194 3195
		if (!resv_map)
			return -ENOMEM;

3196
		chg = to - from;
3197

3198 3199 3200 3201
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3202 3203 3204 3205
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3206

3207
	/* There must be enough pages in the subpool for the mapping */
3208 3209 3210 3211
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3212 3213

	/*
3214
	 * Check enough hugepages are available for the reservation.
3215
	 * Hand the pages back to the subpool if there are not
3216
	 */
3217
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3218
	if (ret < 0) {
3219
		hugepage_subpool_put_pages(spool, chg);
3220
		goto out_err;
K
Ken Chen 已提交
3221
	}
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3234
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3235
		region_add(resv_map, from, to);
3236
	return 0;
3237
out_err:
J
Joonsoo Kim 已提交
3238 3239
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3240
	return ret;
3241 3242 3243 3244
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3245
	struct hstate *h = hstate_inode(inode);
3246
	struct resv_map *resv_map = inode_resv_map(inode);
3247
	long chg = 0;
3248
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3249

3250
	if (resv_map)
3251
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3252
	spin_lock(&inode->i_lock);
3253
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3254 3255
	spin_unlock(&inode->i_lock);

3256
	hugepage_subpool_put_pages(spool, (chg - freed));
3257
	hugetlb_acct_memory(h, -(chg - freed));
3258
}
3259

3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3319
	spinlock_t *ptl;
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3342 3343
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3344 3345 3346 3347 3348
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3349
	spin_unlock(ptl);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3363
 * called with page table lock held.
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3382 3383 3384 3385 3386 3387 3388
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3389 3390
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3472 3473
#ifdef CONFIG_MEMORY_FAILURE

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3488 3489 3490 3491
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3492
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3493 3494 3495
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3496
	int ret = -EBUSY;
3497 3498

	spin_lock(&hugetlb_lock);
3499
	if (is_hugepage_on_freelist(hpage)) {
3500 3501 3502 3503 3504 3505 3506
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3507
		set_page_refcounted(hpage);
3508 3509 3510 3511
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3512
	spin_unlock(&hugetlb_lock);
3513
	return ret;
3514
}
3515
#endif
3516 3517 3518

bool isolate_huge_page(struct page *page, struct list_head *list)
{
3519
	VM_BUG_ON_PAGE(!PageHead(page), page);
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
3530
	VM_BUG_ON_PAGE(!PageHead(page), page);
3531 3532 3533 3534 3535
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3536 3537 3538

bool is_hugepage_active(struct page *page)
{
3539
	VM_BUG_ON_PAGE(!PageHuge(page), page);
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}