hugetlb.c 72.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include <linux/node.h>
28
#include "internal.h"
L
Linus Torvalds 已提交
29 30

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31 32
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
33

34 35 36 37
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

38 39
__initdata LIST_HEAD(huge_boot_pages);

40 41 42
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
43
static unsigned long __initdata default_hstate_size;
44 45 46

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47

48 49 50 51
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
52

53 54 55
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
56 57 58 59 60 61 62 63 64 65
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

212 213 214 215
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
216 217
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
218
{
219 220
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
221 222
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
238
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239

240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

253 254 255 256 257 258 259
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
260
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261

262 263 264 265 266 267 268 269 270
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
271 272 273 274 275 276 277 278 279
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
280
 */
281 282 283 284 285 286 287 288 289 290 291
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

292 293 294 295 296
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

297
static struct resv_map *resv_map_alloc(void)
298 299 300 301 302 303 304 305 306 307 308
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

309
static void resv_map_release(struct kref *ref)
310 311 312 313 314 315 316 317 318
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 320
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321
	if (!(vma->vm_flags & VM_MAYSHARE))
322 323
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
324
	return NULL;
325 326
}

327
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331

332 333
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
334 335 336 337 338
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 341

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342 343 344 345 346
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347 348

	return (get_vma_private_data(vma) & flag) != 0;
349 350 351
}

/* Decrement the reserved pages in the hugepage pool by one */
352 353
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
354
{
355 356 357
	if (vma->vm_flags & VM_NORESERVE)
		return;

358
	if (vma->vm_flags & VM_MAYSHARE) {
359
		/* Shared mappings always use reserves */
360
		h->resv_huge_pages--;
361
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362 363 364 365
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
366
		h->resv_huge_pages--;
367 368 369
	}
}

370
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371 372 373
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374
	if (!(vma->vm_flags & VM_MAYSHARE))
375 376 377 378
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
379
static int vma_has_reserves(struct vm_area_struct *vma)
380
{
381
	if (vma->vm_flags & VM_MAYSHARE)
382 383 384 385
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
386 387
}

388 389 390 391 392 393 394 395 396 397 398 399
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
400 401
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
402 403 404
{
	int i;

405
	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
H
Hannes Eder 已提交
406 407 408
		clear_gigantic_page(page, addr, sz);
		return;
	}
409

410
	might_sleep();
411
	for (i = 0; i < sz/PAGE_SIZE; i++) {
412
		cond_resched();
413
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414 415 416
	}
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
434
static void copy_huge_page(struct page *dst, struct page *src,
435
			   unsigned long addr, struct vm_area_struct *vma)
436 437
{
	int i;
438
	struct hstate *h = hstate_vma(vma);
439

H
Hannes Eder 已提交
440 441 442 443
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
444

445
	might_sleep();
446
	for (i = 0; i < pages_per_huge_page(h); i++) {
447
		cond_resched();
448
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449 450 451
	}
}

452
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
453 454
{
	int nid = page_to_nid(page);
455 456 457
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
458 459
}

460 461
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
462
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
463
{
464
	int nid;
L
Linus Torvalds 已提交
465
	struct page *page = NULL;
466
	struct mempolicy *mpol;
467
	nodemask_t *nodemask;
468
	struct zonelist *zonelist = huge_zonelist(vma, address,
469
					htlb_alloc_mask, &mpol, &nodemask);
470 471
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
472

473 474 475 476 477
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
478
	if (!vma_has_reserves(vma) &&
479
			h->free_huge_pages - h->resv_huge_pages == 0)
480 481
		return NULL;

482
	/* If reserves cannot be used, ensure enough pages are in the pool */
483
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
484 485
		return NULL;

486 487
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
488 489
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
490 491
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
492 493
					  struct page, lru);
			list_del(&page->lru);
494 495
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
496 497

			if (!avoid_reserve)
498
				decrement_hugepage_resv_vma(h, vma);
499

K
Ken Chen 已提交
500
			break;
A
Andrew Morton 已提交
501
		}
L
Linus Torvalds 已提交
502
	}
503
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
504 505 506
	return page;
}

507
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
508 509
{
	int i;
510

511 512
	VM_BUG_ON(h->order >= MAX_ORDER);

513 514 515
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
516 517 518 519 520 521
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
522
	arch_release_hugepage(page);
523
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
524 525
}

526 527 528 529 530 531 532 533 534 535 536
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

537 538
static void free_huge_page(struct page *page)
{
539 540 541 542
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
543
	struct hstate *h = page_hstate(page);
544
	int nid = page_to_nid(page);
545
	struct address_space *mapping;
546

547
	mapping = (struct address_space *) page_private(page);
548
	set_page_private(page, 0);
549
	BUG_ON(page_count(page));
550 551 552
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
553
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554 555 556
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
557
	} else {
558
		enqueue_huge_page(h, page);
559
	}
560
	spin_unlock(&hugetlb_lock);
561
	if (mapping)
562
		hugetlb_put_quota(mapping, 1);
563 564
}

565
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566 567 568
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
569 570
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
571 572 573 574
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

603
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
604 605
{
	struct page *page;
606

607 608 609
	if (h->order >= MAX_ORDER)
		return NULL;

610
	page = alloc_pages_exact_node(nid,
611 612
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
613
		huge_page_order(h));
L
Linus Torvalds 已提交
614
	if (page) {
615
		if (arch_prepare_hugepage(page)) {
616
			__free_pages(page, huge_page_order(h));
617
			return NULL;
618
		}
619
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
620
	}
621 622 623 624

	return page;
}

625
/*
626 627 628 629 630
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
631
 */
632
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
633
{
634
	nid = next_node(nid, *nodes_allowed);
635
	if (nid == MAX_NUMNODES)
636
		nid = first_node(*nodes_allowed);
637 638 639 640 641
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

642 643 644 645 646 647 648
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

649
/*
650 651 652 653
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
654
 */
655 656
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
657
{
658 659 660 661 662 663
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
664 665

	return nid;
666 667
}

668
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
669 670 671 672 673 674
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

675
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
676
	next_nid = start_nid;
677 678

	do {
679
		page = alloc_fresh_huge_page_node(h, next_nid);
680
		if (page) {
681
			ret = 1;
682 683
			break;
		}
684
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
685
	} while (next_nid != start_nid);
686

687 688 689 690 691
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

692
	return ret;
L
Linus Torvalds 已提交
693 694
}

695
/*
696 697 698 699
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
700
 */
701
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
702
{
703 704 705 706 707 708
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
709 710

	return nid;
711 712 713 714 715 716 717 718
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
719 720
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
721 722 723 724 725
{
	int start_nid;
	int next_nid;
	int ret = 0;

726
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
727 728 729
	next_nid = start_nid;

	do {
730 731 732 733 734 735
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
736 737 738 739 740 741
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
742 743 744 745
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
746 747
			update_and_free_page(h, page);
			ret = 1;
748
			break;
749
		}
750
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
751
	} while (next_nid != start_nid);
752 753 754 755

	return ret;
}

756 757
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
758 759
{
	struct page *page;
760
	unsigned int nid;
761

762 763 764
	if (h->order >= MAX_ORDER)
		return NULL;

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
789
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
790 791 792
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
793 794
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
795 796 797
	}
	spin_unlock(&hugetlb_lock);

798 799
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
800
					huge_page_order(h));
801

802 803 804 805 806
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

807
	spin_lock(&hugetlb_lock);
808
	if (page) {
809 810 811 812 813 814
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
815
		nid = page_to_nid(page);
816
		set_compound_page_dtor(page, free_huge_page);
817 818 819
		/*
		 * We incremented the global counters already
		 */
820 821
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
822
		__count_vm_event(HTLB_BUDDY_PGALLOC);
823
	} else {
824 825
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
826
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827
	}
828
	spin_unlock(&hugetlb_lock);
829 830 831 832

	return page;
}

833 834 835 836
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
837
static int gather_surplus_pages(struct hstate *h, int delta)
838 839 840 841 842 843
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

844
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
845
	if (needed <= 0) {
846
		h->resv_huge_pages += delta;
847
		return 0;
848
	}
849 850 851 852 853 854 855 856

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
857
		page = alloc_buddy_huge_page(h, NULL, 0);
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
878 879
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
880 881 882 883 884 885 886
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
887 888 889
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
890 891
	 */
	needed += allocated;
892
	h->resv_huge_pages += delta;
893 894
	ret = 0;
free:
895
	/* Free the needed pages to the hugetlb pool */
896
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
897 898
		if ((--needed) < 0)
			break;
899
		list_del(&page->lru);
900
		enqueue_huge_page(h, page);
901 902 903 904 905 906 907
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
908
			/*
909 910 911
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
912 913 914
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
915
			free_huge_page(page);
916
		}
917
		spin_lock(&hugetlb_lock);
918 919 920 921 922 923 924 925 926
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
927
 * Called with hugetlb_lock held.
928
 */
929 930
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
931 932 933
{
	unsigned long nr_pages;

934
	/* Uncommit the reservation */
935
	h->resv_huge_pages -= unused_resv_pages;
936

937 938 939 940
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

941
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
942

943 944
	/*
	 * We want to release as many surplus pages as possible, spread
945 946 947 948 949
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
950 951
	 */
	while (nr_pages--) {
952
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
953
			break;
954 955 956
	}
}

957 958 959 960 961 962 963 964 965
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
966
static long vma_needs_reservation(struct hstate *h,
967
			struct vm_area_struct *vma, unsigned long addr)
968 969 970 971
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

972
	if (vma->vm_flags & VM_MAYSHARE) {
973
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
974 975 976
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

977 978
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
979

980
	} else  {
981
		long err;
982
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983 984 985 986 987 988 989
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
990
}
991 992
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
993 994 995 996
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

997
	if (vma->vm_flags & VM_MAYSHARE) {
998
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
999
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1000 1001

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1002
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003 1004 1005 1006
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1007 1008 1009
	}
}

1010
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1011
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1012
{
1013
	struct hstate *h = hstate_vma(vma);
1014
	struct page *page;
1015 1016
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1017
	long chg;
1018 1019 1020 1021 1022

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1023 1024
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1025
	 */
1026
	chg = vma_needs_reservation(h, vma, addr);
1027 1028 1029
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1030 1031
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1032 1033

	spin_lock(&hugetlb_lock);
1034
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1035
	spin_unlock(&hugetlb_lock);
1036

K
Ken Chen 已提交
1037
	if (!page) {
1038
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1039
		if (!page) {
1040
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
1041 1042 1043
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
1044

1045 1046
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1047

1048
	vma_commit_reservation(h, vma, addr);
1049

1050
	return page;
1051 1052
}

1053
int __weak alloc_bootmem_huge_page(struct hstate *h)
1054 1055
{
	struct huge_bootmem_page *m;
1056
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1057 1058 1059 1060 1061

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1062
				NODE_DATA(hstate_next_node_to_alloc(h,
1063
						&node_states[N_HIGH_MEMORY])),
1064 1065 1066 1067 1068 1069 1070 1071 1072
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1073
			goto found;
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1087 1088 1089 1090 1091 1092 1093 1094
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1105
		prep_compound_huge_page(page, h->order);
1106 1107 1108 1109
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1110
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1111 1112
{
	unsigned long i;
1113

1114
	for (i = 0; i < h->max_huge_pages; ++i) {
1115 1116 1117
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1118 1119
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1120 1121
			break;
	}
1122
	h->max_huge_pages = i;
1123 1124 1125 1126 1127 1128 1129
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1130 1131 1132
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1133 1134 1135
	}
}

A
Andi Kleen 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1147 1148 1149 1150 1151
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1152 1153 1154 1155 1156
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1157 1158 1159
	}
}

L
Linus Torvalds 已提交
1160
#ifdef CONFIG_HIGHMEM
1161 1162
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1163
{
1164 1165
	int i;

1166 1167 1168
	if (h->order >= MAX_ORDER)
		return;

1169
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1170
		struct page *page, *next;
1171 1172 1173
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1174
				return;
L
Linus Torvalds 已提交
1175 1176 1177
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1178
			update_and_free_page(h, page);
1179 1180
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1181 1182 1183 1184
		}
	}
}
#else
1185 1186
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1187 1188 1189 1190
{
}
#endif

1191 1192 1193 1194 1195
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1196 1197
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1198
{
1199
	int start_nid, next_nid;
1200 1201 1202 1203
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1204
	if (delta < 0)
1205
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1206
	else
1207
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1208 1209 1210 1211 1212 1213 1214 1215
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1216
			if (!h->surplus_huge_pages_node[nid]) {
1217 1218
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1219
				continue;
1220
			}
1221 1222 1223 1224 1225 1226
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1227
						h->nr_huge_pages_node[nid]) {
1228 1229
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1230
				continue;
1231
			}
1232
		}
1233 1234 1235 1236 1237

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1238
	} while (next_nid != start_nid);
1239 1240 1241 1242

	return ret;
}

1243
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1244 1245
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1246
{
1247
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1248

1249 1250 1251
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1252 1253 1254 1255
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1256 1257 1258 1259 1260 1261
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1262
	 */
L
Linus Torvalds 已提交
1263
	spin_lock(&hugetlb_lock);
1264
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1265
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1266 1267 1268
			break;
	}

1269
	while (count > persistent_huge_pages(h)) {
1270 1271 1272 1273 1274 1275
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1276
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1277 1278 1279 1280
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1281 1282 1283
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1284 1285 1286 1287 1288 1289 1290 1291
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1292 1293 1294 1295 1296 1297 1298 1299
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1300
	 */
1301
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1302
	min_count = max(count, min_count);
1303
	try_to_free_low(h, min_count, nodes_allowed);
1304
	while (min_count < persistent_huge_pages(h)) {
1305
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1306 1307
			break;
	}
1308
	while (count < persistent_huge_pages(h)) {
1309
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1310 1311 1312
			break;
	}
out:
1313
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1314
	spin_unlock(&hugetlb_lock);
1315
	return ret;
L
Linus Torvalds 已提交
1316 1317
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1328 1329 1330
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1331 1332
{
	int i;
1333

1334
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1335 1336 1337
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1338
			return &hstates[i];
1339 1340 1341
		}

	return kobj_to_node_hstate(kobj, nidp);
1342 1343
}

1344
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1345 1346
					struct kobj_attribute *attr, char *buf)
{
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1358
}
1359 1360 1361
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1362 1363
{
	int err;
1364
	int nid;
1365
	unsigned long count;
1366
	struct hstate *h;
1367
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1368

1369
	err = strict_strtoul(buf, 10, &count);
1370 1371 1372
	if (err)
		return 0;

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1393
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1394

1395
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		NODEMASK_FREE(nodes_allowed);

	return len;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1411 1412 1413
}
HSTATE_ATTR(nr_hugepages);

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1435 1436 1437
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1438
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1439 1440 1441 1442 1443 1444 1445
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1446
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1474 1475 1476 1477 1478 1479
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1480
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1481 1482 1483 1484 1485 1486 1487
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1499 1500 1501 1502 1503 1504 1505 1506 1507
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1508 1509 1510
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1511 1512 1513 1514 1515 1516 1517
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

1518 1519 1520 1521
static int __init hugetlb_sysfs_add_hstate(struct hstate *h,
				struct kobject *parent,
				struct kobject **hstate_kobjs,
				struct attribute_group *hstate_attr_group)
1522 1523
{
	int retval;
1524
	int hi = h - hstates;
1525

1526 1527
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1528 1529
		return -ENOMEM;

1530
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1531
	if (retval)
1532
		kobject_put(hstate_kobjs[hi]);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1547 1548
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1549 1550 1551 1552 1553 1554
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1617
		return;		/* no hstate attributes */
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1682 1683 1684
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1685 1686 1687 1688 1689
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1690
	for_each_node_state(nid, N_HIGH_MEMORY) {
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1719 1720 1721 1722
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1723 1724
	hugetlb_unregister_all_nodes();

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1735 1736 1737 1738 1739 1740
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1741

1742 1743 1744 1745
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1746
	}
1747 1748 1749
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1750 1751 1752

	hugetlb_init_hstates();

1753 1754
	gather_bootmem_prealloc();

1755 1756 1757 1758
	report_hugepages();

	hugetlb_sysfs_init();

1759 1760
	hugetlb_register_all_nodes();

1761 1762 1763 1764 1765 1766 1767 1768
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1769 1770
	unsigned long i;

1771 1772 1773 1774 1775 1776 1777 1778 1779
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1780 1781 1782 1783
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1784 1785
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1786 1787
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1788

1789 1790 1791
	parsed_hstate = h;
}

1792
static int __init hugetlb_nrpages_setup(char *s)
1793 1794
{
	unsigned long *mhp;
1795
	static unsigned long *last_mhp;
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1806 1807 1808 1809 1810 1811
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1812 1813 1814
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1825 1826
	return 1;
}
1827 1828 1829 1830 1831 1832 1833 1834
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1848 1849 1850
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1851
{
1852 1853 1854 1855 1856 1857 1858 1859
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1860
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1861

1862
	if (write) {
1863 1864
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1875

L
Linus Torvalds 已提交
1876 1877
	return 0;
}
1878

1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1896
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1897
			void __user *buffer,
1898 1899
			size_t *length, loff_t *ppos)
{
1900
	proc_dointvec(table, write, buffer, length, ppos);
1901 1902 1903 1904 1905 1906 1907
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1908
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1909
			void __user *buffer,
1910 1911
			size_t *length, loff_t *ppos)
{
1912
	struct hstate *h = &default_hstate;
1913 1914 1915 1916 1917 1918 1919
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1920
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1921 1922 1923 1924 1925 1926 1927

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1928 1929 1930
	return 0;
}

L
Linus Torvalds 已提交
1931 1932
#endif /* CONFIG_SYSCTL */

1933
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1934
{
1935
	struct hstate *h = &default_hstate;
1936
	seq_printf(m,
1937 1938 1939 1940 1941
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1942 1943 1944 1945 1946
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1947 1948 1949 1950
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1951
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1952 1953
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1954 1955
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1956 1957 1958
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1959 1960 1961 1962 1963
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1964 1965
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1966 1967
}

1968
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1991
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1992 1993
			goto out;

1994 1995
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1996 1997 1998 1999 2000 2001
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2002
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2003 2004 2005 2006 2007 2008

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2025 2026
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2027
	struct hstate *h = hstate_vma(vma);
2028 2029 2030 2031 2032 2033
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2034 2035
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2036 2037 2038 2039 2040 2041

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2042
		if (reserve) {
2043
			hugetlb_acct_memory(h, -reserve);
2044 2045
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2046
	}
2047 2048
}

L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2055
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2056 2057
{
	BUG();
N
Nick Piggin 已提交
2058
	return 0;
L
Linus Torvalds 已提交
2059 2060
}

2061
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2062
	.fault = hugetlb_vm_op_fault,
2063
	.open = hugetlb_vm_op_open,
2064
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2065 2066
};

2067 2068
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2069 2070 2071
{
	pte_t entry;

2072
	if (writable) {
D
David Gibson 已提交
2073 2074 2075
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2076
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2077 2078 2079 2080 2081 2082 2083
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2084 2085 2086 2087 2088
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2089 2090
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2091 2092
		update_mmu_cache(vma, address, entry);
	}
2093 2094 2095
}


D
David Gibson 已提交
2096 2097 2098 2099 2100
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2101
	unsigned long addr;
2102
	int cow;
2103 2104
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2105 2106

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2107

2108
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2109 2110 2111
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2112
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2113 2114
		if (!dst_pte)
			goto nomem;
2115 2116 2117 2118 2119

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2120
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2121
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2122
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2123
			if (cow)
2124 2125
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2126 2127 2128 2129 2130
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2131
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2132 2133 2134 2135 2136 2137 2138
	}
	return 0;

nomem:
	return -ENOMEM;
}

2139
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2140
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2141 2142 2143
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2144
	pte_t *ptep;
D
David Gibson 已提交
2145 2146
	pte_t pte;
	struct page *page;
2147
	struct page *tmp;
2148 2149 2150
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2151 2152 2153 2154 2155
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2156
	LIST_HEAD(page_list);
D
David Gibson 已提交
2157 2158

	WARN_ON(!is_vm_hugetlb_page(vma));
2159 2160
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2161

A
Andrea Arcangeli 已提交
2162
	mmu_notifier_invalidate_range_start(mm, start, end);
2163
	spin_lock(&mm->page_table_lock);
2164
	for (address = start; address < end; address += sz) {
2165
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2166
		if (!ptep)
2167 2168
			continue;

2169 2170 2171
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2193
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2194
		if (huge_pte_none(pte))
D
David Gibson 已提交
2195
			continue;
2196

D
David Gibson 已提交
2197
		page = pte_page(pte);
2198 2199
		if (pte_dirty(pte))
			set_page_dirty(page);
2200
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2201
	}
L
Linus Torvalds 已提交
2202
	spin_unlock(&mm->page_table_lock);
2203
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2204
	mmu_notifier_invalidate_range_end(mm, start, end);
2205 2206 2207 2208
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2209
}
D
David Gibson 已提交
2210

2211
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212
			  unsigned long end, struct page *ref_page)
2213
{
2214 2215 2216
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2217 2218
}

2219 2220 2221 2222 2223 2224
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2225 2226
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2227
{
2228
	struct hstate *h = hstate_vma(vma);
2229 2230 2231 2232 2233 2234 2235 2236 2237
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2238
	address = address & huge_page_mask(h);
2239 2240 2241 2242
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2243 2244 2245 2246 2247 2248
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	spin_lock(&mapping->i_mmap_lock);
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2262
			__unmap_hugepage_range(iter_vma,
2263
				address, address + huge_page_size(h),
2264 2265
				page);
	}
2266
	spin_unlock(&mapping->i_mmap_lock);
2267 2268 2269 2270

	return 1;
}

2271
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2272 2273
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2274
{
2275
	struct hstate *h = hstate_vma(vma);
2276
	struct page *old_page, *new_page;
2277
	int avoidcopy;
2278
	int outside_reserve = 0;
2279 2280 2281

	old_page = pte_page(pte);

2282
retry_avoidcopy:
2283 2284 2285 2286 2287
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2288
		return 0;
2289 2290
	}

2291 2292 2293 2294 2295 2296 2297 2298 2299
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2300
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2301 2302 2303 2304
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2305
	page_cache_get(old_page);
2306 2307 2308

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2309
	new_page = alloc_huge_page(vma, address, outside_reserve);
2310

2311
	if (IS_ERR(new_page)) {
2312
		page_cache_release(old_page);
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2326
				spin_lock(&mm->page_table_lock);
2327 2328 2329 2330 2331
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2332 2333
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2334
		return -PTR_ERR(new_page);
2335 2336
	}

2337
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2338
	__SetPageUptodate(new_page);
2339

2340 2341 2342 2343 2344
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2345
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2346
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2347
		/* Break COW */
2348
		huge_ptep_clear_flush(vma, address, ptep);
2349 2350 2351 2352 2353 2354 2355
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2356
	return 0;
2357 2358
}

2359
/* Return the pagecache page at a given address within a VMA */
2360 2361
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2362 2363
{
	struct address_space *mapping;
2364
	pgoff_t idx;
2365 2366

	mapping = vma->vm_file->f_mapping;
2367
	idx = vma_hugecache_offset(h, vma, address);
2368 2369 2370 2371

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2372 2373 2374 2375 2376
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2392
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2393
			unsigned long address, pte_t *ptep, unsigned int flags)
2394
{
2395
	struct hstate *h = hstate_vma(vma);
2396
	int ret = VM_FAULT_SIGBUS;
2397
	pgoff_t idx;
A
Adam Litke 已提交
2398 2399 2400
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2401
	pte_t new_pte;
A
Adam Litke 已提交
2402

2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2415
	mapping = vma->vm_file->f_mapping;
2416
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2417 2418 2419 2420 2421

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2422 2423 2424
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2425
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2426 2427
		if (idx >= size)
			goto out;
2428
		page = alloc_huge_page(vma, address, 0);
2429 2430
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2431 2432
			goto out;
		}
2433
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2434
		__SetPageUptodate(page);
2435

2436
		if (vma->vm_flags & VM_MAYSHARE) {
2437
			int err;
K
Ken Chen 已提交
2438
			struct inode *inode = mapping->host;
2439 2440 2441 2442 2443 2444 2445 2446

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2447 2448

			spin_lock(&inode->i_lock);
2449
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2450
			spin_unlock(&inode->i_lock);
2451 2452 2453
		} else
			lock_page(page);
	}
2454

2455 2456 2457 2458 2459 2460
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2461
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2462 2463 2464 2465
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2466

2467
	spin_lock(&mm->page_table_lock);
2468
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2469 2470 2471
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2472
	ret = 0;
2473
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2474 2475
		goto backout;

2476 2477 2478 2479
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2480
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2481
		/* Optimization, do the COW without a second fault */
2482
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2483 2484
	}

2485
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2486 2487
	unlock_page(page);
out:
2488
	return ret;
A
Adam Litke 已提交
2489 2490 2491

backout:
	spin_unlock(&mm->page_table_lock);
2492
backout_unlocked:
A
Adam Litke 已提交
2493 2494 2495
	unlock_page(page);
	put_page(page);
	goto out;
2496 2497
}

2498
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2499
			unsigned long address, unsigned int flags)
2500 2501 2502
{
	pte_t *ptep;
	pte_t entry;
2503
	int ret;
2504
	struct page *pagecache_page = NULL;
2505
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2506
	struct hstate *h = hstate_vma(vma);
2507

2508
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2509 2510 2511
	if (!ptep)
		return VM_FAULT_OOM;

2512 2513 2514 2515 2516 2517
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2518 2519
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2520
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2521
		goto out_mutex;
2522
	}
2523

N
Nick Piggin 已提交
2524
	ret = 0;
2525

2526 2527 2528 2529 2530 2531 2532 2533
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2534
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2535 2536
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2537
			goto out_mutex;
2538
		}
2539

2540
		if (!(vma->vm_flags & VM_MAYSHARE))
2541 2542 2543 2544
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2545 2546
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2547 2548 2549 2550
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2551
	if (flags & FAULT_FLAG_WRITE) {
2552
		if (!pte_write(entry)) {
2553 2554
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2555 2556 2557 2558 2559
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2560 2561
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2562 2563 2564
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2565
	spin_unlock(&mm->page_table_lock);
2566 2567 2568 2569 2570 2571

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2572
out_mutex:
2573
	mutex_unlock(&hugetlb_instantiation_mutex);
2574 2575

	return ret;
2576 2577
}

A
Andi Kleen 已提交
2578 2579 2580 2581 2582 2583 2584 2585 2586
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2587 2588
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2589
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2590
			unsigned int flags)
D
David Gibson 已提交
2591
{
2592 2593
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2594
	int remainder = *length;
2595
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2596

2597
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2598
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2599
		pte_t *pte;
H
Hugh Dickins 已提交
2600
		int absent;
A
Adam Litke 已提交
2601
		struct page *page;
D
David Gibson 已提交
2602

A
Adam Litke 已提交
2603 2604
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2605
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2606 2607
		 * first, for the page indexing below to work.
		 */
2608
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2609 2610 2611 2612
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2613 2614 2615 2616
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2617
		 */
H
Hugh Dickins 已提交
2618 2619
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2620 2621 2622
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2623

H
Hugh Dickins 已提交
2624 2625
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2626
			int ret;
D
David Gibson 已提交
2627

A
Adam Litke 已提交
2628
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2629 2630
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2631
			spin_lock(&mm->page_table_lock);
2632
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2633
				continue;
D
David Gibson 已提交
2634

A
Adam Litke 已提交
2635 2636 2637 2638
			remainder = 0;
			break;
		}

2639
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2640
		page = pte_page(huge_ptep_get(pte));
2641
same_page:
2642
		if (pages) {
H
Hugh Dickins 已提交
2643
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2644
			get_page(pages[i]);
2645
		}
D
David Gibson 已提交
2646 2647 2648 2649 2650

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2651
		++pfn_offset;
D
David Gibson 已提交
2652 2653
		--remainder;
		++i;
2654
		if (vaddr < vma->vm_end && remainder &&
2655
				pfn_offset < pages_per_huge_page(h)) {
2656 2657 2658 2659 2660 2661
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2662
	}
2663
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2664 2665 2666
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2667
	return i ? i : -EFAULT;
D
David Gibson 已提交
2668
}
2669 2670 2671 2672 2673 2674 2675 2676

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2677
	struct hstate *h = hstate_vma(vma);
2678 2679 2680 2681

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2682
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2683
	spin_lock(&mm->page_table_lock);
2684
	for (; address < end; address += huge_page_size(h)) {
2685 2686 2687
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2688 2689
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2690
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2691 2692 2693 2694 2695 2696
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2697
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2698 2699 2700 2701

	flush_tlb_range(vma, start, end);
}

2702 2703
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2704 2705
					struct vm_area_struct *vma,
					int acctflag)
2706
{
2707
	long ret, chg;
2708
	struct hstate *h = hstate_inode(inode);
2709

2710 2711 2712 2713 2714 2715 2716 2717
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2718 2719 2720 2721 2722 2723
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2724
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2725
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2726 2727 2728 2729 2730
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2731
		chg = to - from;
2732

2733 2734 2735 2736
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2737 2738
	if (chg < 0)
		return chg;
2739

2740
	/* There must be enough filesystem quota for the mapping */
2741 2742
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2743 2744

	/*
2745 2746
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2747
	 */
2748
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2749 2750
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2751
		return ret;
K
Ken Chen 已提交
2752
	}
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2765
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2766
		region_add(&inode->i_mapping->private_list, from, to);
2767 2768 2769 2770 2771
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2772
	struct hstate *h = hstate_inode(inode);
2773
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2774 2775

	spin_lock(&inode->i_lock);
2776
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2777 2778
	spin_unlock(&inode->i_lock);

2779
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2780
	hugetlb_acct_memory(h, -(chg - freed));
2781
}