hugetlb.c 43.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
L
Linus Torvalds 已提交
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
L
Linus Torvalds 已提交
30 31 32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38 39 40 41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in base page units.
 */
static pgoff_t vma_page_offset(struct vm_area_struct *vma,
				unsigned long address)
{
	return ((address - vma->vm_start) >> PAGE_SHIFT) +
					(vma->vm_pgoff >> PAGE_SHIFT);
}

/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
static pgoff_t vma_pagecache_offset(struct vm_area_struct *vma,
					unsigned long address)
{
	return ((address - vma->vm_start) >> HPAGE_SHIFT) +
			(vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
}

190 191 192
#define HPAGE_RESV_OWNER    (1UL << (BITS_PER_LONG - 1))
#define HPAGE_RESV_UNMAPPED (1UL << (BITS_PER_LONG - 2))
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
193 194 195 196 197 198 199 200 201 202
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
 */
203 204 205 206 207 208 209 210 211 212 213
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

214 215 216 217
static unsigned long vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
218
		return get_vma_private_data(vma) & ~HPAGE_RESV_MASK;
219 220 221 222 223 224 225 226 227
	return 0;
}

static void set_vma_resv_huge_pages(struct vm_area_struct *vma,
							unsigned long reserve)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

228 229
	set_vma_private_data(vma,
		(get_vma_private_data(vma) & HPAGE_RESV_MASK) | reserve);
230 231 232 233 234
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
235 236 237
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
238 239 240 241 242
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
243 244

	return (get_vma_private_data(vma) & flag) != 0;
245 246 247 248 249
}

/* Decrement the reserved pages in the hugepage pool by one */
static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
{
250 251 252
	if (vma->vm_flags & VM_NORESERVE)
		return;

253 254 255 256 257 258 259 260
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
		resv_huge_pages--;
	} else {
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
261 262
		if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
			unsigned long flags, reserve;
263
			resv_huge_pages--;
264 265
			flags = (unsigned long)vma->vm_private_data &
							HPAGE_RESV_MASK;
266
			reserve = (unsigned long)vma->vm_private_data - 1;
267
			vma->vm_private_data = (void *)(reserve | flags);
268 269 270 271
		}
	}
}

272
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
	if (!vma_resv_huge_pages(vma))
		return 0;
	return 1;
}

290 291 292 293 294 295 296
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
297
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
298 299 300 301
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
302
			   unsigned long addr, struct vm_area_struct *vma)
303 304 305 306 307 308
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
309
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
310 311 312
	}
}

L
Linus Torvalds 已提交
313 314 315 316 317 318 319 320
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
340
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
341
{
342
	int nid;
L
Linus Torvalds 已提交
343
	struct page *page = NULL;
344
	struct mempolicy *mpol;
345
	nodemask_t *nodemask;
346
	struct zonelist *zonelist = huge_zonelist(vma, address,
347
					htlb_alloc_mask, &mpol, &nodemask);
348 349
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
350

351 352 353 354 355 356 357 358 359
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
			free_huge_pages - resv_huge_pages == 0)
		return NULL;

360 361 362 363
	/* If reserves cannot be used, ensure enough pages are in the pool */
	if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
		return NULL;

364 365
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
366 367
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
A
Andrew Morton 已提交
368 369 370 371 372 373
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
374 375 376

			if (!avoid_reserve)
				decrement_hugepage_resv_vma(vma);
377

K
Ken Chen 已提交
378
			break;
A
Andrew Morton 已提交
379
		}
L
Linus Torvalds 已提交
380
	}
381
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
382 383 384
	return page;
}

A
Adam Litke 已提交
385 386 387 388 389 390 391 392 393 394 395 396
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
397
	arch_release_hugepage(page);
A
Adam Litke 已提交
398 399 400
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

401 402
static void free_huge_page(struct page *page)
{
403
	int nid = page_to_nid(page);
404
	struct address_space *mapping;
405

406
	mapping = (struct address_space *) page_private(page);
407
	set_page_private(page, 0);
408
	BUG_ON(page_count(page));
409 410 411
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
412 413 414 415 416 417 418
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
419
	spin_unlock(&hugetlb_lock);
420
	if (mapping)
421
		hugetlb_put_quota(mapping, 1);
422 423
}

424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

459
static struct page *alloc_fresh_huge_page_node(int nid)
L
Linus Torvalds 已提交
460 461
{
	struct page *page;
462

463
	page = alloc_pages_node(nid,
464 465
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
466
		HUGETLB_PAGE_ORDER);
L
Linus Torvalds 已提交
467
	if (page) {
468 469
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
470
			return NULL;
471
		}
472
		set_compound_page_dtor(page, free_huge_page);
473
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
474
		nr_huge_pages++;
475
		nr_huge_pages_node[nid]++;
476
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
477
		put_page(page); /* free it into the hugepage allocator */
L
Linus Torvalds 已提交
478
	}
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

513 514 515 516 517
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

518
	return ret;
L
Linus Torvalds 已提交
519 520
}

521 522 523 524
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
525
	unsigned int nid;
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

560 561
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
562
					HUGETLB_PAGE_ORDER);
563 564

	spin_lock(&hugetlb_lock);
565
	if (page) {
566 567 568 569 570 571
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
572
		nid = page_to_nid(page);
573
		set_compound_page_dtor(page, free_huge_page);
574 575 576 577 578
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
579
		__count_vm_event(HTLB_BUDDY_PGALLOC);
580 581 582
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
583
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
584
	}
585
	spin_unlock(&hugetlb_lock);
586 587 588 589

	return page;
}

590 591 592 593 594 595 596 597 598 599 600 601
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
602 603
	if (needed <= 0) {
		resv_huge_pages += delta;
604
		return 0;
605
	}
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
643 644 645
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
646 647
	 */
	needed += allocated;
648
	resv_huge_pages += delta;
649 650
	ret = 0;
free:
651
	/* Free the needed pages to the hugetlb pool */
652
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
653 654
		if ((--needed) < 0)
			break;
655
		list_del(&page->lru);
656 657 658 659 660 661 662 663
		enqueue_huge_page(page);
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
664
			/*
665 666 667
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
668 669 670
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
671
			free_huge_page(page);
672
		}
673
		spin_lock(&hugetlb_lock);
674 675 676 677 678 679 680 681 682 683
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
A
Adrian Bunk 已提交
684
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
685 686 687 688 689
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

690 691 692 693 694 695 696 697
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

698 699 700
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

701 702
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

703
	while (remaining_iterations-- && nr_pages) {
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
721
			remaining_iterations = num_online_nodes();
722 723 724 725
		}
	}
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
static int vma_needs_reservation(struct vm_area_struct *vma, unsigned long addr)
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
		pgoff_t idx = vma_pagecache_offset(vma, addr);
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

	} else {
		if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER))
			return 1;
	}

	return 0;
}
static void vma_commit_reservation(struct vm_area_struct *vma,
							unsigned long addr)
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
		pgoff_t idx = vma_pagecache_offset(vma, addr);
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
	}
}

764
static struct page *alloc_huge_page(struct vm_area_struct *vma,
765
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
766
{
767
	struct page *page;
768 769
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
770
	unsigned int chg;
771 772 773 774 775

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
776 777
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
778
	 */
779 780 781 782
	chg = vma_needs_reservation(vma, addr);
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
783 784
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
785 786

	spin_lock(&hugetlb_lock);
787
	page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
788
	spin_unlock(&hugetlb_lock);
789

K
Ken Chen 已提交
790
	if (!page) {
791
		page = alloc_buddy_huge_page(vma, addr);
K
Ken Chen 已提交
792
		if (!page) {
793
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
794 795 796
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
797

798 799
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
800

801 802
	vma_commit_reservation(vma, addr);

803
	return page;
804 805
}

L
Linus Torvalds 已提交
806 807 808 809
static int __init hugetlb_init(void)
{
	unsigned long i;

810 811 812
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
813 814 815
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

816 817
	hugetlb_next_nid = first_node(node_online_map);

L
Linus Torvalds 已提交
818
	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
819
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

836 837 838 839 840 841 842 843 844 845 846
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
847 848 849 850
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
851 852
	int i;

L
Linus Torvalds 已提交
853 854 855
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
856 857
			if (count >= nr_huge_pages)
				return;
L
Linus Torvalds 已提交
858 859 860 861 862
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
863
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
864 865 866 867 868 869 870 871 872
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

873
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
L
Linus Torvalds 已提交
874 875
static unsigned long set_max_huge_pages(unsigned long count)
{
876
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
877

878 879 880 881
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
882 883 884 885 886 887
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
888
	 */
L
Linus Torvalds 已提交
889
	spin_lock(&hugetlb_lock);
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
915 916 917 918 919 920 921 922
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
923
	 */
924 925
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
926 927
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
928
		struct page *page = dequeue_huge_page();
L
Linus Torvalds 已提交
929 930 931 932
		if (!page)
			break;
		update_and_free_page(page);
	}
933 934 935 936 937 938
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
L
Linus Torvalds 已提交
939
	spin_unlock(&hugetlb_lock);
940
	return ret;
L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949 950
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
951 952 953 954 955 956 957 958 959 960 961 962 963

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

964 965 966 967 968
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
969 970
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
971 972 973 974
	spin_unlock(&hugetlb_lock);
	return 0;
}

L
Linus Torvalds 已提交
975 976 977 978 979 980 981
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
982
			"HugePages_Rsvd:  %5lu\n"
983
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
984 985 986
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
987
			resv_huge_pages,
988
			surplus_huge_pages,
L
Linus Torvalds 已提交
989 990 991 992 993 994 995
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
996 997
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
L
Linus Torvalds 已提交
998
		nid, nr_huge_pages_node[nid],
999 1000
		nid, free_huge_pages_node[nid],
		nid, surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1001 1002 1003 1004 1005 1006 1007 1008
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

M
Mel Gorman 已提交
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
		if (gather_surplus_pages(delta) < 0)
			goto out;

		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
			return_unused_surplus_pages(delta);
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages((unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1050 1051 1052 1053 1054 1055 1056
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
	unsigned long reserve = vma_resv_huge_pages(vma);
	if (reserve)
		hugetlb_acct_memory(-reserve);
}

L
Linus Torvalds 已提交
1057 1058 1059 1060 1061 1062
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1063
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1064 1065
{
	BUG();
N
Nick Piggin 已提交
1066
	return 0;
L
Linus Torvalds 已提交
1067 1068 1069
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1070
	.fault = hugetlb_vm_op_fault,
1071
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1072 1073
};

1074 1075
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1076 1077 1078
{
	pte_t entry;

1079
	if (writable) {
D
David Gibson 已提交
1080 1081 1082
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1083
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1084 1085 1086 1087 1088 1089 1090
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1091 1092 1093 1094 1095
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1096 1097
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1098 1099
		update_mmu_cache(vma, address, entry);
	}
1100 1101 1102
}


D
David Gibson 已提交
1103 1104 1105 1106 1107
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1108
	unsigned long addr;
1109 1110 1111
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1112

1113
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
1114 1115 1116
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
1117 1118 1119
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
1120 1121 1122 1123 1124

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1125
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1126
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1127
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1128
			if (cow)
1129 1130
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1131 1132 1133 1134 1135
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1136
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1137 1138 1139 1140 1141 1142 1143
	}
	return 0;

nomem:
	return -ENOMEM;
}

1144
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1145
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1146 1147 1148
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1149
	pte_t *ptep;
D
David Gibson 已提交
1150 1151
	pte_t pte;
	struct page *page;
1152
	struct page *tmp;
1153 1154 1155 1156 1157
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1158
	LIST_HEAD(page_list);
D
David Gibson 已提交
1159 1160 1161 1162 1163

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

1164
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1165
	for (address = start; address < end; address += HPAGE_SIZE) {
1166
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1167
		if (!ptep)
1168 1169
			continue;

1170 1171 1172
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1194
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1195
		if (huge_pte_none(pte))
D
David Gibson 已提交
1196
			continue;
1197

D
David Gibson 已提交
1198
		page = pte_page(pte);
1199 1200
		if (pte_dirty(pte))
			set_page_dirty(page);
1201
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1202
	}
L
Linus Torvalds 已提交
1203
	spin_unlock(&mm->page_table_lock);
1204
	flush_tlb_range(vma, start, end);
1205 1206 1207 1208
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1209
}
D
David Gibson 已提交
1210

1211
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1212
			  unsigned long end, struct page *ref_page)
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1224
		__unmap_hugepage_range(vma, start, end, ref_page);
1225 1226 1227 1228
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1275
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1276 1277
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1278 1279
{
	struct page *old_page, *new_page;
1280
	int avoidcopy;
1281
	int outside_reserve = 0;
1282 1283 1284

	old_page = pte_page(pte);

1285
retry_avoidcopy:
1286 1287 1288 1289 1290
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1291
		return 0;
1292 1293
	}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1308
	page_cache_get(old_page);
1309
	new_page = alloc_huge_page(vma, address, outside_reserve);
1310

1311
	if (IS_ERR(new_page)) {
1312
		page_cache_release(old_page);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1331
		return -PTR_ERR(new_page);
1332 1333 1334
	}

	spin_unlock(&mm->page_table_lock);
1335
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1336
	__SetPageUptodate(new_page);
1337 1338 1339
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1340
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1341
		/* Break COW */
1342
		huge_ptep_clear_flush(vma, address, ptep);
1343 1344 1345 1346 1347 1348 1349
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1350
	return 0;
1351 1352
}

1353 1354 1355 1356 1357
/* Return the pagecache page at a given address within a VMA */
static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
			unsigned long address)
{
	struct address_space *mapping;
1358
	pgoff_t idx;
1359 1360

	mapping = vma->vm_file->f_mapping;
1361
	idx = vma_pagecache_offset(vma, address);
1362 1363 1364 1365

	return find_lock_page(mapping, idx);
}

1366
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1367
			unsigned long address, pte_t *ptep, int write_access)
1368 1369
{
	int ret = VM_FAULT_SIGBUS;
1370
	pgoff_t idx;
A
Adam Litke 已提交
1371 1372 1373
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1374
	pte_t new_pte;
A
Adam Litke 已提交
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1388
	mapping = vma->vm_file->f_mapping;
1389
	idx = vma_pagecache_offset(vma, address);
A
Adam Litke 已提交
1390 1391 1392 1393 1394

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1395 1396 1397
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1398 1399 1400
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
1401
		page = alloc_huge_page(vma, address, 0);
1402 1403
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1404 1405
			goto out;
		}
1406
		clear_huge_page(page, address);
N
Nick Piggin 已提交
1407
		__SetPageUptodate(page);
1408

1409 1410
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1411
			struct inode *inode = mapping->host;
1412 1413 1414 1415 1416 1417 1418 1419

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1420 1421 1422 1423

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
1424 1425 1426
		} else
			lock_page(page);
	}
1427

1428
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
1429 1430 1431 1432
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1433
	ret = 0;
1434
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1435 1436
		goto backout;

1437 1438 1439 1440 1441 1442
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1443
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1444 1445
	}

1446
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1447 1448
	unlock_page(page);
out:
1449
	return ret;
A
Adam Litke 已提交
1450 1451 1452 1453 1454 1455

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1456 1457
}

1458 1459 1460 1461 1462
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1463
	int ret;
1464
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1465 1466 1467 1468 1469

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

1470 1471 1472 1473 1474 1475
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1476 1477
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1478 1479 1480 1481
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1482

N
Nick Piggin 已提交
1483
	ret = 0;
1484 1485 1486

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1487
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1488 1489 1490 1491 1492 1493 1494 1495 1496
		if (write_access && !pte_write(entry)) {
			struct page *page;
			page = hugetlbfs_pagecache_page(vma, address);
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1497
	spin_unlock(&mm->page_table_lock);
1498
	mutex_unlock(&hugetlb_instantiation_mutex);
1499 1500

	return ret;
1501 1502
}

D
David Gibson 已提交
1503 1504
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1505 1506
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1507
{
1508 1509
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1510 1511
	int remainder = *length;

1512
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1513
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1514 1515
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1516

A
Adam Litke 已提交
1517 1518 1519 1520 1521 1522
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
1523

1524 1525
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
1526
			int ret;
D
David Gibson 已提交
1527

A
Adam Litke 已提交
1528
			spin_unlock(&mm->page_table_lock);
1529
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1530
			spin_lock(&mm->page_table_lock);
1531
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1532
				continue;
D
David Gibson 已提交
1533

A
Adam Litke 已提交
1534 1535 1536 1537 1538 1539
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1540
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1541
		page = pte_page(huge_ptep_get(pte));
1542
same_page:
1543 1544
		if (pages) {
			get_page(page);
1545
			pages[i] = page + pfn_offset;
1546
		}
D
David Gibson 已提交
1547 1548 1549 1550 1551

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1552
		++pfn_offset;
D
David Gibson 已提交
1553 1554
		--remainder;
		++i;
1555 1556 1557 1558 1559 1560 1561 1562
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1563
	}
1564
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1565 1566 1567 1568 1569
	*length = remainder;
	*position = vaddr;

	return i;
}
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1582
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1583 1584 1585 1586 1587
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1588 1589
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1590
		if (!huge_pte_none(huge_ptep_get(ptep))) {
1591 1592 1593 1594 1595 1596
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1597
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1598 1599 1600 1601

	flush_tlb_range(vma, start, end);
}

1602 1603 1604
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
1605 1606 1607
{
	long ret, chg;

1608 1609 1610
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
		chg = to - from;
		set_vma_resv_huge_pages(vma, chg);
1622
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1623 1624
	}

1625 1626
	if (chg < 0)
		return chg;
1627

1628 1629
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1630
	ret = hugetlb_acct_memory(chg);
K
Ken Chen 已提交
1631 1632
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1633
		return ret;
K
Ken Chen 已提交
1634
	}
1635 1636
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
1637 1638 1639 1640 1641 1642
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1643 1644 1645 1646 1647

	spin_lock(&inode->i_lock);
	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
	spin_unlock(&inode->i_lock);

1648 1649
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
	hugetlb_acct_memory(-(chg - freed));
1650
}