hugetlb.c 126.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include <linux/userfaultfd_k.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55
static bool __initdata parsed_valid_hugepagesz = true;
56

57
/*
58 59
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
60
 */
61
DEFINE_SPINLOCK(hugetlb_lock);
62

63 64 65 66 67
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
68
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
69

70 71 72
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

73 74 75 76 77 78 79
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
80 81 82 83 84 85
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
86
		kfree(spool);
87
	}
88 89
}

90 91
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
92 93 94
{
	struct hugepage_subpool *spool;

95
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
96 97 98 99 100
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
101 102 103 104 105 106 107 108 109
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
110 111 112 113 114 115 116 117 118 119 120 121

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

122 123 124 125 126 127 128 129 130
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
131 132
				      long delta)
{
133
	long ret = delta;
134 135

	if (!spool)
136
		return ret;
137 138

	spin_lock(&spool->lock);
139 140 141 142 143 144 145 146

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
147 148
	}

149 150
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
166 167 168
	return ret;
}

169 170 171 172 173 174 175
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
176 177
				       long delta)
{
178 179
	long ret = delta;

180
	if (!spool)
181
		return delta;
182 183

	spin_lock(&spool->lock);
184 185 186 187

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

188 189
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
190 191 192 193 194 195 196 197 198 199 200 201 202 203
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
204
	unlock_or_release_subpool(spool);
205 206

	return ret;
207 208 209 210 211 212 213 214 215
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
216
	return subpool_inode(file_inode(vma->vm_file));
217 218
}

219 220 221
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
222
 *
223 224 225 226 227 228 229 230 231 232 233 234 235 236
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
237 238 239 240 241 242 243
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

244 245
/*
 * Add the huge page range represented by [f, t) to the reserve
246 247 248 249 250 251 252 253
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
254 255 256
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
257
 */
258
static long region_add(struct resv_map *resv, long f, long t)
259
{
260
	struct list_head *head = &resv->regions;
261
	struct file_region *rg, *nrg, *trg;
262
	long add = 0;
263

264
	spin_lock(&resv->lock);
265 266 267 268 269
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
310 311 312 313 314
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
315 316 317 318
			list_del(&rg->link);
			kfree(rg);
		}
	}
319 320

	add += (nrg->from - f);		/* Added to beginning of region */
321
	nrg->from = f;
322
	add += t - nrg->to;		/* Added to end of region */
323
	nrg->to = t;
324

325 326
out_locked:
	resv->adds_in_progress--;
327
	spin_unlock(&resv->lock);
328 329
	VM_BUG_ON(add < 0);
	return add;
330 331
}

332 333 334 335 336 337 338 339 340 341 342 343 344
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
345 346 347 348 349 350 351 352
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
353
 */
354
static long region_chg(struct resv_map *resv, long f, long t)
355
{
356
	struct list_head *head = &resv->regions;
357
	struct file_region *rg, *nrg = NULL;
358 359
	long chg = 0;

360 361
retry:
	spin_lock(&resv->lock);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
378 379
		if (!trg) {
			kfree(nrg);
380
			return -ENOMEM;
381
		}
382 383 384 385 386 387 388

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

389 390 391 392 393 394 395 396 397
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
398
		if (!nrg) {
399
			resv->adds_in_progress--;
400 401 402 403 404 405 406 407 408 409
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
410

411 412 413
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
414 415 416 417 418 419 420 421 422 423 424 425
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
426
			goto out;
427

L
Lucas De Marchi 已提交
428
		/* We overlap with this area, if it extends further than
429 430 431 432 433 434 435 436
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
437 438 439 440 441 442 443 444

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
445 446 447
	return chg;
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

467
/*
468 469 470 471 472 473 474 475 476 477 478 479
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
480
 */
481
static long region_del(struct resv_map *resv, long f, long t)
482
{
483
	struct list_head *head = &resv->regions;
484
	struct file_region *rg, *trg;
485 486
	struct file_region *nrg = NULL;
	long del = 0;
487

488
retry:
489
	spin_lock(&resv->lock);
490
	list_for_each_entry_safe(rg, trg, head, link) {
491 492 493 494 495 496 497 498
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
499
			continue;
500

501
		if (rg->from >= t)
502 503
			break;

504 505 506 507 508 509 510 511 512 513 514 515 516
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
517

518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
538
			break;
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
555
	}
556 557

	spin_unlock(&resv->lock);
558 559
	kfree(nrg);
	return del;
560 561
}

562 563 564 565 566 567 568 569 570
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
571
void hugetlb_fix_reserve_counts(struct inode *inode)
572 573 574 575 576
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
577
	if (rsv_adjust) {
578 579 580 581 582 583
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

584 585 586 587
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
588
static long region_count(struct resv_map *resv, long f, long t)
589
{
590
	struct list_head *head = &resv->regions;
591 592 593
	struct file_region *rg;
	long chg = 0;

594
	spin_lock(&resv->lock);
595 596
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
597 598
		long seg_from;
		long seg_to;
599 600 601 602 603 604 605 606 607 608 609

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
610
	spin_unlock(&resv->lock);
611 612 613 614

	return chg;
}

615 616 617 618
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
619 620
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
621
{
622 623
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
624 625
}

626 627 628 629 630
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
631
EXPORT_SYMBOL_GPL(linear_hugepage_index);
632

633 634 635 636 637 638 639 640 641 642 643 644 645
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

646
	return 1UL << huge_page_shift(hstate);
647
}
648
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
649

650 651 652 653 654 655 656 657 658 659 660 661 662
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

663 664 665 666 667 668 669
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
670
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
671

672 673 674 675 676 677 678 679 680
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
681 682 683 684 685 686 687 688 689
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
690
 */
691 692 693 694 695 696 697 698 699 700 701
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

702
struct resv_map *resv_map_alloc(void)
703 704
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
705 706 707 708 709
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
710
		return NULL;
711
	}
712 713

	kref_init(&resv_map->refs);
714
	spin_lock_init(&resv_map->lock);
715 716
	INIT_LIST_HEAD(&resv_map->regions);

717 718 719 720 721 722
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

723 724 725
	return resv_map;
}

726
void resv_map_release(struct kref *ref)
727 728
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
729 730
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
731 732

	/* Clear out any active regions before we release the map. */
733
	region_del(resv_map, 0, LONG_MAX);
734 735 736 737 738 739 740 741 742

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

743 744 745
	kfree(resv_map);
}

746 747 748 749 750
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

751
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
752
{
753
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
754 755 756 757 758 759 760
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
761 762
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
763
	}
764 765
}

766
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
767
{
768 769
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
770

771 772
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
773 774 775 776
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
777 778
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
779 780

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
781 782 783 784
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
785
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
786 787

	return (get_vma_private_data(vma) & flag) != 0;
788 789
}

790
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
791 792
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
793
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
794
	if (!(vma->vm_flags & VM_MAYSHARE))
795 796 797 798
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
799
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
800
{
801 802 803 804 805 806 807 808 809 810 811
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
812
			return true;
813
		else
814
			return false;
815
	}
816 817

	/* Shared mappings always use reserves */
818 819 820 821 822 823 824 825 826 827 828 829 830
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
831 832 833 834 835

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
857

858
	return false;
859 860
}

861
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
862 863
{
	int nid = page_to_nid(page);
864
	list_move(&page->lru, &h->hugepage_freelists[nid]);
865 866
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
867 868
}

869 870 871 872
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

873 874 875 876 877 878 879 880
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
881
		return NULL;
882
	list_move(&page->lru, &h->hugepage_activelist);
883
	set_page_refcounted(page);
884 885 886 887 888
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

889 890 891
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
892
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
893 894 895 896 897
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

898 899
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
900 901
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
902
{
903
	struct page *page = NULL;
904
	struct mempolicy *mpol;
905
	nodemask_t *nodemask;
906
	struct zonelist *zonelist;
907 908
	struct zone *zone;
	struct zoneref *z;
909
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
910

911 912 913 914 915
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
916
	if (!vma_has_reserves(vma, chg) &&
917
			h->free_huge_pages - h->resv_huge_pages == 0)
918
		goto err;
919

920
	/* If reserves cannot be used, ensure enough pages are in the pool */
921
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
922
		goto err;
923

924
retry_cpuset:
925
	cpuset_mems_cookie = read_mems_allowed_begin();
926
	zonelist = huge_zonelist(vma, address,
927
					htlb_alloc_mask(h), &mpol, &nodemask);
928

929 930
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
931
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
932 933
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
934 935 936 937 938
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

939
				SetPagePrivate(page);
940
				h->resv_huge_pages--;
941 942
				break;
			}
A
Andrew Morton 已提交
943
		}
L
Linus Torvalds 已提交
944
	}
945

946
	mpol_cond_put(mpol);
947
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
948
		goto retry_cpuset;
L
Linus Torvalds 已提交
949
	return page;
950 951 952

err:
	return NULL;
L
Linus Torvalds 已提交
953 954
}

955 956 957 958 959 960 961 962 963
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
964
	nid = next_node_in(nid, *nodes_allowed);
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1026
#if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && \
1027 1028
	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
	defined(CONFIG_CMA))
1029
static void destroy_compound_gigantic_page(struct page *page,
1030
					unsigned int order)
1031 1032 1033 1034 1035
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1036
	atomic_set(compound_mapcount_ptr(page), 0);
1037
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1038
		clear_compound_head(p);
1039 1040 1041 1042 1043 1044 1045
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1046
static void free_gigantic_page(struct page *page, unsigned int order)
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

1058 1059
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1070 1071 1072
		if (page_zone(page) != z)
			return false;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1093
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1105
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1129
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1162
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1163
static inline void destroy_compound_gigantic_page(struct page *page,
1164
						unsigned int order) { }
1165 1166 1167 1168
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1169
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1170 1171
{
	int i;
1172

1173 1174
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1175

1176 1177 1178
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1179 1180
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1181 1182
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1183
	}
1184
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1185
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1186
	set_page_refcounted(page);
1187 1188 1189 1190 1191 1192
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1193 1194
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1231
void free_huge_page(struct page *page)
1232
{
1233 1234 1235 1236
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1237
	struct hstate *h = page_hstate(page);
1238
	int nid = page_to_nid(page);
1239 1240
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1241
	bool restore_reserve;
1242

1243
	set_page_private(page, 0);
1244
	page->mapping = NULL;
1245 1246
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1247
	restore_reserve = PagePrivate(page);
1248
	ClearPagePrivate(page);
1249

1250 1251 1252 1253 1254 1255 1256 1257
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1258
	spin_lock(&hugetlb_lock);
1259
	clear_page_huge_active(page);
1260 1261
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1262 1263 1264
	if (restore_reserve)
		h->resv_huge_pages++;

1265
	if (h->surplus_huge_pages_node[nid]) {
1266 1267
		/* remove the page from active list */
		list_del(&page->lru);
1268 1269 1270
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1271
	} else {
1272
		arch_clear_hugepage_flags(page);
1273
		enqueue_huge_page(h, page);
1274
	}
1275 1276 1277
	spin_unlock(&hugetlb_lock);
}

1278
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1279
{
1280
	INIT_LIST_HEAD(&page->lru);
1281
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1282
	spin_lock(&hugetlb_lock);
1283
	set_hugetlb_cgroup(page, NULL);
1284 1285
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1286 1287 1288 1289
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1290
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1291 1292 1293 1294 1295 1296 1297
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1298
	__ClearPageReserved(page);
1299
	__SetPageHead(page);
1300
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1314
		set_page_count(p, 0);
1315
		set_compound_head(p, page);
1316
	}
1317
	atomic_set(compound_mapcount_ptr(page), -1);
1318 1319
}

A
Andrew Morton 已提交
1320 1321 1322 1323 1324
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1325 1326 1327 1328 1329 1330
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1331
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1332
}
1333 1334
EXPORT_SYMBOL_GPL(PageHuge);

1335 1336 1337 1338 1339 1340 1341 1342 1343
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1344
	return get_compound_page_dtor(page_head) == free_huge_page;
1345 1346
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1364
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1365 1366
{
	struct page *page;
1367

1368
	page = __alloc_pages_node(nid,
1369
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1370
						__GFP_REPEAT|__GFP_NOWARN,
1371
		huge_page_order(h));
L
Linus Torvalds 已提交
1372
	if (page) {
1373
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1374
	}
1375 1376 1377 1378

	return page;
}

1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1401 1402 1403 1404 1405 1406
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1407 1408
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1409
{
1410
	int nr_nodes, node;
1411 1412
	int ret = 0;

1413
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1414 1415 1416 1417
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1418 1419
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1420
			struct page *page =
1421
				list_entry(h->hugepage_freelists[node].next,
1422 1423 1424
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1425
			h->free_huge_pages_node[node]--;
1426 1427
			if (acct_surplus) {
				h->surplus_huge_pages--;
1428
				h->surplus_huge_pages_node[node]--;
1429
			}
1430 1431
			update_and_free_page(h, page);
			ret = 1;
1432
			break;
1433
		}
1434
	}
1435 1436 1437 1438

	return ret;
}

1439 1440
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
1441 1442 1443
 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
 * number of free hugepages would be reduced below the number of reserved
 * hugepages.
1444
 */
1445
static int dissolve_free_huge_page(struct page *page)
1446
{
1447 1448
	int rc = 0;

1449 1450
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
1451 1452 1453
		struct page *head = compound_head(page);
		struct hstate *h = page_hstate(head);
		int nid = page_to_nid(head);
1454 1455 1456 1457
		if (h->free_huge_pages - h->resv_huge_pages == 0) {
			rc = -EBUSY;
			goto out;
		}
1458
		list_del(&head->lru);
1459 1460
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
1461
		h->max_huge_pages--;
1462
		update_and_free_page(h, head);
1463
	}
1464
out:
1465
	spin_unlock(&hugetlb_lock);
1466
	return rc;
1467 1468 1469 1470 1471
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
1472 1473
 * Note that this will dissolve a free gigantic hugepage completely, if any
 * part of it lies within the given range.
1474 1475
 * Also note that if dissolve_free_huge_page() returns with an error, all
 * free hugepages that were dissolved before that error are lost.
1476
 */
1477
int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1478 1479
{
	unsigned long pfn;
1480
	struct page *page;
1481
	int rc = 0;
1482

1483
	if (!hugepages_supported())
1484
		return rc;
1485

1486 1487 1488 1489 1490 1491 1492 1493
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
		page = pfn_to_page(pfn);
		if (PageHuge(page) && !page_count(page)) {
			rc = dissolve_free_huge_page(page);
			if (rc)
				break;
		}
	}
1494 1495

	return rc;
1496 1497
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1516 1517 1518 1519 1520 1521
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1522
	 */
D
Dave Hansen 已提交
1523
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1540 1541
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1574 1575
{
	struct page *page;
1576
	unsigned int r_nid;
1577

1578
	if (hstate_is_gigantic(h))
1579 1580
		return NULL;

1581 1582 1583 1584 1585 1586
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1587 1588
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1589
	}
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1614
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1615 1616 1617
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1618 1619
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1620 1621 1622
	}
	spin_unlock(&hugetlb_lock);

1623
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1624 1625

	spin_lock(&hugetlb_lock);
1626
	if (page) {
1627
		INIT_LIST_HEAD(&page->lru);
1628
		r_nid = page_to_nid(page);
1629
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1630
		set_hugetlb_cgroup(page, NULL);
1631 1632 1633
		/*
		 * We incremented the global counters already
		 */
1634 1635
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1636
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1637
	} else {
1638 1639
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1640
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1641
	}
1642
	spin_unlock(&hugetlb_lock);
1643 1644 1645 1646

	return page;
}

1647 1648 1649 1650 1651
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1652
static
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1663
static
1664 1665 1666 1667 1668 1669
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1670 1671 1672 1673 1674 1675 1676
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1677
	struct page *page = NULL;
1678 1679

	spin_lock(&hugetlb_lock);
1680 1681
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1682 1683
	spin_unlock(&hugetlb_lock);

1684
	if (!page)
1685
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1686 1687 1688 1689

	return page;
}

1690
/*
L
Lucas De Marchi 已提交
1691
 * Increase the hugetlb pool such that it can accommodate a reservation
1692 1693
 * of size 'delta'.
 */
1694
static int gather_surplus_pages(struct hstate *h, int delta)
1695 1696 1697 1698 1699
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1700
	bool alloc_ok = true;
1701

1702
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1703
	if (needed <= 0) {
1704
		h->resv_huge_pages += delta;
1705
		return 0;
1706
	}
1707 1708 1709 1710 1711 1712 1713 1714

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1715
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1716 1717 1718 1719
		if (!page) {
			alloc_ok = false;
			break;
		}
1720 1721
		list_add(&page->lru, &surplus_list);
	}
1722
	allocated += i;
1723 1724 1725 1726 1727 1728

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1729 1730
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1741 1742
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1743
	 * needed to accommodate the reservation.  Add the appropriate number
1744
	 * of pages to the hugetlb pool and free the extras back to the buddy
1745 1746 1747
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1748 1749
	 */
	needed += allocated;
1750
	h->resv_huge_pages += delta;
1751
	ret = 0;
1752

1753
	/* Free the needed pages to the hugetlb pool */
1754
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1755 1756
		if ((--needed) < 0)
			break;
1757 1758 1759 1760 1761
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1762
		VM_BUG_ON_PAGE(page_count(page), page);
1763
		enqueue_huge_page(h, page);
1764
	}
1765
free:
1766
	spin_unlock(&hugetlb_lock);
1767 1768

	/* Free unnecessary surplus pages to the buddy allocator */
1769 1770
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1771
	spin_lock(&hugetlb_lock);
1772 1773 1774 1775 1776

	return ret;
}

/*
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
 * This routine has two main purposes:
 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
 *    in unused_resv_pages.  This corresponds to the prior adjustments made
 *    to the associated reservation map.
 * 2) Free any unused surplus pages that may have been allocated to satisfy
 *    the reservation.  As many as unused_resv_pages may be freed.
 *
 * Called with hugetlb_lock held.  However, the lock could be dropped (and
 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
 * we must make sure nobody else can claim pages we are in the process of
 * freeing.  Do this by ensuring resv_huge_page always is greater than the
 * number of huge pages we plan to free when dropping the lock.
1789
 */
1790 1791
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1792 1793 1794
{
	unsigned long nr_pages;

1795
	/* Cannot return gigantic pages currently */
1796
	if (hstate_is_gigantic(h))
1797
		goto out;
1798

1799 1800 1801 1802
	/*
	 * Part (or even all) of the reservation could have been backed
	 * by pre-allocated pages. Only free surplus pages.
	 */
1803
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1804

1805 1806
	/*
	 * We want to release as many surplus pages as possible, spread
1807 1808 1809 1810 1811
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1812 1813 1814 1815
	 *
	 * Note that we decrement resv_huge_pages as we free the pages.  If
	 * we drop the lock, resv_huge_pages will still be sufficiently large
	 * to cover subsequent pages we may free.
1816 1817
	 */
	while (nr_pages--) {
1818 1819
		h->resv_huge_pages--;
		unused_resv_pages--;
1820
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1821
			goto out;
1822
		cond_resched_lock(&hugetlb_lock);
1823
	}
1824 1825 1826 1827

out:
	/* Fully uncommit the reservation */
	h->resv_huge_pages -= unused_resv_pages;
1828 1829
}

1830

1831
/*
1832
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1833
 * are used by the huge page allocation routines to manage reservations.
1834 1835 1836 1837 1838 1839
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1840 1841 1842
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1843 1844 1845 1846 1847 1848
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1849 1850 1851 1852 1853
 *
 * vma_add_reservation is used in error paths where a reservation must
 * be restored when a newly allocated huge page must be freed.  It is
 * to be called after calling vma_needs_reservation to determine if a
 * reservation exists.
1854
 */
1855 1856 1857
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1858
	VMA_END_RESV,
1859
	VMA_ADD_RESV,
1860
};
1861 1862
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1863
				enum vma_resv_mode mode)
1864
{
1865 1866
	struct resv_map *resv;
	pgoff_t idx;
1867
	long ret;
1868

1869 1870
	resv = vma_resv_map(vma);
	if (!resv)
1871
		return 1;
1872

1873
	idx = vma_hugecache_offset(h, vma, addr);
1874 1875
	switch (mode) {
	case VMA_NEEDS_RESV:
1876
		ret = region_chg(resv, idx, idx + 1);
1877 1878 1879 1880
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1881
	case VMA_END_RESV:
1882 1883 1884
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
1885 1886 1887 1888 1889 1890 1891 1892
	case VMA_ADD_RESV:
		if (vma->vm_flags & VM_MAYSHARE)
			ret = region_add(resv, idx, idx + 1);
		else {
			region_abort(resv, idx, idx + 1);
			ret = region_del(resv, idx, idx + 1);
		}
		break;
1893 1894 1895
	default:
		BUG();
	}
1896

1897
	if (vma->vm_flags & VM_MAYSHARE)
1898
		return ret;
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1918
	else
1919
		return ret < 0 ? ret : 0;
1920
}
1921 1922

static long vma_needs_reservation(struct hstate *h,
1923
			struct vm_area_struct *vma, unsigned long addr)
1924
{
1925
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1926
}
1927

1928 1929 1930
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1931 1932 1933
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1934
static void vma_end_reservation(struct hstate *h,
1935 1936
			struct vm_area_struct *vma, unsigned long addr)
{
1937
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1938 1939
}

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static long vma_add_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
}

/*
 * This routine is called to restore a reservation on error paths.  In the
 * specific error paths, a huge page was allocated (via alloc_huge_page)
 * and is about to be freed.  If a reservation for the page existed,
 * alloc_huge_page would have consumed the reservation and set PagePrivate
 * in the newly allocated page.  When the page is freed via free_huge_page,
 * the global reservation count will be incremented if PagePrivate is set.
 * However, free_huge_page can not adjust the reserve map.  Adjust the
 * reserve map here to be consistent with global reserve count adjustments
 * to be made by free_huge_page.
 */
static void restore_reserve_on_error(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address,
			struct page *page)
{
	if (unlikely(PagePrivate(page))) {
		long rc = vma_needs_reservation(h, vma, address);

		if (unlikely(rc < 0)) {
			/*
			 * Rare out of memory condition in reserve map
			 * manipulation.  Clear PagePrivate so that
			 * global reserve count will not be incremented
			 * by free_huge_page.  This will make it appear
			 * as though the reservation for this page was
			 * consumed.  This may prevent the task from
			 * faulting in the page at a later time.  This
			 * is better than inconsistent global huge page
			 * accounting of reserve counts.
			 */
			ClearPagePrivate(page);
		} else if (rc) {
			rc = vma_add_reservation(h, vma, address);
			if (unlikely(rc < 0))
				/*
				 * See above comment about rare out of
				 * memory condition.
				 */
				ClearPagePrivate(page);
		} else
			vma_end_reservation(h, vma, address);
	}
}

1990
struct page *alloc_huge_page(struct vm_area_struct *vma,
1991
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1992
{
1993
	struct hugepage_subpool *spool = subpool_vma(vma);
1994
	struct hstate *h = hstate_vma(vma);
1995
	struct page *page;
1996 1997
	long map_chg, map_commit;
	long gbl_chg;
1998 1999
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
2000

2001
	idx = hstate_index(h);
2002
	/*
2003 2004 2005
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
2006
	 */
2007 2008
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
2009
		return ERR_PTR(-ENOMEM);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
2021
			vma_end_reservation(h, vma, addr);
2022
			return ERR_PTR(-ENOSPC);
2023
		}
L
Linus Torvalds 已提交
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

2037
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2038 2039 2040
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
2041
	spin_lock(&hugetlb_lock);
2042 2043 2044 2045 2046 2047
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2048
	if (!page) {
2049
		spin_unlock(&hugetlb_lock);
2050
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
2051 2052
		if (!page)
			goto out_uncharge_cgroup;
2053 2054 2055 2056
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
2057 2058
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
2059
		/* Fall through */
K
Ken Chen 已提交
2060
	}
2061 2062
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
2063

2064
	set_page_private(page, (unsigned long)spool);
2065

2066 2067
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
2082
	return page;
2083 2084 2085 2086

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
2087
	if (map_chg || avoid_reserve)
2088
		hugepage_subpool_put_pages(spool, 1);
2089
	vma_end_reservation(h, vma, addr);
2090
	return ERR_PTR(-ENOSPC);
2091 2092
}

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

2107
int __weak alloc_bootmem_huge_page(struct hstate *h)
2108 2109
{
	struct huge_bootmem_page *m;
2110
	int nr_nodes, node;
2111

2112
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2113 2114
		void *addr;

2115 2116 2117
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2118 2119 2120 2121 2122 2123 2124
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2125
			goto found;
2126 2127 2128 2129 2130
		}
	}
	return 0;

found:
2131
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2132 2133 2134 2135 2136 2137
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2138 2139
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2140 2141 2142 2143 2144 2145 2146
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2147 2148 2149 2150 2151 2152 2153
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2154 2155 2156 2157
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2158 2159
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2160 2161 2162
#else
		page = virt_to_page(m);
#endif
2163
		WARN_ON(page_count(page) != 1);
2164
		prep_compound_huge_page(page, h->order);
2165
		WARN_ON(PageReserved(page));
2166
		prep_new_huge_page(h, page, page_to_nid(page));
2167 2168 2169 2170 2171 2172
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2173
		if (hstate_is_gigantic(h))
2174
			adjust_managed_page_count(page, 1 << h->order);
2175 2176 2177
	}
}

2178
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2179 2180
{
	unsigned long i;
2181

2182
	for (i = 0; i < h->max_huge_pages; ++i) {
2183
		if (hstate_is_gigantic(h)) {
2184 2185
			if (!alloc_bootmem_huge_page(h))
				break;
2186
		} else if (!alloc_fresh_huge_page(h,
2187
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2188 2189
			break;
	}
2190
	h->max_huge_pages = i;
2191 2192 2193 2194 2195 2196 2197
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2198 2199 2200
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2201
		/* oversize hugepages were init'ed in early boot */
2202
		if (!hstate_is_gigantic(h))
2203
			hugetlb_hstate_alloc_pages(h);
2204
	}
2205
	VM_BUG_ON(minimum_order == UINT_MAX);
2206 2207
}

A
Andi Kleen 已提交
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2219 2220 2221 2222 2223
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2224
		char buf[32];
2225
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2226 2227
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2228 2229 2230
	}
}

L
Linus Torvalds 已提交
2231
#ifdef CONFIG_HIGHMEM
2232 2233
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2234
{
2235 2236
	int i;

2237
	if (hstate_is_gigantic(h))
2238 2239
		return;

2240
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2241
		struct page *page, *next;
2242 2243 2244
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2245
				return;
L
Linus Torvalds 已提交
2246 2247 2248
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2249
			update_and_free_page(h, page);
2250 2251
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2252 2253 2254 2255
		}
	}
}
#else
2256 2257
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2258 2259 2260 2261
{
}
#endif

2262 2263 2264 2265 2266
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2267 2268
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2269
{
2270
	int nr_nodes, node;
2271 2272 2273

	VM_BUG_ON(delta != -1 && delta != 1);

2274 2275 2276 2277
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2278
		}
2279 2280 2281 2282 2283
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2284
		}
2285 2286
	}
	return 0;
2287

2288 2289 2290 2291
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2292 2293
}

2294
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2295 2296
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2297
{
2298
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2299

2300
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2301 2302
		return h->max_huge_pages;

2303 2304 2305 2306
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2307
	 *
N
Naoya Horiguchi 已提交
2308
	 * We might race with __alloc_buddy_huge_page() here and be unable
2309 2310 2311 2312
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2313
	 */
L
Linus Torvalds 已提交
2314
	spin_lock(&hugetlb_lock);
2315
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2316
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2317 2318 2319
			break;
	}

2320
	while (count > persistent_huge_pages(h)) {
2321 2322 2323 2324 2325 2326
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2327 2328 2329 2330

		/* yield cpu to avoid soft lockup */
		cond_resched();

2331 2332 2333 2334
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2335 2336 2337 2338
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2339 2340 2341
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2342 2343 2344 2345 2346 2347 2348 2349
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2350 2351 2352 2353
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2354
	 * __alloc_buddy_huge_page() is checking the global counter,
2355 2356 2357
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2358
	 */
2359
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2360
	min_count = max(count, min_count);
2361
	try_to_free_low(h, min_count, nodes_allowed);
2362
	while (min_count < persistent_huge_pages(h)) {
2363
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2364
			break;
2365
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2366
	}
2367
	while (count < persistent_huge_pages(h)) {
2368
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2369 2370 2371
			break;
	}
out:
2372
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2373
	spin_unlock(&hugetlb_lock);
2374
	return ret;
L
Linus Torvalds 已提交
2375 2376
}

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2387 2388 2389
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2390 2391
{
	int i;
2392

2393
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2394 2395 2396
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2397
			return &hstates[i];
2398 2399 2400
		}

	return kobj_to_node_hstate(kobj, nidp);
2401 2402
}

2403
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2404 2405
					struct kobj_attribute *attr, char *buf)
{
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2417
}
2418

2419 2420 2421
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2422 2423
{
	int err;
2424
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2425

2426
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2427 2428 2429 2430
		err = -EINVAL;
		goto out;
	}

2431 2432 2433 2434 2435 2436 2437
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2438
			nodes_allowed = &node_states[N_MEMORY];
2439 2440 2441 2442 2443 2444 2445 2446 2447
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2448
		nodes_allowed = &node_states[N_MEMORY];
2449

2450
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2451

2452
	if (nodes_allowed != &node_states[N_MEMORY])
2453 2454 2455
		NODEMASK_FREE(nodes_allowed);

	return len;
2456 2457 2458
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2459 2460
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2478 2479 2480 2481 2482 2483 2484 2485 2486
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2487
	return nr_hugepages_store_common(false, kobj, buf, len);
2488 2489 2490
}
HSTATE_ATTR(nr_hugepages);

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2506
	return nr_hugepages_store_common(true, kobj, buf, len);
2507 2508 2509 2510 2511
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2512 2513 2514
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2515
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2516 2517
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2518

2519 2520 2521 2522 2523
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2524
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2525

2526
	if (hstate_is_gigantic(h))
2527 2528
		return -EINVAL;

2529
	err = kstrtoul(buf, 10, &input);
2530
	if (err)
2531
		return err;
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2555 2556 2557 2558 2559 2560
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2561
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2562 2563 2564 2565 2566 2567 2568
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2580 2581 2582 2583 2584 2585 2586 2587 2588
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2589 2590 2591
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2592 2593 2594 2595 2596 2597 2598
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2599 2600 2601
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2602 2603
{
	int retval;
2604
	int hi = hstate_index(h);
2605

2606 2607
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2608 2609
		return -ENOMEM;

2610
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2611
	if (retval)
2612
		kobject_put(hstate_kobjs[hi]);
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2627 2628
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2629
		if (err)
2630
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2631 2632 2633
	}
}

2634 2635 2636 2637
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2638 2639 2640
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2641 2642 2643 2644 2645 2646
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2647
static struct node_hstate node_hstates[MAX_NUMNODES];
2648 2649

/*
2650
 * A subset of global hstate attributes for node devices
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2664
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2687
 * Unregister hstate attributes from a single node device.
2688 2689
 * No-op if no hstate attributes attached.
 */
2690
static void hugetlb_unregister_node(struct node *node)
2691 2692
{
	struct hstate *h;
2693
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2694 2695

	if (!nhs->hugepages_kobj)
2696
		return;		/* no hstate attributes */
2697

2698 2699 2700 2701 2702
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2703
		}
2704
	}
2705 2706 2707 2708 2709 2710 2711

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2712
 * Register hstate attributes for a single node device.
2713 2714
 * No-op if attributes already registered.
 */
2715
static void hugetlb_register_node(struct node *node)
2716 2717
{
	struct hstate *h;
2718
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2719 2720 2721 2722 2723 2724
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2725
							&node->dev.kobj);
2726 2727 2728 2729 2730 2731 2732 2733
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2734 2735
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2736 2737 2738 2739 2740 2741 2742
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2743
 * hugetlb init time:  register hstate attributes for all registered node
2744 2745
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2746
 */
2747
static void __init hugetlb_register_all_nodes(void)
2748 2749 2750
{
	int nid;

2751
	for_each_node_state(nid, N_MEMORY) {
2752
		struct node *node = node_devices[nid];
2753
		if (node->dev.id == nid)
2754 2755 2756 2757
			hugetlb_register_node(node);
	}

	/*
2758
	 * Let the node device driver know we're here so it can
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2778 2779
static int __init hugetlb_init(void)
{
2780 2781
	int i;

2782
	if (!hugepages_supported())
2783
		return 0;
2784

2785 2786 2787 2788
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2789
	}
2790
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2791 2792 2793 2794
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2795 2796

	hugetlb_init_hstates();
2797
	gather_bootmem_prealloc();
2798 2799 2800
	report_hugepages();

	hugetlb_sysfs_init();
2801
	hugetlb_register_all_nodes();
2802
	hugetlb_cgroup_file_init();
2803

2804 2805 2806 2807 2808
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2809
	hugetlb_fault_mutex_table =
2810
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2811
	BUG_ON(!hugetlb_fault_mutex_table);
2812 2813

	for (i = 0; i < num_fault_mutexes; i++)
2814
		mutex_init(&hugetlb_fault_mutex_table[i]);
2815 2816
	return 0;
}
2817
subsys_initcall(hugetlb_init);
2818 2819

/* Should be called on processing a hugepagesz=... option */
2820 2821 2822 2823 2824
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2825
void __init hugetlb_add_hstate(unsigned int order)
2826 2827
{
	struct hstate *h;
2828 2829
	unsigned long i;

2830
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2831
		pr_warn("hugepagesz= specified twice, ignoring\n");
2832 2833
		return;
	}
2834
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2835
	BUG_ON(order == 0);
2836
	h = &hstates[hugetlb_max_hstate++];
2837 2838
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2839 2840 2841 2842
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2843
	INIT_LIST_HEAD(&h->hugepage_activelist);
2844 2845
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2846 2847
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2848

2849 2850 2851
	parsed_hstate = h;
}

2852
static int __init hugetlb_nrpages_setup(char *s)
2853 2854
{
	unsigned long *mhp;
2855
	static unsigned long *last_mhp;
2856

2857 2858 2859 2860 2861 2862
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2863
	/*
2864
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2865 2866
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2867
	else if (!hugetlb_max_hstate)
2868 2869 2870 2871
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2872
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2873
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2874 2875 2876
		return 1;
	}

2877 2878 2879
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2880 2881 2882 2883 2884
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2885
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2886 2887 2888 2889
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2890 2891
	return 1;
}
2892 2893 2894 2895 2896 2897 2898 2899
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2913 2914 2915
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2916
{
2917
	struct hstate *h = &default_hstate;
2918
	unsigned long tmp = h->max_huge_pages;
2919
	int ret;
2920

2921
	if (!hugepages_supported())
2922
		return -EOPNOTSUPP;
2923

2924 2925
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2926 2927 2928
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2929

2930 2931 2932
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2933 2934
out:
	return ret;
L
Linus Torvalds 已提交
2935
}
2936

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2954
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2955
			void __user *buffer,
2956 2957
			size_t *length, loff_t *ppos)
{
2958
	struct hstate *h = &default_hstate;
2959
	unsigned long tmp;
2960
	int ret;
2961

2962
	if (!hugepages_supported())
2963
		return -EOPNOTSUPP;
2964

2965
	tmp = h->nr_overcommit_huge_pages;
2966

2967
	if (write && hstate_is_gigantic(h))
2968 2969
		return -EINVAL;

2970 2971
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2972 2973 2974
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2975 2976 2977 2978 2979 2980

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2981 2982
out:
	return ret;
2983 2984
}

L
Linus Torvalds 已提交
2985 2986
#endif /* CONFIG_SYSCTL */

2987
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2988
{
2989
	struct hstate *h = &default_hstate;
2990 2991
	if (!hugepages_supported())
		return;
2992
	seq_printf(m,
2993 2994 2995 2996 2997
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2998 2999 3000 3001 3002
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
3003 3004 3005 3006
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
3007
	struct hstate *h = &default_hstate;
3008 3009
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
3010 3011
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
3012 3013
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
3014 3015 3016
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
3017 3018
}

3019 3020 3021 3022 3023
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

3024 3025 3026
	if (!hugepages_supported())
		return;

3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

3037 3038 3039 3040 3041 3042
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
3043 3044 3045
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
3046 3047 3048 3049 3050 3051
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
3052 3053
}

3054
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
3077
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
3078 3079
			goto out;

3080 3081
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
3082 3083 3084 3085 3086 3087
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
3088
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
3089 3090 3091 3092 3093 3094

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

3095 3096
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
3097
	struct resv_map *resv = vma_resv_map(vma);
3098 3099 3100 3101 3102

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
3103
	 * has a reference to the reservation map it cannot disappear until
3104 3105 3106
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
3107
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3108
		kref_get(&resv->refs);
3109 3110
}

3111 3112
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3113
	struct hstate *h = hstate_vma(vma);
3114
	struct resv_map *resv = vma_resv_map(vma);
3115
	struct hugepage_subpool *spool = subpool_vma(vma);
3116
	unsigned long reserve, start, end;
3117
	long gbl_reserve;
3118

3119 3120
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3121

3122 3123
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3124

3125
	reserve = (end - start) - region_count(resv, start, end);
3126

3127 3128 3129
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3130 3131 3132 3133 3134 3135
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3136
	}
3137 3138
}

L
Linus Torvalds 已提交
3139 3140 3141 3142 3143 3144
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
3145
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
3146 3147
{
	BUG();
N
Nick Piggin 已提交
3148
	return 0;
L
Linus Torvalds 已提交
3149 3150
}

3151
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3152
	.fault = hugetlb_vm_op_fault,
3153
	.open = hugetlb_vm_op_open,
3154
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3155 3156
};

3157 3158
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3159 3160 3161
{
	pte_t entry;

3162
	if (writable) {
3163 3164
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3165
	} else {
3166 3167
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3168 3169 3170
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3171
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3172 3173 3174 3175

	return entry;
}

3176 3177 3178 3179 3180
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3181
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3182
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3183
		update_mmu_cache(vma, address, ptep);
3184 3185
}

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3211

D
David Gibson 已提交
3212 3213 3214 3215 3216
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3217
	unsigned long addr;
3218
	int cow;
3219 3220
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3221 3222 3223
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3224 3225

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3226

3227 3228 3229 3230 3231
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3232
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3233
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3234 3235 3236
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3237
		dst_pte = huge_pte_alloc(dst, addr, sz);
3238 3239 3240 3241
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3242 3243 3244 3245 3246

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3247 3248 3249
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3268
			if (cow) {
3269
				huge_ptep_set_wrprotect(src, addr, src_pte);
3270 3271 3272
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3273
			entry = huge_ptep_get(src_pte);
3274 3275
			ptepage = pte_page(entry);
			get_page(ptepage);
3276
			page_dup_rmap(ptepage, true);
3277
			set_huge_pte_at(dst, addr, dst_pte, entry);
3278
			hugetlb_count_add(pages_per_huge_page(h), dst);
3279
		}
3280 3281
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3282 3283
	}

3284 3285 3286 3287
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3288 3289
}

3290 3291 3292
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3293 3294 3295
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3296
	pte_t *ptep;
D
David Gibson 已提交
3297
	pte_t pte;
3298
	spinlock_t *ptl;
D
David Gibson 已提交
3299
	struct page *page;
3300 3301
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3302 3303
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3304

D
David Gibson 已提交
3305
	WARN_ON(!is_vm_hugetlb_page(vma));
3306 3307
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3308

3309 3310 3311 3312 3313
	/*
	 * This is a hugetlb vma, all the pte entries should point
	 * to huge page.
	 */
	tlb_remove_check_page_size_change(tlb, sz);
3314
	tlb_start_vma(tlb, vma);
3315
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3316 3317
	address = start;
	for (; address < end; address += sz) {
3318
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3319
		if (!ptep)
3320 3321
			continue;

3322
		ptl = huge_pte_lock(h, mm, ptep);
3323 3324 3325 3326
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3327

3328
		pte = huge_ptep_get(ptep);
3329 3330 3331 3332
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3333 3334

		/*
3335 3336
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3337
		 */
3338
		if (unlikely(!pte_present(pte))) {
3339
			huge_pte_clear(mm, address, ptep);
3340 3341
			spin_unlock(ptl);
			continue;
3342
		}
3343 3344

		page = pte_page(pte);
3345 3346 3347 3348 3349 3350
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3351 3352 3353 3354
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3355 3356 3357 3358 3359 3360 3361 3362
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3363
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3364
		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3365
		if (huge_pte_dirty(pte))
3366
			set_page_dirty(page);
3367

3368
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3369
		page_remove_rmap(page, true);
3370

3371
		spin_unlock(ptl);
3372
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3373 3374 3375 3376 3377
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3378
	}
3379
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3380
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3381
}
D
David Gibson 已提交
3382

3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3395
	 * is to clear it before releasing the i_mmap_rwsem. This works
3396
	 * because in the context this is called, the VMA is about to be
3397
	 * destroyed and the i_mmap_rwsem is held.
3398 3399 3400 3401
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3402
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3403
			  unsigned long end, struct page *ref_page)
3404
{
3405 3406 3407 3408 3409
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3410
	tlb_gather_mmu(&tlb, mm, start, end);
3411 3412
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3413 3414
}

3415 3416 3417 3418 3419 3420
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3421 3422
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3423
{
3424
	struct hstate *h = hstate_vma(vma);
3425 3426 3427 3428 3429 3430 3431 3432
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3433
	address = address & huge_page_mask(h);
3434 3435
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3436
	mapping = vma->vm_file->f_mapping;
3437

3438 3439 3440 3441 3442
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3443
	i_mmap_lock_write(mapping);
3444
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3445 3446 3447 3448
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3449 3450 3451 3452 3453 3454 3455 3456
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3457 3458 3459 3460 3461 3462 3463 3464
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3465 3466
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3467
	}
3468
	i_mmap_unlock_write(mapping);
3469 3470
}

3471 3472
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3473 3474 3475
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3476
 */
3477
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3478 3479
		       unsigned long address, pte_t *ptep,
		       struct page *pagecache_page, spinlock_t *ptl)
3480
{
3481
	pte_t pte;
3482
	struct hstate *h = hstate_vma(vma);
3483
	struct page *old_page, *new_page;
3484
	int ret = 0, outside_reserve = 0;
3485 3486
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3487

3488
	pte = huge_ptep_get(ptep);
3489 3490
	old_page = pte_page(pte);

3491
retry_avoidcopy:
3492 3493
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3494
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3495
		page_move_anon_rmap(old_page, vma);
3496
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3497
		return 0;
3498 3499
	}

3500 3501 3502 3503 3504 3505 3506 3507 3508
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3509
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3510 3511 3512
			old_page != pagecache_page)
		outside_reserve = 1;

3513
	get_page(old_page);
3514

3515 3516 3517 3518
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3519
	spin_unlock(ptl);
3520
	new_page = alloc_huge_page(vma, address, outside_reserve);
3521

3522
	if (IS_ERR(new_page)) {
3523 3524 3525 3526 3527 3528 3529 3530
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3531
			put_page(old_page);
3532
			BUG_ON(huge_pte_none(pte));
3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3545 3546
		}

3547 3548 3549
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3550 3551
	}

3552 3553 3554 3555
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3556
	if (unlikely(anon_vma_prepare(vma))) {
3557 3558
		ret = VM_FAULT_OOM;
		goto out_release_all;
3559
	}
3560

A
Andrea Arcangeli 已提交
3561 3562
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3563
	__SetPageUptodate(new_page);
3564
	set_page_huge_active(new_page);
3565

3566 3567 3568
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3569

3570
	/*
3571
	 * Retake the page table lock to check for racing updates
3572 3573
	 * before the page tables are altered
	 */
3574
	spin_lock(ptl);
3575
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3576
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3577 3578
		ClearPagePrivate(new_page);

3579
		/* Break COW */
3580
		huge_ptep_clear_flush(vma, address, ptep);
3581
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3582 3583
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3584
		page_remove_rmap(old_page, true);
3585
		hugepage_add_new_anon_rmap(new_page, vma, address);
3586 3587 3588
		/* Make the old page be freed below */
		new_page = old_page;
	}
3589
	spin_unlock(ptl);
3590
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3591
out_release_all:
3592
	restore_reserve_on_error(h, vma, address, new_page);
3593
	put_page(new_page);
3594
out_release_old:
3595
	put_page(old_page);
3596

3597 3598
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3599 3600
}

3601
/* Return the pagecache page at a given address within a VMA */
3602 3603
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3604 3605
{
	struct address_space *mapping;
3606
	pgoff_t idx;
3607 3608

	mapping = vma->vm_file->f_mapping;
3609
	idx = vma_hugecache_offset(h, vma, address);
3610 3611 3612 3613

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3614 3615 3616 3617 3618
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3651
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3652 3653
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3654
{
3655
	struct hstate *h = hstate_vma(vma);
3656
	int ret = VM_FAULT_SIGBUS;
3657
	int anon_rmap = 0;
A
Adam Litke 已提交
3658 3659
	unsigned long size;
	struct page *page;
3660
	pte_t new_pte;
3661
	spinlock_t *ptl;
A
Adam Litke 已提交
3662

3663 3664 3665
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3666
	 * COW. Warn that such a situation has occurred as it may not be obvious
3667 3668
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3669
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3670
			   current->pid);
3671 3672 3673
		return ret;
	}

A
Adam Litke 已提交
3674 3675 3676 3677
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3678 3679 3680
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3681
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3682 3683
		if (idx >= size)
			goto out;
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715

		/*
		 * Check for page in userfault range
		 */
		if (userfaultfd_missing(vma)) {
			u32 hash;
			struct vm_fault vmf = {
				.vma = vma,
				.address = address,
				.flags = flags,
				/*
				 * Hard to debug if it ends up being
				 * used by a callee that assumes
				 * something about the other
				 * uninitialized fields... same as in
				 * memory.c
				 */
			};

			/*
			 * hugetlb_fault_mutex must be dropped before
			 * handling userfault.  Reacquire after handling
			 * fault to make calling code simpler.
			 */
			hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
							idx, address);
			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
			ret = handle_userfault(&vmf, VM_UFFD_MISSING);
			mutex_lock(&hugetlb_fault_mutex_table[hash]);
			goto out;
		}

3716
		page = alloc_huge_page(vma, address, 0);
3717
		if (IS_ERR(page)) {
3718 3719 3720 3721 3722
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3723 3724
			goto out;
		}
A
Andrea Arcangeli 已提交
3725
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3726
		__SetPageUptodate(page);
3727
		set_page_huge_active(page);
3728

3729
		if (vma->vm_flags & VM_MAYSHARE) {
3730
			int err = huge_add_to_page_cache(page, mapping, idx);
3731 3732 3733 3734 3735 3736
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3737
		} else {
3738
			lock_page(page);
3739 3740 3741 3742
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3743
			anon_rmap = 1;
3744
		}
3745
	} else {
3746 3747 3748 3749 3750 3751
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3752
			ret = VM_FAULT_HWPOISON |
3753
				VM_FAULT_SET_HINDEX(hstate_index(h));
3754 3755
			goto backout_unlocked;
		}
3756
	}
3757

3758 3759 3760 3761 3762 3763
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3764
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3765 3766 3767 3768
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3769
		/* Just decrements count, does not deallocate */
3770
		vma_end_reservation(h, vma, address);
3771
	}
3772

3773
	ptl = huge_pte_lock(h, mm, ptep);
3774
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3775 3776 3777
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3778
	ret = 0;
3779
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3780 3781
		goto backout;

3782 3783
	if (anon_rmap) {
		ClearPagePrivate(page);
3784
		hugepage_add_new_anon_rmap(page, vma, address);
3785
	} else
3786
		page_dup_rmap(page, true);
3787 3788 3789 3790
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3791
	hugetlb_count_add(pages_per_huge_page(h), mm);
3792
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3793
		/* Optimization, do the COW without a second fault */
3794
		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3795 3796
	}

3797
	spin_unlock(ptl);
A
Adam Litke 已提交
3798 3799
	unlock_page(page);
out:
3800
	return ret;
A
Adam Litke 已提交
3801 3802

backout:
3803
	spin_unlock(ptl);
3804
backout_unlocked:
A
Adam Litke 已提交
3805
	unlock_page(page);
3806
	restore_reserve_on_error(h, vma, address, page);
A
Adam Litke 已提交
3807 3808
	put_page(page);
	goto out;
3809 3810
}

3811
#ifdef CONFIG_SMP
3812
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3837
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3838 3839 3840 3841 3842 3843 3844 3845
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3846
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3847
			unsigned long address, unsigned int flags)
3848
{
3849
	pte_t *ptep, entry;
3850
	spinlock_t *ptl;
3851
	int ret;
3852 3853
	u32 hash;
	pgoff_t idx;
3854
	struct page *page = NULL;
3855
	struct page *pagecache_page = NULL;
3856
	struct hstate *h = hstate_vma(vma);
3857
	struct address_space *mapping;
3858
	int need_wait_lock = 0;
3859

3860 3861
	address &= huge_page_mask(h);

3862 3863 3864
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3865
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3866
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3867 3868
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3869
			return VM_FAULT_HWPOISON_LARGE |
3870
				VM_FAULT_SET_HINDEX(hstate_index(h));
3871 3872 3873 3874
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3875 3876
	}

3877 3878 3879
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3880 3881 3882 3883 3884
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3885 3886
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3887

3888 3889
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3890
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3891
		goto out_mutex;
3892
	}
3893

N
Nick Piggin 已提交
3894
	ret = 0;
3895

3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3906 3907 3908 3909 3910 3911 3912 3913
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3914
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3915 3916
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3917
			goto out_mutex;
3918
		}
3919
		/* Just decrements count, does not deallocate */
3920
		vma_end_reservation(h, vma, address);
3921

3922
		if (!(vma->vm_flags & VM_MAYSHARE))
3923 3924 3925 3926
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3927 3928 3929 3930 3931 3932
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3933 3934 3935 3936 3937 3938 3939
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3940 3941 3942 3943
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3944

3945
	get_page(page);
3946

3947
	if (flags & FAULT_FLAG_WRITE) {
3948
		if (!huge_pte_write(entry)) {
3949 3950
			ret = hugetlb_cow(mm, vma, address, ptep,
					  pagecache_page, ptl);
3951
			goto out_put_page;
3952
		}
3953
		entry = huge_pte_mkdirty(entry);
3954 3955
	}
	entry = pte_mkyoung(entry);
3956 3957
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3958
		update_mmu_cache(vma, address, ptep);
3959 3960 3961 3962
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3963 3964
out_ptl:
	spin_unlock(ptl);
3965 3966 3967 3968 3969

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3970
out_mutex:
3971
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3972 3973 3974 3975 3976 3977 3978 3979 3980
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3981
	return ret;
3982 3983
}

3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
/*
 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
 * modifications for huge pages.
 */
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
			    pte_t *dst_pte,
			    struct vm_area_struct *dst_vma,
			    unsigned long dst_addr,
			    unsigned long src_addr,
			    struct page **pagep)
{
	struct hstate *h = hstate_vma(dst_vma);
	pte_t _dst_pte;
	spinlock_t *ptl;
	int ret;
	struct page *page;

	if (!*pagep) {
		ret = -ENOMEM;
		page = alloc_huge_page(dst_vma, dst_addr, 0);
		if (IS_ERR(page))
			goto out;

		ret = copy_huge_page_from_user(page,
						(const void __user *) src_addr,
4009
						pages_per_huge_page(h), false);
4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064

		/* fallback to copy_from_user outside mmap_sem */
		if (unlikely(ret)) {
			ret = -EFAULT;
			*pagep = page;
			/* don't free the page */
			goto out;
		}
	} else {
		page = *pagep;
		*pagep = NULL;
	}

	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
	__SetPageUptodate(page);
	set_page_huge_active(page);

	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
	spin_lock(ptl);

	ret = -EEXIST;
	if (!huge_pte_none(huge_ptep_get(dst_pte)))
		goto out_release_unlock;

	ClearPagePrivate(page);
	hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);

	_dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
	if (dst_vma->vm_flags & VM_WRITE)
		_dst_pte = huge_pte_mkdirty(_dst_pte);
	_dst_pte = pte_mkyoung(_dst_pte);

	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);

	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
					dst_vma->vm_flags & VM_WRITE);
	hugetlb_count_add(pages_per_huge_page(h), dst_mm);

	/* No need to invalidate - it was non-present before */
	update_mmu_cache(dst_vma, dst_addr, dst_pte);

	spin_unlock(ptl);
	ret = 0;
out:
	return ret;
out_release_unlock:
	spin_unlock(ptl);
	put_page(page);
	goto out;
}

4065 4066 4067 4068
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
4069
{
4070 4071
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
4072
	unsigned long remainder = *nr_pages;
4073
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
4074 4075

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
4076
		pte_t *pte;
4077
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
4078
		int absent;
A
Adam Litke 已提交
4079
		struct page *page;
D
David Gibson 已提交
4080

4081 4082 4083 4084 4085 4086 4087 4088 4089
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
4090 4091
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
4092
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
4093
		 * first, for the page indexing below to work.
4094 4095
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
4096
		 */
4097
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
4098 4099
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
4100 4101 4102 4103
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
4104 4105 4106 4107
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
4108
		 */
H
Hugh Dickins 已提交
4109 4110
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4111 4112
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4113 4114 4115
			remainder = 0;
			break;
		}
D
David Gibson 已提交
4116

4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4128 4129
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
4130
			int ret;
D
David Gibson 已提交
4131

4132 4133
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
4134 4135
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
4136
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
4137
				continue;
D
David Gibson 已提交
4138

A
Adam Litke 已提交
4139 4140 4141 4142
			remainder = 0;
			break;
		}

4143
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4144
		page = pte_page(huge_ptep_get(pte));
4145
same_page:
4146
		if (pages) {
H
Hugh Dickins 已提交
4147
			pages[i] = mem_map_offset(page, pfn_offset);
4148
			get_page(pages[i]);
4149
		}
D
David Gibson 已提交
4150 4151 4152 4153 4154

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
4155
		++pfn_offset;
D
David Gibson 已提交
4156 4157
		--remainder;
		++i;
4158
		if (vaddr < vma->vm_end && remainder &&
4159
				pfn_offset < pages_per_huge_page(h)) {
4160 4161 4162 4163 4164 4165
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
4166
		spin_unlock(ptl);
D
David Gibson 已提交
4167
	}
4168
	*nr_pages = remainder;
D
David Gibson 已提交
4169 4170
	*position = vaddr;

H
Hugh Dickins 已提交
4171
	return i ? i : -EFAULT;
D
David Gibson 已提交
4172
}
4173

4174 4175 4176 4177 4178 4179 4180 4181
#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
/*
 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
 * implement this.
 */
#define flush_hugetlb_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
#endif

4182
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4183 4184 4185 4186 4187 4188
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
4189
	struct hstate *h = hstate_vma(vma);
4190
	unsigned long pages = 0;
4191 4192 4193 4194

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

4195
	mmu_notifier_invalidate_range_start(mm, start, end);
4196
	i_mmap_lock_write(vma->vm_file->f_mapping);
4197
	for (; address < end; address += huge_page_size(h)) {
4198
		spinlock_t *ptl;
4199 4200 4201
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
4202
		ptl = huge_pte_lock(h, mm, ptep);
4203 4204
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
4205
			spin_unlock(ptl);
4206
			continue;
4207
		}
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
4228
			pte = huge_ptep_get_and_clear(mm, address, ptep);
4229
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
4230
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
4231
			set_huge_pte_at(mm, address, ptep, pte);
4232
			pages++;
4233
		}
4234
		spin_unlock(ptl);
4235
	}
4236
	/*
4237
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4238
	 * may have cleared our pud entry and done put_page on the page table:
4239
	 * once we release i_mmap_rwsem, another task can do the final put_page
4240 4241
	 * and that page table be reused and filled with junk.
	 */
4242
	flush_hugetlb_tlb_range(vma, start, end);
4243
	mmu_notifier_invalidate_range(mm, start, end);
4244
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4245
	mmu_notifier_invalidate_range_end(mm, start, end);
4246 4247

	return pages << h->order;
4248 4249
}

4250 4251
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4252
					struct vm_area_struct *vma,
4253
					vm_flags_t vm_flags)
4254
{
4255
	long ret, chg;
4256
	struct hstate *h = hstate_inode(inode);
4257
	struct hugepage_subpool *spool = subpool_inode(inode);
4258
	struct resv_map *resv_map;
4259
	long gbl_reserve;
4260

4261 4262 4263
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4264
	 * without using reserves
4265
	 */
4266
	if (vm_flags & VM_NORESERVE)
4267 4268
		return 0;

4269 4270 4271 4272 4273 4274
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4275
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4276
		resv_map = inode_resv_map(inode);
4277

4278
		chg = region_chg(resv_map, from, to);
4279 4280 4281

	} else {
		resv_map = resv_map_alloc();
4282 4283 4284
		if (!resv_map)
			return -ENOMEM;

4285
		chg = to - from;
4286

4287 4288 4289 4290
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4291 4292 4293 4294
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4295

4296 4297 4298 4299 4300 4301 4302
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4303 4304 4305
		ret = -ENOSPC;
		goto out_err;
	}
4306 4307

	/*
4308
	 * Check enough hugepages are available for the reservation.
4309
	 * Hand the pages back to the subpool if there are not
4310
	 */
4311
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4312
	if (ret < 0) {
4313 4314
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4315
		goto out_err;
K
Ken Chen 已提交
4316
	}
4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4347
	return 0;
4348
out_err:
4349 4350
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4351 4352
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4353
	return ret;
4354 4355
}

4356 4357
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4358
{
4359
	struct hstate *h = hstate_inode(inode);
4360
	struct resv_map *resv_map = inode_resv_map(inode);
4361
	long chg = 0;
4362
	struct hugepage_subpool *spool = subpool_inode(inode);
4363
	long gbl_reserve;
K
Ken Chen 已提交
4364

4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4376
	spin_lock(&inode->i_lock);
4377
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4378 4379
	spin_unlock(&inode->i_lock);

4380 4381 4382 4383 4384 4385
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4386 4387

	return 0;
4388
}
4389

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4401 4402
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4416
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4417 4418 4419 4420 4421 4422 4423 4424 4425
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4426 4427
		return true;
	return false;
4428 4429 4430 4431 4432 4433 4434
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4435
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4449
	spinlock_t *ptl;
4450 4451 4452 4453

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4454
	i_mmap_lock_write(mapping);
4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4472
	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4473
	if (pud_none(*pud)) {
4474 4475
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4476
		mm_inc_nr_pmds(mm);
4477
	} else {
4478
		put_page(virt_to_page(spte));
4479
	}
4480
	spin_unlock(ptl);
4481 4482
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4483
	i_mmap_unlock_write(mapping);
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4494
 * called with page table lock held.
4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4510
	mm_dec_nr_pmds(mm);
4511 4512 4513
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4514 4515 4516 4517 4518 4519
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4520 4521 4522 4523 4524

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4525
#define want_pmd_share()	(0)
4526 4527
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
4549
	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4586
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4587
		pmd_t *pmd, int flags)
4588
{
4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4601
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4617 4618 4619
	return page;
}

4620
struct page * __weak
4621
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4622
		pud_t *pud, int flags)
4623
{
4624 4625
	if (flags & FOLL_GET)
		return NULL;
4626

4627
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4628 4629
}

4630 4631
#ifdef CONFIG_MEMORY_FAILURE

4632 4633 4634
/*
 * This function is called from memory failure code.
 */
4635
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4636 4637 4638
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4639
	int ret = -EBUSY;
4640 4641

	spin_lock(&hugetlb_lock);
4642 4643 4644 4645 4646
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4647 4648 4649 4650 4651 4652 4653
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4654
		set_page_refcounted(hpage);
4655 4656 4657 4658
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4659
	spin_unlock(&hugetlb_lock);
4660
	return ret;
4661
}
4662
#endif
4663 4664 4665

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4666 4667
	bool ret = true;

4668
	VM_BUG_ON_PAGE(!PageHead(page), page);
4669
	spin_lock(&hugetlb_lock);
4670 4671 4672 4673 4674
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4675
	list_move_tail(&page->lru, list);
4676
unlock:
4677
	spin_unlock(&hugetlb_lock);
4678
	return ret;
4679 4680 4681 4682
}

void putback_active_hugepage(struct page *page)
{
4683
	VM_BUG_ON_PAGE(!PageHead(page), page);
4684
	spin_lock(&hugetlb_lock);
4685
	set_page_huge_active(page);
4686 4687 4688 4689
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}