hugetlb.c 89.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437
}

438
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 440 441
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442
	if (!(vma->vm_flags & VM_MAYSHARE))
443 444 445 446
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
447
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
464 465

	/* Shared mappings always use reserves */
466
	if (vma->vm_flags & VM_MAYSHARE)
467
		return 1;
468 469 470 471 472

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
473 474
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
475

476
	return 0;
477 478
}

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

513
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
514 515
{
	int nid = page_to_nid(page);
516
	list_move(&page->lru, &h->hugepage_freelists[nid]);
517 518
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
519 520
}

521 522 523 524 525 526 527
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
528
	list_move(&page->lru, &h->hugepage_activelist);
529
	set_page_refcounted(page);
530 531 532 533 534
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

535 536
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
537 538
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
539
{
540
	struct page *page = NULL;
541
	struct mempolicy *mpol;
542
	nodemask_t *nodemask;
543
	struct zonelist *zonelist;
544 545
	struct zone *zone;
	struct zoneref *z;
546
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
547

548 549 550 551 552
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
553
	if (!vma_has_reserves(vma, chg) &&
554
			h->free_huge_pages - h->resv_huge_pages == 0)
555
		goto err;
556

557
	/* If reserves cannot be used, ensure enough pages are in the pool */
558
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
559
		goto err;
560

561 562 563 564 565
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);

566 567
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
568 569 570
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
571 572 573 574 575
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

576
				SetPagePrivate(page);
577
				h->resv_huge_pages--;
578 579
				break;
			}
A
Andrew Morton 已提交
580
		}
L
Linus Torvalds 已提交
581
	}
582

583
	mpol_cond_put(mpol);
584 585
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
586
	return page;
587 588 589

err:
	return NULL;
L
Linus Torvalds 已提交
590 591
}

592
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
593 594
{
	int i;
595

596 597
	VM_BUG_ON(h->order >= MAX_ORDER);

598 599 600
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
601 602 603 604
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
605
	}
606
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
607 608
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
609
	arch_release_hugepage(page);
610
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
611 612
}

613 614 615 616 617 618 619 620 621 622 623
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

624 625
static void free_huge_page(struct page *page)
{
626 627 628 629
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
630
	struct hstate *h = page_hstate(page);
631
	int nid = page_to_nid(page);
632 633
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
634
	bool restore_reserve;
635

636
	set_page_private(page, 0);
637
	page->mapping = NULL;
638
	BUG_ON(page_count(page));
639
	BUG_ON(page_mapcount(page));
640
	restore_reserve = PagePrivate(page);
641 642

	spin_lock(&hugetlb_lock);
643 644
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
645 646 647
	if (restore_reserve)
		h->resv_huge_pages++;

648
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
649 650
		/* remove the page from active list */
		list_del(&page->lru);
651 652 653
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
654
	} else {
655
		arch_clear_hugepage_flags(page);
656
		enqueue_huge_page(h, page);
657
	}
658
	spin_unlock(&hugetlb_lock);
659
	hugepage_subpool_put_pages(spool, 1);
660 661
}

662
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
663
{
664
	INIT_LIST_HEAD(&page->lru);
665 666
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
667
	set_hugetlb_cgroup(page, NULL);
668 669
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
670 671 672 673
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

674 675 676 677 678 679 680 681 682 683 684
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
685
		set_page_count(p, 0);
686 687 688 689
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
690 691 692 693 694
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
695 696 697 698 699 700 701 702 703 704 705 706
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
707 708
EXPORT_SYMBOL_GPL(PageHuge);

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

726
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
727 728
{
	struct page *page;
729

730 731 732
	if (h->order >= MAX_ORDER)
		return NULL;

733
	page = alloc_pages_exact_node(nid,
734 735
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
736
		huge_page_order(h));
L
Linus Torvalds 已提交
737
	if (page) {
738
		if (arch_prepare_hugepage(page)) {
739
			__free_pages(page, huge_page_order(h));
740
			return NULL;
741
		}
742
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
743
	}
744 745 746 747

	return page;
}

748
/*
749 750 751 752 753
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
754
 */
755
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
756
{
757
	nid = next_node(nid, *nodes_allowed);
758
	if (nid == MAX_NUMNODES)
759
		nid = first_node(*nodes_allowed);
760 761 762 763 764
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

765 766 767 768 769 770 771
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

772
/*
773 774 775 776
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
777
 */
778 779
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
780
{
781 782 783 784 785 786
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
787 788

	return nid;
789 790
}

791
/*
792 793 794 795
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
796
 */
797
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
798
{
799 800 801 802 803 804
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
805 806

	return nid;
807 808
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

843 844 845 846 847 848
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
849 850
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
851
{
852
	int nr_nodes, node;
853 854
	int ret = 0;

855
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
856 857 858 859
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
860 861
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
862
			struct page *page =
863
				list_entry(h->hugepage_freelists[node].next,
864 865 866
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
867
			h->free_huge_pages_node[node]--;
868 869
			if (acct_surplus) {
				h->surplus_huge_pages--;
870
				h->surplus_huge_pages_node[node]--;
871
			}
872 873
			update_and_free_page(h, page);
			ret = 1;
874
			break;
875
		}
876
	}
877 878 879 880

	return ret;
}

881
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
882 883
{
	struct page *page;
884
	unsigned int r_nid;
885

886 887 888
	if (h->order >= MAX_ORDER)
		return NULL;

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
913
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
914 915 916
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
917 918
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
919 920 921
	}
	spin_unlock(&hugetlb_lock);

922 923 924 925 926 927 928 929
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
930

931 932
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
933
		page = NULL;
934 935
	}

936
	spin_lock(&hugetlb_lock);
937
	if (page) {
938
		INIT_LIST_HEAD(&page->lru);
939
		r_nid = page_to_nid(page);
940
		set_compound_page_dtor(page, free_huge_page);
941
		set_hugetlb_cgroup(page, NULL);
942 943 944
		/*
		 * We incremented the global counters already
		 */
945 946
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
947
		__count_vm_event(HTLB_BUDDY_PGALLOC);
948
	} else {
949 950
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
951
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
952
	}
953
	spin_unlock(&hugetlb_lock);
954 955 956 957

	return page;
}

958 959 960 961 962 963 964
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
965
	struct page *page = NULL;
966 967

	spin_lock(&hugetlb_lock);
968 969
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
970 971
	spin_unlock(&hugetlb_lock);

972
	if (!page)
973 974 975 976 977
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

978
/*
L
Lucas De Marchi 已提交
979
 * Increase the hugetlb pool such that it can accommodate a reservation
980 981
 * of size 'delta'.
 */
982
static int gather_surplus_pages(struct hstate *h, int delta)
983 984 985 986 987
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
988
	bool alloc_ok = true;
989

990
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
991
	if (needed <= 0) {
992
		h->resv_huge_pages += delta;
993
		return 0;
994
	}
995 996 997 998 999 1000 1001 1002

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1003
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1004 1005 1006 1007
		if (!page) {
			alloc_ok = false;
			break;
		}
1008 1009
		list_add(&page->lru, &surplus_list);
	}
1010
	allocated += i;
1011 1012 1013 1014 1015 1016

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1017 1018
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1029 1030
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1031
	 * needed to accommodate the reservation.  Add the appropriate number
1032
	 * of pages to the hugetlb pool and free the extras back to the buddy
1033 1034 1035
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1036 1037
	 */
	needed += allocated;
1038
	h->resv_huge_pages += delta;
1039
	ret = 0;
1040

1041
	/* Free the needed pages to the hugetlb pool */
1042
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1043 1044
		if ((--needed) < 0)
			break;
1045 1046 1047 1048 1049 1050
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1051
		enqueue_huge_page(h, page);
1052
	}
1053
free:
1054
	spin_unlock(&hugetlb_lock);
1055 1056

	/* Free unnecessary surplus pages to the buddy allocator */
1057 1058
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1059
	spin_lock(&hugetlb_lock);
1060 1061 1062 1063 1064 1065 1066 1067

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1068
 * Called with hugetlb_lock held.
1069
 */
1070 1071
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1072 1073 1074
{
	unsigned long nr_pages;

1075
	/* Uncommit the reservation */
1076
	h->resv_huge_pages -= unused_resv_pages;
1077

1078 1079 1080 1081
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1082
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1083

1084 1085
	/*
	 * We want to release as many surplus pages as possible, spread
1086 1087 1088 1089 1090
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1091 1092
	 */
	while (nr_pages--) {
1093
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1094
			break;
1095 1096 1097
	}
}

1098 1099 1100
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1101 1102 1103 1104 1105 1106
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1107
 */
1108
static long vma_needs_reservation(struct hstate *h,
1109
			struct vm_area_struct *vma, unsigned long addr)
1110 1111 1112 1113
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1114
	if (vma->vm_flags & VM_MAYSHARE) {
1115
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1116 1117 1118
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1119 1120
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1121

1122
	} else  {
1123
		long err;
1124
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125
		struct resv_map *resv = vma_resv_map(vma);
1126

1127
		err = region_chg(&resv->regions, idx, idx + 1);
1128 1129 1130 1131
		if (err < 0)
			return err;
		return 0;
	}
1132
}
1133 1134
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1135 1136 1137 1138
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1139
	if (vma->vm_flags & VM_MAYSHARE) {
1140
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1141
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1142 1143

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1144
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1145
		struct resv_map *resv = vma_resv_map(vma);
1146 1147

		/* Mark this page used in the map. */
1148
		region_add(&resv->regions, idx, idx + 1);
1149 1150 1151
	}
}

1152
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1153
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1154
{
1155
	struct hugepage_subpool *spool = subpool_vma(vma);
1156
	struct hstate *h = hstate_vma(vma);
1157
	struct page *page;
1158
	long chg;
1159 1160
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1161

1162
	idx = hstate_index(h);
1163
	/*
1164 1165 1166 1167 1168 1169
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1170
	 */
1171
	chg = vma_needs_reservation(h, vma, addr);
1172
	if (chg < 0)
1173
		return ERR_PTR(-ENOMEM);
1174 1175
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1176
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1177

1178 1179
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1180 1181
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1182 1183
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1184
	spin_lock(&hugetlb_lock);
1185
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1186
	if (!page) {
1187
		spin_unlock(&hugetlb_lock);
1188
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1189
		if (!page) {
1190 1191 1192
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1193 1194
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1195
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1196
		}
1197 1198
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1199
		/* Fall through */
K
Ken Chen 已提交
1200
	}
1201 1202
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1203

1204
	set_page_private(page, (unsigned long)spool);
1205

1206
	vma_commit_reservation(h, vma, addr);
1207
	return page;
1208 1209
}

1210
int __weak alloc_bootmem_huge_page(struct hstate *h)
1211 1212
{
	struct huge_bootmem_page *m;
1213
	int nr_nodes, node;
1214

1215
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1216 1217
		void *addr;

1218
		addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1219 1220 1221 1222 1223 1224 1225 1226 1227
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1228
			goto found;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1241 1242 1243 1244 1245 1246 1247 1248
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1249 1250 1251 1252 1253 1254 1255
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1256 1257 1258 1259 1260 1261 1262 1263 1264
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1265 1266
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1267
		prep_compound_huge_page(page, h->order);
1268
		prep_new_huge_page(h, page, page_to_nid(page));
1269 1270 1271 1272 1273 1274 1275
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1276
			adjust_managed_page_count(page, 1 << h->order);
1277 1278 1279
	}
}

1280
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1281 1282
{
	unsigned long i;
1283

1284
	for (i = 0; i < h->max_huge_pages; ++i) {
1285 1286 1287
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1288
		} else if (!alloc_fresh_huge_page(h,
1289
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1290 1291
			break;
	}
1292
	h->max_huge_pages = i;
1293 1294 1295 1296 1297 1298 1299
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1300 1301 1302
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1303 1304 1305
	}
}

A
Andi Kleen 已提交
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1317 1318 1319 1320 1321
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1322
		char buf[32];
1323
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1324 1325
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1326 1327 1328
	}
}

L
Linus Torvalds 已提交
1329
#ifdef CONFIG_HIGHMEM
1330 1331
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1332
{
1333 1334
	int i;

1335 1336 1337
	if (h->order >= MAX_ORDER)
		return;

1338
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1339
		struct page *page, *next;
1340 1341 1342
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1343
				return;
L
Linus Torvalds 已提交
1344 1345 1346
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1347
			update_and_free_page(h, page);
1348 1349
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1350 1351 1352 1353
		}
	}
}
#else
1354 1355
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1356 1357 1358 1359
{
}
#endif

1360 1361 1362 1363 1364
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1365 1366
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1367
{
1368
	int nr_nodes, node;
1369 1370 1371

	VM_BUG_ON(delta != -1 && delta != 1);

1372 1373 1374 1375
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1376
		}
1377 1378 1379 1380 1381
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1382
		}
1383 1384
	}
	return 0;
1385

1386 1387 1388 1389
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1390 1391
}

1392
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1393 1394
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1395
{
1396
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1397

1398 1399 1400
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1401 1402 1403 1404
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1405 1406 1407 1408 1409 1410
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1411
	 */
L
Linus Torvalds 已提交
1412
	spin_lock(&hugetlb_lock);
1413
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1414
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1415 1416 1417
			break;
	}

1418
	while (count > persistent_huge_pages(h)) {
1419 1420 1421 1422 1423 1424
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1425
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1426 1427 1428 1429
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1430 1431 1432
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1433 1434 1435 1436 1437 1438 1439 1440
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1441 1442 1443 1444 1445 1446 1447 1448
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1449
	 */
1450
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1451
	min_count = max(count, min_count);
1452
	try_to_free_low(h, min_count, nodes_allowed);
1453
	while (min_count < persistent_huge_pages(h)) {
1454
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1455 1456
			break;
	}
1457
	while (count < persistent_huge_pages(h)) {
1458
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1459 1460 1461
			break;
	}
out:
1462
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1463
	spin_unlock(&hugetlb_lock);
1464
	return ret;
L
Linus Torvalds 已提交
1465 1466
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1477 1478 1479
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1480 1481
{
	int i;
1482

1483
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1484 1485 1486
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1487
			return &hstates[i];
1488 1489 1490
		}

	return kobj_to_node_hstate(kobj, nidp);
1491 1492
}

1493
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1494 1495
					struct kobj_attribute *attr, char *buf)
{
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1507
}
1508

1509 1510 1511
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1512 1513
{
	int err;
1514
	int nid;
1515
	unsigned long count;
1516
	struct hstate *h;
1517
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1518

1519
	err = kstrtoul(buf, 10, &count);
1520
	if (err)
1521
		goto out;
1522

1523
	h = kobj_to_hstate(kobj, &nid);
1524 1525 1526 1527 1528
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1529 1530 1531 1532 1533 1534 1535
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1536
			nodes_allowed = &node_states[N_MEMORY];
1537 1538 1539 1540 1541 1542 1543 1544 1545
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1546
		nodes_allowed = &node_states[N_MEMORY];
1547

1548
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1549

1550
	if (nodes_allowed != &node_states[N_MEMORY])
1551 1552 1553
		NODEMASK_FREE(nodes_allowed);

	return len;
1554 1555 1556
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1569 1570 1571
}
HSTATE_ATTR(nr_hugepages);

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1593 1594 1595
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1596
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1597 1598
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1599

1600 1601 1602 1603 1604
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1605
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1606

1607 1608 1609
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1610
	err = kstrtoul(buf, 10, &input);
1611
	if (err)
1612
		return err;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1636 1637 1638 1639 1640 1641
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1642
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1643 1644 1645 1646 1647 1648 1649
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1661 1662 1663 1664 1665 1666 1667 1668 1669
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1670 1671 1672
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1673 1674 1675 1676 1677 1678 1679
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1680 1681 1682
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1683 1684
{
	int retval;
1685
	int hi = hstate_index(h);
1686

1687 1688
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1689 1690
		return -ENOMEM;

1691
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1692
	if (retval)
1693
		kobject_put(hstate_kobjs[hi]);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1708 1709
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1710
		if (err)
1711
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1712 1713 1714
	}
}

1715 1716 1717 1718
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1719 1720 1721
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1722 1723 1724 1725 1726 1727 1728 1729 1730
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1731
 * A subset of global hstate attributes for node devices
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1745
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1768
 * Unregister hstate attributes from a single node device.
1769 1770
 * No-op if no hstate attributes attached.
 */
1771
static void hugetlb_unregister_node(struct node *node)
1772 1773
{
	struct hstate *h;
1774
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1775 1776

	if (!nhs->hugepages_kobj)
1777
		return;		/* no hstate attributes */
1778

1779 1780 1781 1782 1783
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1784
		}
1785
	}
1786 1787 1788 1789 1790 1791

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1792
 * hugetlb module exit:  unregister hstate attributes from node devices
1793 1794 1795 1796 1797 1798 1799
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1800
	 * disable node device registrations.
1801 1802 1803 1804 1805 1806 1807
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1808
		hugetlb_unregister_node(node_devices[nid]);
1809 1810 1811
}

/*
1812
 * Register hstate attributes for a single node device.
1813 1814
 * No-op if attributes already registered.
 */
1815
static void hugetlb_register_node(struct node *node)
1816 1817
{
	struct hstate *h;
1818
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1819 1820 1821 1822 1823 1824
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1825
							&node->dev.kobj);
1826 1827 1828 1829 1830 1831 1832 1833
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1834 1835
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1836 1837 1838 1839 1840 1841 1842
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1843
 * hugetlb init time:  register hstate attributes for all registered node
1844 1845
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1846 1847 1848 1849 1850
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1851
	for_each_node_state(nid, N_MEMORY) {
1852
		struct node *node = node_devices[nid];
1853
		if (node->dev.id == nid)
1854 1855 1856 1857
			hugetlb_register_node(node);
	}

	/*
1858
	 * Let the node device driver know we're here so it can
1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1880 1881 1882 1883
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1884 1885
	hugetlb_unregister_all_nodes();

1886
	for_each_hstate(h) {
1887
		kobject_put(hstate_kobjs[hstate_index(h)]);
1888 1889 1890 1891 1892 1893 1894 1895
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1896 1897 1898 1899 1900 1901
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1902

1903 1904 1905 1906
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1907
	}
1908
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1909 1910
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1911 1912

	hugetlb_init_hstates();
1913
	gather_bootmem_prealloc();
1914 1915 1916
	report_hugepages();

	hugetlb_sysfs_init();
1917
	hugetlb_register_all_nodes();
1918
	hugetlb_cgroup_file_init();
1919

1920 1921 1922 1923 1924 1925 1926 1927
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1928 1929
	unsigned long i;

1930
	if (size_to_hstate(PAGE_SIZE << order)) {
1931
		pr_warning("hugepagesz= specified twice, ignoring\n");
1932 1933
		return;
	}
1934
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1935
	BUG_ON(order == 0);
1936
	h = &hstates[hugetlb_max_hstate++];
1937 1938
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1939 1940 1941 1942
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1943
	INIT_LIST_HEAD(&h->hugepage_activelist);
1944 1945
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1946 1947
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1948

1949 1950 1951
	parsed_hstate = h;
}

1952
static int __init hugetlb_nrpages_setup(char *s)
1953 1954
{
	unsigned long *mhp;
1955
	static unsigned long *last_mhp;
1956 1957

	/*
1958
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1959 1960
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1961
	if (!hugetlb_max_hstate)
1962 1963 1964 1965
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1966
	if (mhp == last_mhp) {
1967 1968
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
1969 1970 1971
		return 1;
	}

1972 1973 1974
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1975 1976 1977 1978 1979
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1980
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1981 1982 1983 1984
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1985 1986
	return 1;
}
1987 1988 1989 1990 1991 1992 1993 1994
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1995

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2008 2009 2010
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2011
{
2012 2013
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2014
	int ret;
2015

2016
	tmp = h->max_huge_pages;
2017

2018 2019 2020
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2021 2022
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2023 2024 2025
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2026

2027
	if (write) {
2028 2029
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2030 2031 2032
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2033
			nodes_allowed = &node_states[N_MEMORY];
2034 2035 2036
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2037
		if (nodes_allowed != &node_states[N_MEMORY])
2038 2039
			NODEMASK_FREE(nodes_allowed);
	}
2040 2041
out:
	return ret;
L
Linus Torvalds 已提交
2042
}
2043

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2061
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2062
			void __user *buffer,
2063 2064
			size_t *length, loff_t *ppos)
{
2065
	proc_dointvec(table, write, buffer, length, ppos);
2066 2067 2068 2069 2070 2071 2072
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2073
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2074
			void __user *buffer,
2075 2076
			size_t *length, loff_t *ppos)
{
2077
	struct hstate *h = &default_hstate;
2078
	unsigned long tmp;
2079
	int ret;
2080

2081
	tmp = h->nr_overcommit_huge_pages;
2082

2083 2084 2085
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2086 2087
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2088 2089 2090
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2091 2092 2093 2094 2095 2096

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2097 2098
out:
	return ret;
2099 2100
}

L
Linus Torvalds 已提交
2101 2102
#endif /* CONFIG_SYSCTL */

2103
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2104
{
2105
	struct hstate *h = &default_hstate;
2106
	seq_printf(m,
2107 2108 2109 2110 2111
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2112 2113 2114 2115 2116
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2117 2118 2119 2120
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2121
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2122 2123
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2124 2125
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2126 2127 2128
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2129 2130
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2146 2147 2148
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2149 2150 2151 2152 2153 2154
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2155 2156
}

2157
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2180
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2181 2182
			goto out;

2183 2184
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2185 2186 2187 2188 2189 2190
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2191
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2192 2193 2194 2195 2196 2197

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2198 2199
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2200
	struct resv_map *resv = vma_resv_map(vma);
2201 2202 2203 2204 2205

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2206
	 * has a reference to the reservation map it cannot disappear until
2207 2208 2209
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2210 2211
	if (resv)
		kref_get(&resv->refs);
2212 2213
}

2214 2215
static void resv_map_put(struct vm_area_struct *vma)
{
2216
	struct resv_map *resv = vma_resv_map(vma);
2217

2218
	if (!resv)
2219
		return;
2220
	kref_put(&resv->refs, resv_map_release);
2221 2222
}

2223 2224
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2225
	struct hstate *h = hstate_vma(vma);
2226
	struct resv_map *resv = vma_resv_map(vma);
2227
	struct hugepage_subpool *spool = subpool_vma(vma);
2228 2229 2230 2231
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2232
	if (resv) {
2233 2234
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2235 2236

		reserve = (end - start) -
2237
			region_count(&resv->regions, start, end);
2238

2239
		resv_map_put(vma);
2240

2241
		if (reserve) {
2242
			hugetlb_acct_memory(h, -reserve);
2243
			hugepage_subpool_put_pages(spool, reserve);
2244
		}
2245
	}
2246 2247
}

L
Linus Torvalds 已提交
2248 2249 2250 2251 2252 2253
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2254
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2255 2256
{
	BUG();
N
Nick Piggin 已提交
2257
	return 0;
L
Linus Torvalds 已提交
2258 2259
}

2260
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2261
	.fault = hugetlb_vm_op_fault,
2262
	.open = hugetlb_vm_op_open,
2263
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2264 2265
};

2266 2267
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2268 2269 2270
{
	pte_t entry;

2271
	if (writable) {
2272 2273
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2274
	} else {
2275 2276
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2277 2278 2279
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2280
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2281 2282 2283 2284

	return entry;
}

2285 2286 2287 2288 2289
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2290
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2291
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2292
		update_mmu_cache(vma, address, ptep);
2293 2294 2295
}


D
David Gibson 已提交
2296 2297 2298 2299 2300
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2301
	unsigned long addr;
2302
	int cow;
2303 2304
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2305 2306

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2307

2308
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2309 2310 2311
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2312
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2313 2314
		if (!dst_pte)
			goto nomem;
2315 2316 2317 2318 2319

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2320
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2321
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2322
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2323
			if (cow)
2324 2325
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2326 2327
			ptepage = pte_page(entry);
			get_page(ptepage);
2328
			page_dup_rmap(ptepage);
2329 2330 2331
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2332
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2333 2334 2335 2336 2337 2338 2339
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2340 2341 2342 2343 2344 2345 2346
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2347
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2348
		return 1;
2349
	else
N
Naoya Horiguchi 已提交
2350 2351 2352
		return 0;
}

2353 2354 2355 2356 2357 2358 2359
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2360
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2361
		return 1;
2362
	else
2363 2364 2365
		return 0;
}

2366 2367 2368
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2369
{
2370
	int force_flush = 0;
D
David Gibson 已提交
2371 2372
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2373
	pte_t *ptep;
D
David Gibson 已提交
2374 2375
	pte_t pte;
	struct page *page;
2376 2377
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2378 2379
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2380

D
David Gibson 已提交
2381
	WARN_ON(!is_vm_hugetlb_page(vma));
2382 2383
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2384

2385
	tlb_start_vma(tlb, vma);
2386
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2387
again:
2388
	spin_lock(&mm->page_table_lock);
2389
	for (address = start; address < end; address += sz) {
2390
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2391
		if (!ptep)
2392 2393
			continue;

2394 2395 2396
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2397 2398 2399 2400 2401 2402 2403
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2404
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2405
			huge_pte_clear(mm, address, ptep);
2406
			continue;
2407
		}
2408 2409

		page = pte_page(pte);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2427
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2428
		tlb_remove_tlb_entry(tlb, ptep, address);
2429
		if (huge_pte_dirty(pte))
2430
			set_page_dirty(page);
2431

2432 2433 2434 2435
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2436 2437 2438
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2439
	}
2440
	spin_unlock(&mm->page_table_lock);
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2451
	}
2452
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2453
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2454
}
D
David Gibson 已提交
2455

2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2475
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2476
			  unsigned long end, struct page *ref_page)
2477
{
2478 2479 2480 2481 2482
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2483
	tlb_gather_mmu(&tlb, mm, start, end);
2484 2485
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2486 2487
}

2488 2489 2490 2491 2492 2493
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2494 2495
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2496
{
2497
	struct hstate *h = hstate_vma(vma);
2498 2499 2500 2501 2502 2503 2504 2505
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2506
	address = address & huge_page_mask(h);
2507 2508
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2509
	mapping = file_inode(vma->vm_file)->i_mapping;
2510

2511 2512 2513 2514 2515
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2516
	mutex_lock(&mapping->i_mmap_mutex);
2517
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2530 2531
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2532
	}
2533
	mutex_unlock(&mapping->i_mmap_mutex);
2534 2535 2536 2537

	return 1;
}

2538 2539
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2540 2541 2542
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2543
 */
2544
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2545 2546
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2547
{
2548
	struct hstate *h = hstate_vma(vma);
2549
	struct page *old_page, *new_page;
2550
	int outside_reserve = 0;
2551 2552
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2553 2554 2555

	old_page = pte_page(pte);

2556
retry_avoidcopy:
2557 2558
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2559 2560
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2561
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2562
		return 0;
2563 2564
	}

2565 2566 2567 2568 2569 2570 2571 2572 2573
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2574
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2575 2576 2577
			old_page != pagecache_page)
		outside_reserve = 1;

2578
	page_cache_get(old_page);
2579 2580 2581

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2582
	new_page = alloc_huge_page(vma, address, outside_reserve);
2583

2584
	if (IS_ERR(new_page)) {
2585
		long err = PTR_ERR(new_page);
2586
		page_cache_release(old_page);
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2599
				spin_lock(&mm->page_table_lock);
2600 2601 2602 2603 2604 2605 2606 2607
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2608 2609 2610 2611
			}
			WARN_ON_ONCE(1);
		}

2612 2613
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2614 2615 2616 2617
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2618 2619
	}

2620 2621 2622 2623
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2624
	if (unlikely(anon_vma_prepare(vma))) {
2625 2626
		page_cache_release(new_page);
		page_cache_release(old_page);
2627 2628
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2629
		return VM_FAULT_OOM;
2630
	}
2631

A
Andrea Arcangeli 已提交
2632 2633
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2634
	__SetPageUptodate(new_page);
2635

2636 2637 2638
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2639 2640 2641 2642 2643
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2644
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2645
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2646 2647
		ClearPagePrivate(new_page);

2648
		/* Break COW */
2649
		huge_ptep_clear_flush(vma, address, ptep);
2650 2651
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2652
		page_remove_rmap(old_page);
2653
		hugepage_add_new_anon_rmap(new_page, vma, address);
2654 2655 2656
		/* Make the old page be freed below */
		new_page = old_page;
	}
2657 2658
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2659 2660
	page_cache_release(new_page);
	page_cache_release(old_page);
2661 2662 2663

	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
N
Nick Piggin 已提交
2664
	return 0;
2665 2666
}

2667
/* Return the pagecache page at a given address within a VMA */
2668 2669
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2670 2671
{
	struct address_space *mapping;
2672
	pgoff_t idx;
2673 2674

	mapping = vma->vm_file->f_mapping;
2675
	idx = vma_hugecache_offset(h, vma, address);
2676 2677 2678 2679

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2680 2681 2682 2683 2684
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2700
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2701
			unsigned long address, pte_t *ptep, unsigned int flags)
2702
{
2703
	struct hstate *h = hstate_vma(vma);
2704
	int ret = VM_FAULT_SIGBUS;
2705
	int anon_rmap = 0;
2706
	pgoff_t idx;
A
Adam Litke 已提交
2707 2708 2709
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2710
	pte_t new_pte;
A
Adam Litke 已提交
2711

2712 2713 2714
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2715
	 * COW. Warn that such a situation has occurred as it may not be obvious
2716 2717
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2718 2719
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2720 2721 2722
		return ret;
	}

A
Adam Litke 已提交
2723
	mapping = vma->vm_file->f_mapping;
2724
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2725 2726 2727 2728 2729

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2730 2731 2732
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2733
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2734 2735
		if (idx >= size)
			goto out;
2736
		page = alloc_huge_page(vma, address, 0);
2737
		if (IS_ERR(page)) {
2738 2739 2740 2741 2742
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2743 2744
			goto out;
		}
A
Andrea Arcangeli 已提交
2745
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2746
		__SetPageUptodate(page);
2747

2748
		if (vma->vm_flags & VM_MAYSHARE) {
2749
			int err;
K
Ken Chen 已提交
2750
			struct inode *inode = mapping->host;
2751 2752 2753 2754 2755 2756 2757 2758

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2759
			ClearPagePrivate(page);
K
Ken Chen 已提交
2760 2761

			spin_lock(&inode->i_lock);
2762
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2763
			spin_unlock(&inode->i_lock);
2764
		} else {
2765
			lock_page(page);
2766 2767 2768 2769
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2770
			anon_rmap = 1;
2771
		}
2772
	} else {
2773 2774 2775 2776 2777 2778
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2779
			ret = VM_FAULT_HWPOISON |
2780
				VM_FAULT_SET_HINDEX(hstate_index(h));
2781 2782
			goto backout_unlocked;
		}
2783
	}
2784

2785 2786 2787 2788 2789 2790
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2791
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2792 2793 2794 2795
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2796

2797
	spin_lock(&mm->page_table_lock);
2798
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2799 2800 2801
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2802
	ret = 0;
2803
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2804 2805
		goto backout;

2806 2807
	if (anon_rmap) {
		ClearPagePrivate(page);
2808
		hugepage_add_new_anon_rmap(page, vma, address);
2809
	}
2810 2811
	else
		page_dup_rmap(page);
2812 2813 2814 2815
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2816
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2817
		/* Optimization, do the COW without a second fault */
2818
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2819 2820
	}

2821
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2822 2823
	unlock_page(page);
out:
2824
	return ret;
A
Adam Litke 已提交
2825 2826 2827

backout:
	spin_unlock(&mm->page_table_lock);
2828
backout_unlocked:
A
Adam Litke 已提交
2829 2830 2831
	unlock_page(page);
	put_page(page);
	goto out;
2832 2833
}

2834
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2835
			unsigned long address, unsigned int flags)
2836 2837 2838
{
	pte_t *ptep;
	pte_t entry;
2839
	int ret;
2840
	struct page *page = NULL;
2841
	struct page *pagecache_page = NULL;
2842
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2843
	struct hstate *h = hstate_vma(vma);
2844

2845 2846
	address &= huge_page_mask(h);

2847 2848 2849
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2850
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2851
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2852 2853
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2854
			return VM_FAULT_HWPOISON_LARGE |
2855
				VM_FAULT_SET_HINDEX(hstate_index(h));
2856 2857
	}

2858
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2859 2860 2861
	if (!ptep)
		return VM_FAULT_OOM;

2862 2863 2864 2865 2866 2867
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2868 2869
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2870
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2871
		goto out_mutex;
2872
	}
2873

N
Nick Piggin 已提交
2874
	ret = 0;
2875

2876 2877 2878 2879 2880 2881 2882 2883
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2884
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2885 2886
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2887
			goto out_mutex;
2888
		}
2889

2890
		if (!(vma->vm_flags & VM_MAYSHARE))
2891 2892 2893 2894
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2895 2896 2897 2898 2899 2900 2901 2902
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2903
	get_page(page);
2904
	if (page != pagecache_page)
2905 2906
		lock_page(page);

2907 2908
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2909 2910 2911 2912
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2913
	if (flags & FAULT_FLAG_WRITE) {
2914
		if (!huge_pte_write(entry)) {
2915 2916
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2917 2918
			goto out_page_table_lock;
		}
2919
		entry = huge_pte_mkdirty(entry);
2920 2921
	}
	entry = pte_mkyoung(entry);
2922 2923
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2924
		update_mmu_cache(vma, address, ptep);
2925 2926

out_page_table_lock:
2927
	spin_unlock(&mm->page_table_lock);
2928 2929 2930 2931 2932

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2933 2934
	if (page != pagecache_page)
		unlock_page(page);
2935
	put_page(page);
2936

2937
out_mutex:
2938
	mutex_unlock(&hugetlb_instantiation_mutex);
2939 2940

	return ret;
2941 2942
}

2943 2944 2945 2946
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
2947
{
2948 2949
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
2950
	unsigned long remainder = *nr_pages;
2951
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2952

2953
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2954
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2955
		pte_t *pte;
H
Hugh Dickins 已提交
2956
		int absent;
A
Adam Litke 已提交
2957
		struct page *page;
D
David Gibson 已提交
2958

A
Adam Litke 已提交
2959 2960
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2961
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2962 2963
		 * first, for the page indexing below to work.
		 */
2964
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2965 2966 2967 2968
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2969 2970 2971 2972
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2973
		 */
H
Hugh Dickins 已提交
2974 2975
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2976 2977 2978
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2991 2992
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2993
			int ret;
D
David Gibson 已提交
2994

A
Adam Litke 已提交
2995
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2996 2997
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2998
			spin_lock(&mm->page_table_lock);
2999
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3000
				continue;
D
David Gibson 已提交
3001

A
Adam Litke 已提交
3002 3003 3004 3005
			remainder = 0;
			break;
		}

3006
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3007
		page = pte_page(huge_ptep_get(pte));
3008
same_page:
3009
		if (pages) {
H
Hugh Dickins 已提交
3010
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
3011
			get_page(pages[i]);
3012
		}
D
David Gibson 已提交
3013 3014 3015 3016 3017

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3018
		++pfn_offset;
D
David Gibson 已提交
3019 3020
		--remainder;
		++i;
3021
		if (vaddr < vma->vm_end && remainder &&
3022
				pfn_offset < pages_per_huge_page(h)) {
3023 3024 3025 3026 3027 3028
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3029
	}
3030
	spin_unlock(&mm->page_table_lock);
3031
	*nr_pages = remainder;
D
David Gibson 已提交
3032 3033
	*position = vaddr;

H
Hugh Dickins 已提交
3034
	return i ? i : -EFAULT;
D
David Gibson 已提交
3035
}
3036

3037
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3038 3039 3040 3041 3042 3043
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3044
	struct hstate *h = hstate_vma(vma);
3045
	unsigned long pages = 0;
3046 3047 3048 3049

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3050
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3051
	spin_lock(&mm->page_table_lock);
3052
	for (; address < end; address += huge_page_size(h)) {
3053 3054 3055
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3056 3057
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3058
			continue;
3059
		}
3060
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3061
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3062
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3063
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3064
			set_huge_pte_at(mm, address, ptep, pte);
3065
			pages++;
3066 3067 3068
		}
	}
	spin_unlock(&mm->page_table_lock);
3069 3070 3071 3072 3073 3074
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3075
	flush_tlb_range(vma, start, end);
3076
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3077 3078

	return pages << h->order;
3079 3080
}

3081 3082
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3083
					struct vm_area_struct *vma,
3084
					vm_flags_t vm_flags)
3085
{
3086
	long ret, chg;
3087
	struct hstate *h = hstate_inode(inode);
3088
	struct hugepage_subpool *spool = subpool_inode(inode);
3089

3090 3091 3092
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3093
	 * without using reserves
3094
	 */
3095
	if (vm_flags & VM_NORESERVE)
3096 3097
		return 0;

3098 3099 3100 3101 3102 3103
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3104
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3105
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3106 3107 3108 3109 3110
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3111
		chg = to - from;
3112

3113 3114 3115 3116
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3117 3118 3119 3120
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3121

3122
	/* There must be enough pages in the subpool for the mapping */
3123 3124 3125 3126
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3127 3128

	/*
3129
	 * Check enough hugepages are available for the reservation.
3130
	 * Hand the pages back to the subpool if there are not
3131
	 */
3132
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3133
	if (ret < 0) {
3134
		hugepage_subpool_put_pages(spool, chg);
3135
		goto out_err;
K
Ken Chen 已提交
3136
	}
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3149
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3150
		region_add(&inode->i_mapping->private_list, from, to);
3151
	return 0;
3152
out_err:
3153 3154
	if (vma)
		resv_map_put(vma);
3155
	return ret;
3156 3157 3158 3159
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3160
	struct hstate *h = hstate_inode(inode);
3161
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3162
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3163 3164

	spin_lock(&inode->i_lock);
3165
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3166 3167
	spin_unlock(&inode->i_lock);

3168
	hugepage_subpool_put_pages(spool, (chg - freed));
3169
	hugetlb_acct_memory(h, -(chg - freed));
3170
}
3171

3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3292 3293 3294 3295 3296 3297 3298
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3299 3300
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3382 3383
#ifdef CONFIG_MEMORY_FAILURE

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3398 3399 3400 3401
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3402
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3403 3404 3405
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3406
	int ret = -EBUSY;
3407 3408

	spin_lock(&hugetlb_lock);
3409
	if (is_hugepage_on_freelist(hpage)) {
3410 3411 3412 3413 3414 3415 3416
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3417
		set_page_refcounted(hpage);
3418 3419 3420 3421
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3422
	spin_unlock(&hugetlb_lock);
3423
	return ret;
3424
}
3425
#endif
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	VM_BUG_ON(!PageHead(page));
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON(!PageHead(page));
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}