hugetlb.c 88.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
130
	return subpool_inode(file_inode(vma->vm_file));
131 132
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137
 *
 * The region data structures are protected by a combination of the mmap_sem
138
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
139
 * must either hold the mmap_sem for write, or the mmap_sem for read and
140
 * the hugetlb_instantiation_mutex:
141
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

322
	return 1UL << huge_page_shift(hstate);
323
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436 437
}

/* Decrement the reserved pages in the hugepage pool by one */
438 439
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
440
{
441 442 443
	if (vma->vm_flags & VM_NORESERVE)
		return;

444
	if (vma->vm_flags & VM_MAYSHARE) {
445
		/* Shared mappings always use reserves */
446
		h->resv_huge_pages--;
447
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 449 450 451
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
452
		h->resv_huge_pages--;
453 454 455
	}
}

456
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 458 459
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460
	if (!(vma->vm_flags & VM_MAYSHARE))
461 462 463 464
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
465
static int vma_has_reserves(struct vm_area_struct *vma)
466
{
467
	if (vma->vm_flags & VM_MAYSHARE)
468 469 470 471
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

508
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
509 510
{
	int nid = page_to_nid(page);
511
	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 513
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
514 515
}

516 517 518 519 520 521 522
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523
	list_move(&page->lru, &h->hugepage_activelist);
524
	set_page_refcounted(page);
525 526 527 528 529
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

530 531
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
532
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
533
{
534
	struct page *page = NULL;
535
	struct mempolicy *mpol;
536
	nodemask_t *nodemask;
537
	struct zonelist *zonelist;
538 539
	struct zone *zone;
	struct zoneref *z;
540
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
541

542 543 544 545 546
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
547
	if (!vma_has_reserves(vma) &&
548
			h->free_huge_pages - h->resv_huge_pages == 0)
549
		goto err;
550

551
	/* If reserves cannot be used, ensure enough pages are in the pool */
552
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
553
		goto err;
554

555 556 557 558 559
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);

560 561
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
562 563 564 565 566 567 568
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
569
		}
L
Linus Torvalds 已提交
570
	}
571

572
	mpol_cond_put(mpol);
573 574
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
575
	return page;
576 577 578

err:
	return NULL;
L
Linus Torvalds 已提交
579 580
}

581
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
582 583
{
	int i;
584

585 586
	VM_BUG_ON(h->order >= MAX_ORDER);

587 588 589
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
590 591 592 593
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
594
	}
595
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
596 597
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
598
	arch_release_hugepage(page);
599
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
600 601
}

602 603 604 605 606 607 608 609 610 611 612
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

613 614
static void free_huge_page(struct page *page)
{
615 616 617 618
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
619
	struct hstate *h = page_hstate(page);
620
	int nid = page_to_nid(page);
621 622
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
623

624
	set_page_private(page, 0);
625
	page->mapping = NULL;
626
	BUG_ON(page_count(page));
627
	BUG_ON(page_mapcount(page));
628 629

	spin_lock(&hugetlb_lock);
630 631
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
632
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 634
		/* remove the page from active list */
		list_del(&page->lru);
635 636 637
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
638
	} else {
639
		arch_clear_hugepage_flags(page);
640
		enqueue_huge_page(h, page);
641
	}
642
	spin_unlock(&hugetlb_lock);
643
	hugepage_subpool_put_pages(spool, 1);
644 645
}

646
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647
{
648
	INIT_LIST_HEAD(&page->lru);
649 650
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
651
	set_hugetlb_cgroup(page, NULL);
652 653
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
654 655 656 657
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

658 659 660 661 662 663 664 665 666 667 668
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
669
		set_page_count(p, 0);
670 671 672 673
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
674 675 676 677 678
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
679 680 681 682 683 684 685 686 687 688 689 690
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
691 692
EXPORT_SYMBOL_GPL(PageHuge);

693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

710
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
711 712
{
	struct page *page;
713

714 715 716
	if (h->order >= MAX_ORDER)
		return NULL;

717
	page = alloc_pages_exact_node(nid,
718 719
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
720
		huge_page_order(h));
L
Linus Torvalds 已提交
721
	if (page) {
722
		if (arch_prepare_hugepage(page)) {
723
			__free_pages(page, huge_page_order(h));
724
			return NULL;
725
		}
726
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
727
	}
728 729 730 731

	return page;
}

732
/*
733 734 735 736 737
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
738
 */
739
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
740
{
741
	nid = next_node(nid, *nodes_allowed);
742
	if (nid == MAX_NUMNODES)
743
		nid = first_node(*nodes_allowed);
744 745 746 747 748
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

749 750 751 752 753 754 755
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

756
/*
757 758 759 760
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
761
 */
762 763
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
764
{
765 766 767 768 769 770
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
771 772

	return nid;
773 774
}

775
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
776 777 778 779 780 781
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

782
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
783
	next_nid = start_nid;
784 785

	do {
786
		page = alloc_fresh_huge_page_node(h, next_nid);
787
		if (page) {
788
			ret = 1;
789 790
			break;
		}
791
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
792
	} while (next_nid != start_nid);
793

794 795 796 797 798
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

799
	return ret;
L
Linus Torvalds 已提交
800 801
}

802
/*
803 804 805 806
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
807
 */
808
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
809
{
810 811 812 813 814 815
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
816 817

	return nid;
818 819 820 821 822 823 824 825
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
826 827
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
828 829 830 831 832
{
	int start_nid;
	int next_nid;
	int ret = 0;

833
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
834 835 836
	next_nid = start_nid;

	do {
837 838 839 840 841 842
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
843 844 845 846 847 848
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
849 850 851 852
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
853 854
			update_and_free_page(h, page);
			ret = 1;
855
			break;
856
		}
857
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
858
	} while (next_nid != start_nid);
859 860 861 862

	return ret;
}

863
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
864 865
{
	struct page *page;
866
	unsigned int r_nid;
867

868 869 870
	if (h->order >= MAX_ORDER)
		return NULL;

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
895
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
896 897 898
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
899 900
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
901 902 903
	}
	spin_unlock(&hugetlb_lock);

904 905 906 907 908 909 910 911
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
912

913 914
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
915
		page = NULL;
916 917
	}

918
	spin_lock(&hugetlb_lock);
919
	if (page) {
920
		INIT_LIST_HEAD(&page->lru);
921
		r_nid = page_to_nid(page);
922
		set_compound_page_dtor(page, free_huge_page);
923
		set_hugetlb_cgroup(page, NULL);
924 925 926
		/*
		 * We incremented the global counters already
		 */
927 928
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
929
		__count_vm_event(HTLB_BUDDY_PGALLOC);
930
	} else {
931 932
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
933
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
934
	}
935
	spin_unlock(&hugetlb_lock);
936 937 938 939

	return page;
}

940 941 942 943 944 945 946 947 948 949 950 951 952
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

953
	if (!page)
954 955 956 957 958
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

959
/*
L
Lucas De Marchi 已提交
960
 * Increase the hugetlb pool such that it can accommodate a reservation
961 962
 * of size 'delta'.
 */
963
static int gather_surplus_pages(struct hstate *h, int delta)
964 965 966 967 968
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
969
	bool alloc_ok = true;
970

971
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
972
	if (needed <= 0) {
973
		h->resv_huge_pages += delta;
974
		return 0;
975
	}
976 977 978 979 980 981 982 983

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
984
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
985 986 987 988
		if (!page) {
			alloc_ok = false;
			break;
		}
989 990
		list_add(&page->lru, &surplus_list);
	}
991
	allocated += i;
992 993 994 995 996 997

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
998 999
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1010 1011
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1012
	 * needed to accommodate the reservation.  Add the appropriate number
1013
	 * of pages to the hugetlb pool and free the extras back to the buddy
1014 1015 1016
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1017 1018
	 */
	needed += allocated;
1019
	h->resv_huge_pages += delta;
1020
	ret = 0;
1021

1022
	/* Free the needed pages to the hugetlb pool */
1023
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1024 1025
		if ((--needed) < 0)
			break;
1026 1027 1028 1029 1030 1031
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1032
		enqueue_huge_page(h, page);
1033
	}
1034
free:
1035
	spin_unlock(&hugetlb_lock);
1036 1037 1038 1039

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1040
			put_page(page);
1041
		}
1042
	}
1043
	spin_lock(&hugetlb_lock);
1044 1045 1046 1047 1048 1049 1050 1051

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1052
 * Called with hugetlb_lock held.
1053
 */
1054 1055
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1056 1057 1058
{
	unsigned long nr_pages;

1059
	/* Uncommit the reservation */
1060
	h->resv_huge_pages -= unused_resv_pages;
1061

1062 1063 1064 1065
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1066
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1067

1068 1069
	/*
	 * We want to release as many surplus pages as possible, spread
1070 1071 1072 1073 1074
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1075 1076
	 */
	while (nr_pages--) {
1077
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1078
			break;
1079 1080 1081
	}
}

1082 1083 1084
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1085 1086 1087 1088 1089 1090
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1091
 */
1092
static long vma_needs_reservation(struct hstate *h,
1093
			struct vm_area_struct *vma, unsigned long addr)
1094 1095 1096 1097
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1098
	if (vma->vm_flags & VM_MAYSHARE) {
1099
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1100 1101 1102
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1103 1104
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1105

1106
	} else  {
1107
		long err;
1108
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1109 1110 1111 1112 1113 1114 1115
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1116
}
1117 1118
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1119 1120 1121 1122
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1123
	if (vma->vm_flags & VM_MAYSHARE) {
1124
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1125
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1126 1127

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1128
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1129 1130 1131 1132
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1133 1134 1135
	}
}

1136
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1137
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1138
{
1139
	struct hugepage_subpool *spool = subpool_vma(vma);
1140
	struct hstate *h = hstate_vma(vma);
1141
	struct page *page;
1142
	long chg;
1143 1144
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1145

1146
	idx = hstate_index(h);
1147
	/*
1148 1149 1150 1151 1152 1153
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1154
	 */
1155
	chg = vma_needs_reservation(h, vma, addr);
1156
	if (chg < 0)
1157
		return ERR_PTR(-ENOMEM);
1158
	if (chg)
1159
		if (hugepage_subpool_get_pages(spool, chg))
1160
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1161

1162 1163 1164 1165 1166
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1167
	spin_lock(&hugetlb_lock);
1168
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1169
	if (!page) {
1170
		spin_unlock(&hugetlb_lock);
1171
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1172
		if (!page) {
1173 1174 1175
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1176
			hugepage_subpool_put_pages(spool, chg);
1177
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1178
		}
1179 1180
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1181
		/* Fall through */
K
Ken Chen 已提交
1182
	}
1183 1184
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1185

1186
	set_page_private(page, (unsigned long)spool);
1187

1188
	vma_commit_reservation(h, vma, addr);
1189
	return page;
1190 1191
}

1192
int __weak alloc_bootmem_huge_page(struct hstate *h)
1193 1194
{
	struct huge_bootmem_page *m;
1195
	int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1196 1197 1198 1199 1200

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1201
				NODE_DATA(hstate_next_node_to_alloc(h,
1202
						&node_states[N_MEMORY])),
1203 1204 1205 1206 1207 1208 1209 1210 1211
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1212
			goto found;
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1226 1227 1228 1229 1230 1231 1232 1233
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1234 1235 1236 1237 1238 1239 1240
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1241 1242 1243 1244 1245 1246 1247 1248 1249
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1250 1251
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1252
		prep_compound_huge_page(page, h->order);
1253
		prep_new_huge_page(h, page, page_to_nid(page));
1254 1255 1256 1257 1258 1259 1260
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1261
			adjust_managed_page_count(page, 1 << h->order);
1262 1263 1264
	}
}

1265
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1266 1267
{
	unsigned long i;
1268

1269
	for (i = 0; i < h->max_huge_pages; ++i) {
1270 1271 1272
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1273
		} else if (!alloc_fresh_huge_page(h,
1274
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1275 1276
			break;
	}
1277
	h->max_huge_pages = i;
1278 1279 1280 1281 1282 1283 1284
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1285 1286 1287
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1288 1289 1290
	}
}

A
Andi Kleen 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1302 1303 1304 1305 1306
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1307
		char buf[32];
1308
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1309 1310
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1311 1312 1313
	}
}

L
Linus Torvalds 已提交
1314
#ifdef CONFIG_HIGHMEM
1315 1316
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1317
{
1318 1319
	int i;

1320 1321 1322
	if (h->order >= MAX_ORDER)
		return;

1323
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1324
		struct page *page, *next;
1325 1326 1327
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1328
				return;
L
Linus Torvalds 已提交
1329 1330 1331
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1332
			update_and_free_page(h, page);
1333 1334
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1335 1336 1337 1338
		}
	}
}
#else
1339 1340
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1341 1342 1343 1344
{
}
#endif

1345 1346 1347 1348 1349
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1350 1351
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1352
{
1353
	int start_nid, next_nid;
1354 1355 1356 1357
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1358
	if (delta < 0)
1359
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1360
	else
1361
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1362 1363 1364 1365 1366 1367 1368 1369
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1370
			if (!h->surplus_huge_pages_node[nid]) {
1371 1372
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1373
				continue;
1374
			}
1375 1376 1377 1378 1379 1380
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1381
						h->nr_huge_pages_node[nid]) {
1382 1383
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1384
				continue;
1385
			}
1386
		}
1387 1388 1389 1390 1391

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1392
	} while (next_nid != start_nid);
1393 1394 1395 1396

	return ret;
}

1397
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1398 1399
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1400
{
1401
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1402

1403 1404 1405
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1406 1407 1408 1409
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1410 1411 1412 1413 1414 1415
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1416
	 */
L
Linus Torvalds 已提交
1417
	spin_lock(&hugetlb_lock);
1418
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1419
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1420 1421 1422
			break;
	}

1423
	while (count > persistent_huge_pages(h)) {
1424 1425 1426 1427 1428 1429
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1430
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1431 1432 1433 1434
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1435 1436 1437
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1438 1439 1440 1441 1442 1443 1444 1445
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1446 1447 1448 1449 1450 1451 1452 1453
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1454
	 */
1455
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1456
	min_count = max(count, min_count);
1457
	try_to_free_low(h, min_count, nodes_allowed);
1458
	while (min_count < persistent_huge_pages(h)) {
1459
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1460 1461
			break;
	}
1462
	while (count < persistent_huge_pages(h)) {
1463
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1464 1465 1466
			break;
	}
out:
1467
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1468
	spin_unlock(&hugetlb_lock);
1469
	return ret;
L
Linus Torvalds 已提交
1470 1471
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1482 1483 1484
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1485 1486
{
	int i;
1487

1488
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1489 1490 1491
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1492
			return &hstates[i];
1493 1494 1495
		}

	return kobj_to_node_hstate(kobj, nidp);
1496 1497
}

1498
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1499 1500
					struct kobj_attribute *attr, char *buf)
{
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1512
}
1513

1514 1515 1516
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1517 1518
{
	int err;
1519
	int nid;
1520
	unsigned long count;
1521
	struct hstate *h;
1522
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1523

1524
	err = kstrtoul(buf, 10, &count);
1525
	if (err)
1526
		goto out;
1527

1528
	h = kobj_to_hstate(kobj, &nid);
1529 1530 1531 1532 1533
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1534 1535 1536 1537 1538 1539 1540
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1541
			nodes_allowed = &node_states[N_MEMORY];
1542 1543 1544 1545 1546 1547 1548 1549 1550
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1551
		nodes_allowed = &node_states[N_MEMORY];
1552

1553
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1554

1555
	if (nodes_allowed != &node_states[N_MEMORY])
1556 1557 1558
		NODEMASK_FREE(nodes_allowed);

	return len;
1559 1560 1561
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1574 1575 1576
}
HSTATE_ATTR(nr_hugepages);

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1598 1599 1600
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1601
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1602 1603
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1604

1605 1606 1607 1608 1609
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1610
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1611

1612 1613 1614
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1615
	err = kstrtoul(buf, 10, &input);
1616
	if (err)
1617
		return err;
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1641 1642 1643 1644 1645 1646
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1647
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1648 1649 1650 1651 1652 1653 1654
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1666 1667 1668 1669 1670 1671 1672 1673 1674
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1675 1676 1677
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1678 1679 1680 1681 1682 1683 1684
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1685 1686 1687
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1688 1689
{
	int retval;
1690
	int hi = hstate_index(h);
1691

1692 1693
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1694 1695
		return -ENOMEM;

1696
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1697
	if (retval)
1698
		kobject_put(hstate_kobjs[hi]);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1713 1714
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1715
		if (err)
1716
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1717 1718 1719
	}
}

1720 1721 1722 1723
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1724 1725 1726
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1727 1728 1729 1730 1731 1732 1733 1734 1735
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1736
 * A subset of global hstate attributes for node devices
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1750
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1773
 * Unregister hstate attributes from a single node device.
1774 1775
 * No-op if no hstate attributes attached.
 */
1776
static void hugetlb_unregister_node(struct node *node)
1777 1778
{
	struct hstate *h;
1779
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1780 1781

	if (!nhs->hugepages_kobj)
1782
		return;		/* no hstate attributes */
1783

1784 1785 1786 1787 1788
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1789
		}
1790
	}
1791 1792 1793 1794 1795 1796

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1797
 * hugetlb module exit:  unregister hstate attributes from node devices
1798 1799 1800 1801 1802 1803 1804
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1805
	 * disable node device registrations.
1806 1807 1808 1809 1810 1811 1812
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1813
		hugetlb_unregister_node(node_devices[nid]);
1814 1815 1816
}

/*
1817
 * Register hstate attributes for a single node device.
1818 1819
 * No-op if attributes already registered.
 */
1820
static void hugetlb_register_node(struct node *node)
1821 1822
{
	struct hstate *h;
1823
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1824 1825 1826 1827 1828 1829
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1830
							&node->dev.kobj);
1831 1832 1833 1834 1835 1836 1837 1838
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1839 1840
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1841 1842 1843 1844 1845 1846 1847
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1848
 * hugetlb init time:  register hstate attributes for all registered node
1849 1850
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1851 1852 1853 1854 1855
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1856
	for_each_node_state(nid, N_MEMORY) {
1857
		struct node *node = node_devices[nid];
1858
		if (node->dev.id == nid)
1859 1860 1861 1862
			hugetlb_register_node(node);
	}

	/*
1863
	 * Let the node device driver know we're here so it can
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1885 1886 1887 1888
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1889 1890
	hugetlb_unregister_all_nodes();

1891
	for_each_hstate(h) {
1892
		kobject_put(hstate_kobjs[hstate_index(h)]);
1893 1894 1895 1896 1897 1898 1899 1900
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1901 1902 1903 1904 1905 1906
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1907

1908 1909 1910 1911
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1912
	}
1913
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1914 1915
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1916 1917

	hugetlb_init_hstates();
1918
	gather_bootmem_prealloc();
1919 1920 1921
	report_hugepages();

	hugetlb_sysfs_init();
1922
	hugetlb_register_all_nodes();
1923
	hugetlb_cgroup_file_init();
1924

1925 1926 1927 1928 1929 1930 1931 1932
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1933 1934
	unsigned long i;

1935
	if (size_to_hstate(PAGE_SIZE << order)) {
1936
		pr_warning("hugepagesz= specified twice, ignoring\n");
1937 1938
		return;
	}
1939
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1940
	BUG_ON(order == 0);
1941
	h = &hstates[hugetlb_max_hstate++];
1942 1943
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1944 1945 1946 1947
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1948
	INIT_LIST_HEAD(&h->hugepage_activelist);
1949 1950
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1951 1952
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1953

1954 1955 1956
	parsed_hstate = h;
}

1957
static int __init hugetlb_nrpages_setup(char *s)
1958 1959
{
	unsigned long *mhp;
1960
	static unsigned long *last_mhp;
1961 1962

	/*
1963
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1964 1965
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1966
	if (!hugetlb_max_hstate)
1967 1968 1969 1970
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1971
	if (mhp == last_mhp) {
1972 1973
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
1974 1975 1976
		return 1;
	}

1977 1978 1979
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1980 1981 1982 1983 1984
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1985
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1986 1987 1988 1989
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1990 1991
	return 1;
}
1992 1993 1994 1995 1996 1997 1998 1999
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2013 2014 2015
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2016
{
2017 2018
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2019
	int ret;
2020

2021
	tmp = h->max_huge_pages;
2022

2023 2024 2025
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2026 2027
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2028 2029 2030
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2031

2032
	if (write) {
2033 2034
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2035 2036 2037
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2038
			nodes_allowed = &node_states[N_MEMORY];
2039 2040 2041
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2042
		if (nodes_allowed != &node_states[N_MEMORY])
2043 2044
			NODEMASK_FREE(nodes_allowed);
	}
2045 2046
out:
	return ret;
L
Linus Torvalds 已提交
2047
}
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2066
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2067
			void __user *buffer,
2068 2069
			size_t *length, loff_t *ppos)
{
2070
	proc_dointvec(table, write, buffer, length, ppos);
2071 2072 2073 2074 2075 2076 2077
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2078
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2079
			void __user *buffer,
2080 2081
			size_t *length, loff_t *ppos)
{
2082
	struct hstate *h = &default_hstate;
2083
	unsigned long tmp;
2084
	int ret;
2085

2086
	tmp = h->nr_overcommit_huge_pages;
2087

2088 2089 2090
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2091 2092
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2093 2094 2095
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2096 2097 2098 2099 2100 2101

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2102 2103
out:
	return ret;
2104 2105
}

L
Linus Torvalds 已提交
2106 2107
#endif /* CONFIG_SYSCTL */

2108
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2109
{
2110
	struct hstate *h = &default_hstate;
2111
	seq_printf(m,
2112 2113 2114 2115 2116
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2117 2118 2119 2120 2121
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2122 2123 2124 2125
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2126
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2127 2128
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2129 2130
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2131 2132 2133
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2134 2135
}

2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2151 2152 2153
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2154 2155 2156 2157 2158 2159
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2160 2161
}

2162
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2185
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2186 2187
			goto out;

2188 2189
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2190 2191 2192 2193 2194 2195
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2196
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2197 2198 2199 2200 2201 2202

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2203 2204 2205 2206 2207 2208 2209 2210
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2211
	 * has a reference to the reservation map it cannot disappear until
2212 2213 2214 2215 2216 2217 2218
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2219 2220 2221 2222 2223 2224 2225 2226 2227
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2228 2229
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2230
	struct hstate *h = hstate_vma(vma);
2231
	struct resv_map *reservations = vma_resv_map(vma);
2232
	struct hugepage_subpool *spool = subpool_vma(vma);
2233 2234 2235 2236 2237
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2238 2239
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2240 2241 2242 2243

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2244
		resv_map_put(vma);
2245

2246
		if (reserve) {
2247
			hugetlb_acct_memory(h, -reserve);
2248
			hugepage_subpool_put_pages(spool, reserve);
2249
		}
2250
	}
2251 2252
}

L
Linus Torvalds 已提交
2253 2254 2255 2256 2257 2258
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2259
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2260 2261
{
	BUG();
N
Nick Piggin 已提交
2262
	return 0;
L
Linus Torvalds 已提交
2263 2264
}

2265
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2266
	.fault = hugetlb_vm_op_fault,
2267
	.open = hugetlb_vm_op_open,
2268
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2269 2270
};

2271 2272
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2273 2274 2275
{
	pte_t entry;

2276
	if (writable) {
2277 2278
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2279
	} else {
2280 2281
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2282 2283 2284
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2285
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2286 2287 2288 2289

	return entry;
}

2290 2291 2292 2293 2294
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2295
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2296
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2297
		update_mmu_cache(vma, address, ptep);
2298 2299 2300
}


D
David Gibson 已提交
2301 2302 2303 2304 2305
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2306
	unsigned long addr;
2307
	int cow;
2308 2309
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2310 2311

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2312

2313
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2314 2315 2316
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2317
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2318 2319
		if (!dst_pte)
			goto nomem;
2320 2321 2322 2323 2324

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2325
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2326
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2327
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2328
			if (cow)
2329 2330
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2331 2332
			ptepage = pte_page(entry);
			get_page(ptepage);
2333
			page_dup_rmap(ptepage);
2334 2335 2336
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2337
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2338 2339 2340 2341 2342 2343 2344
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2345 2346 2347 2348 2349 2350 2351
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2352
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2353
		return 1;
2354
	else
N
Naoya Horiguchi 已提交
2355 2356 2357
		return 0;
}

2358 2359 2360 2361 2362 2363 2364
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2365
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2366
		return 1;
2367
	else
2368 2369 2370
		return 0;
}

2371 2372 2373
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2374
{
2375
	int force_flush = 0;
D
David Gibson 已提交
2376 2377
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2378
	pte_t *ptep;
D
David Gibson 已提交
2379 2380
	pte_t pte;
	struct page *page;
2381 2382
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2383 2384
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2385

D
David Gibson 已提交
2386
	WARN_ON(!is_vm_hugetlb_page(vma));
2387 2388
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2389

2390
	tlb_start_vma(tlb, vma);
2391
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2392
again:
2393
	spin_lock(&mm->page_table_lock);
2394
	for (address = start; address < end; address += sz) {
2395
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2396
		if (!ptep)
2397 2398
			continue;

2399 2400 2401
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2402 2403 2404 2405 2406 2407 2408
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2409
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2410
			huge_pte_clear(mm, address, ptep);
2411
			continue;
2412
		}
2413 2414

		page = pte_page(pte);
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2432
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2433
		tlb_remove_tlb_entry(tlb, ptep, address);
2434
		if (huge_pte_dirty(pte))
2435
			set_page_dirty(page);
2436

2437 2438 2439 2440
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2441 2442 2443
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2444
	}
2445
	spin_unlock(&mm->page_table_lock);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2456
	}
2457
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2458
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2459
}
D
David Gibson 已提交
2460

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2480
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2481
			  unsigned long end, struct page *ref_page)
2482
{
2483 2484 2485 2486 2487
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2488
	tlb_gather_mmu(&tlb, mm, start, end);
2489 2490
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2491 2492
}

2493 2494 2495 2496 2497 2498
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2499 2500
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2501
{
2502
	struct hstate *h = hstate_vma(vma);
2503 2504 2505 2506 2507 2508 2509 2510
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2511
	address = address & huge_page_mask(h);
2512 2513
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2514
	mapping = file_inode(vma->vm_file)->i_mapping;
2515

2516 2517 2518 2519 2520
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2521
	mutex_lock(&mapping->i_mmap_mutex);
2522
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2535 2536
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2537
	}
2538
	mutex_unlock(&mapping->i_mmap_mutex);
2539 2540 2541 2542

	return 1;
}

2543 2544
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2545 2546 2547
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2548
 */
2549
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2550 2551
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2552
{
2553
	struct hstate *h = hstate_vma(vma);
2554
	struct page *old_page, *new_page;
2555
	int avoidcopy;
2556
	int outside_reserve = 0;
2557 2558
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2559 2560 2561

	old_page = pte_page(pte);

2562
retry_avoidcopy:
2563 2564
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2565
	avoidcopy = (page_mapcount(old_page) == 1);
2566
	if (avoidcopy) {
2567 2568
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2569
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2570
		return 0;
2571 2572
	}

2573 2574 2575 2576 2577 2578 2579 2580 2581
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2582
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2583 2584 2585 2586
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2587
	page_cache_get(old_page);
2588 2589 2590

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2591
	new_page = alloc_huge_page(vma, address, outside_reserve);
2592

2593
	if (IS_ERR(new_page)) {
2594
		long err = PTR_ERR(new_page);
2595
		page_cache_release(old_page);
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2608
				spin_lock(&mm->page_table_lock);
2609 2610 2611 2612 2613 2614 2615 2616
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2617 2618 2619 2620
			}
			WARN_ON_ONCE(1);
		}

2621 2622
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2623 2624 2625 2626
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2627 2628
	}

2629 2630 2631 2632
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2633
	if (unlikely(anon_vma_prepare(vma))) {
2634 2635
		page_cache_release(new_page);
		page_cache_release(old_page);
2636 2637
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2638
		return VM_FAULT_OOM;
2639
	}
2640

A
Andrea Arcangeli 已提交
2641 2642
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2643
	__SetPageUptodate(new_page);
2644

2645 2646 2647
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2648 2649 2650 2651 2652
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2653
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2654
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2655
		/* Break COW */
2656
		huge_ptep_clear_flush(vma, address, ptep);
2657 2658
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2659
		page_remove_rmap(old_page);
2660
		hugepage_add_new_anon_rmap(new_page, vma, address);
2661 2662 2663
		/* Make the old page be freed below */
		new_page = old_page;
	}
2664 2665 2666 2667
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
2668 2669
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2670
	return 0;
2671 2672
}

2673
/* Return the pagecache page at a given address within a VMA */
2674 2675
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2676 2677
{
	struct address_space *mapping;
2678
	pgoff_t idx;
2679 2680

	mapping = vma->vm_file->f_mapping;
2681
	idx = vma_hugecache_offset(h, vma, address);
2682 2683 2684 2685

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2686 2687 2688 2689 2690
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2706
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2707
			unsigned long address, pte_t *ptep, unsigned int flags)
2708
{
2709
	struct hstate *h = hstate_vma(vma);
2710
	int ret = VM_FAULT_SIGBUS;
2711
	int anon_rmap = 0;
2712
	pgoff_t idx;
A
Adam Litke 已提交
2713 2714 2715
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2716
	pte_t new_pte;
A
Adam Litke 已提交
2717

2718 2719 2720
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2721
	 * COW. Warn that such a situation has occurred as it may not be obvious
2722 2723
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2724 2725
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2726 2727 2728
		return ret;
	}

A
Adam Litke 已提交
2729
	mapping = vma->vm_file->f_mapping;
2730
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2731 2732 2733 2734 2735

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2736 2737 2738
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2739
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2740 2741
		if (idx >= size)
			goto out;
2742
		page = alloc_huge_page(vma, address, 0);
2743
		if (IS_ERR(page)) {
2744 2745 2746 2747 2748
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2749 2750
			goto out;
		}
A
Andrea Arcangeli 已提交
2751
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2752
		__SetPageUptodate(page);
2753

2754
		if (vma->vm_flags & VM_MAYSHARE) {
2755
			int err;
K
Ken Chen 已提交
2756
			struct inode *inode = mapping->host;
2757 2758 2759 2760 2761 2762 2763 2764

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2765 2766

			spin_lock(&inode->i_lock);
2767
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2768
			spin_unlock(&inode->i_lock);
2769
		} else {
2770
			lock_page(page);
2771 2772 2773 2774
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2775
			anon_rmap = 1;
2776
		}
2777
	} else {
2778 2779 2780 2781 2782 2783
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2784
			ret = VM_FAULT_HWPOISON |
2785
				VM_FAULT_SET_HINDEX(hstate_index(h));
2786 2787
			goto backout_unlocked;
		}
2788
	}
2789

2790 2791 2792 2793 2794 2795
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2796
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2797 2798 2799 2800
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2801

2802
	spin_lock(&mm->page_table_lock);
2803
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2804 2805 2806
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2807
	ret = 0;
2808
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2809 2810
		goto backout;

2811 2812 2813 2814
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2815 2816 2817 2818
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2819
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2820
		/* Optimization, do the COW without a second fault */
2821
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2822 2823
	}

2824
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2825 2826
	unlock_page(page);
out:
2827
	return ret;
A
Adam Litke 已提交
2828 2829 2830

backout:
	spin_unlock(&mm->page_table_lock);
2831
backout_unlocked:
A
Adam Litke 已提交
2832 2833 2834
	unlock_page(page);
	put_page(page);
	goto out;
2835 2836
}

2837
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2838
			unsigned long address, unsigned int flags)
2839 2840 2841
{
	pte_t *ptep;
	pte_t entry;
2842
	int ret;
2843
	struct page *page = NULL;
2844
	struct page *pagecache_page = NULL;
2845
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2846
	struct hstate *h = hstate_vma(vma);
2847

2848 2849
	address &= huge_page_mask(h);

2850 2851 2852
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2853
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2854
			migration_entry_wait_huge(mm, ptep);
N
Naoya Horiguchi 已提交
2855 2856
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2857
			return VM_FAULT_HWPOISON_LARGE |
2858
				VM_FAULT_SET_HINDEX(hstate_index(h));
2859 2860
	}

2861
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2862 2863 2864
	if (!ptep)
		return VM_FAULT_OOM;

2865 2866 2867 2868 2869 2870
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2871 2872
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2873
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2874
		goto out_mutex;
2875
	}
2876

N
Nick Piggin 已提交
2877
	ret = 0;
2878

2879 2880 2881 2882 2883 2884 2885 2886
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2887
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2888 2889
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2890
			goto out_mutex;
2891
		}
2892

2893
		if (!(vma->vm_flags & VM_MAYSHARE))
2894 2895 2896 2897
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2898 2899 2900 2901 2902 2903 2904 2905
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2906
	get_page(page);
2907
	if (page != pagecache_page)
2908 2909
		lock_page(page);

2910 2911
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2912 2913 2914 2915
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2916
	if (flags & FAULT_FLAG_WRITE) {
2917
		if (!huge_pte_write(entry)) {
2918 2919
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2920 2921
			goto out_page_table_lock;
		}
2922
		entry = huge_pte_mkdirty(entry);
2923 2924
	}
	entry = pte_mkyoung(entry);
2925 2926
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2927
		update_mmu_cache(vma, address, ptep);
2928 2929

out_page_table_lock:
2930
	spin_unlock(&mm->page_table_lock);
2931 2932 2933 2934 2935

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2936 2937
	if (page != pagecache_page)
		unlock_page(page);
2938
	put_page(page);
2939

2940
out_mutex:
2941
	mutex_unlock(&hugetlb_instantiation_mutex);
2942 2943

	return ret;
2944 2945
}

2946 2947 2948 2949
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
2950
{
2951 2952
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
2953
	unsigned long remainder = *nr_pages;
2954
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2955

2956
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2957
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2958
		pte_t *pte;
H
Hugh Dickins 已提交
2959
		int absent;
A
Adam Litke 已提交
2960
		struct page *page;
D
David Gibson 已提交
2961

A
Adam Litke 已提交
2962 2963
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2964
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2965 2966
		 * first, for the page indexing below to work.
		 */
2967
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2968 2969 2970 2971
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2972 2973 2974 2975
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2976
		 */
H
Hugh Dickins 已提交
2977 2978
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2979 2980 2981
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2982

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
2994 2995
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2996
			int ret;
D
David Gibson 已提交
2997

A
Adam Litke 已提交
2998
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2999 3000
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
3001
			spin_lock(&mm->page_table_lock);
3002
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3003
				continue;
D
David Gibson 已提交
3004

A
Adam Litke 已提交
3005 3006 3007 3008
			remainder = 0;
			break;
		}

3009
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3010
		page = pte_page(huge_ptep_get(pte));
3011
same_page:
3012
		if (pages) {
H
Hugh Dickins 已提交
3013
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
3014
			get_page(pages[i]);
3015
		}
D
David Gibson 已提交
3016 3017 3018 3019 3020

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3021
		++pfn_offset;
D
David Gibson 已提交
3022 3023
		--remainder;
		++i;
3024
		if (vaddr < vma->vm_end && remainder &&
3025
				pfn_offset < pages_per_huge_page(h)) {
3026 3027 3028 3029 3030 3031
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3032
	}
3033
	spin_unlock(&mm->page_table_lock);
3034
	*nr_pages = remainder;
D
David Gibson 已提交
3035 3036
	*position = vaddr;

H
Hugh Dickins 已提交
3037
	return i ? i : -EFAULT;
D
David Gibson 已提交
3038
}
3039

3040
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3041 3042 3043 3044 3045 3046
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3047
	struct hstate *h = hstate_vma(vma);
3048
	unsigned long pages = 0;
3049 3050 3051 3052

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3053
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3054
	spin_lock(&mm->page_table_lock);
3055
	for (; address < end; address += huge_page_size(h)) {
3056 3057 3058
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3059 3060
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3061
			continue;
3062
		}
3063
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3064
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3065
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3066
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3067
			set_huge_pte_at(mm, address, ptep, pte);
3068
			pages++;
3069 3070 3071
		}
	}
	spin_unlock(&mm->page_table_lock);
3072 3073 3074 3075 3076 3077
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3078
	flush_tlb_range(vma, start, end);
3079
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3080 3081

	return pages << h->order;
3082 3083
}

3084 3085
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3086
					struct vm_area_struct *vma,
3087
					vm_flags_t vm_flags)
3088
{
3089
	long ret, chg;
3090
	struct hstate *h = hstate_inode(inode);
3091
	struct hugepage_subpool *spool = subpool_inode(inode);
3092

3093 3094 3095
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3096
	 * without using reserves
3097
	 */
3098
	if (vm_flags & VM_NORESERVE)
3099 3100
		return 0;

3101 3102 3103 3104 3105 3106
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3107
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3108
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3109 3110 3111 3112 3113
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3114
		chg = to - from;
3115

3116 3117 3118 3119
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3120 3121 3122 3123
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3124

3125
	/* There must be enough pages in the subpool for the mapping */
3126 3127 3128 3129
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3130 3131

	/*
3132
	 * Check enough hugepages are available for the reservation.
3133
	 * Hand the pages back to the subpool if there are not
3134
	 */
3135
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3136
	if (ret < 0) {
3137
		hugepage_subpool_put_pages(spool, chg);
3138
		goto out_err;
K
Ken Chen 已提交
3139
	}
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3152
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3153
		region_add(&inode->i_mapping->private_list, from, to);
3154
	return 0;
3155
out_err:
3156 3157
	if (vma)
		resv_map_put(vma);
3158
	return ret;
3159 3160 3161 3162
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3163
	struct hstate *h = hstate_inode(inode);
3164
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3165
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3166 3167

	spin_lock(&inode->i_lock);
3168
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3169 3170
	spin_unlock(&inode->i_lock);

3171
	hugepage_subpool_put_pages(spool, (chg - freed));
3172
	hugetlb_acct_memory(h, -(chg - freed));
3173
}
3174

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

	spin_lock(&mm->page_table_lock);
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
	spin_unlock(&mm->page_table_lock);
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
 * called with vma->vm_mm->page_table_lock held.
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3295 3296 3297 3298 3299 3300 3301
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3302 3303
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3385 3386
#ifdef CONFIG_MEMORY_FAILURE

3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3401 3402 3403 3404
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3405
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3406 3407 3408
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3409
	int ret = -EBUSY;
3410 3411

	spin_lock(&hugetlb_lock);
3412
	if (is_hugepage_on_freelist(hpage)) {
3413 3414 3415 3416 3417 3418 3419
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3420
		set_page_refcounted(hpage);
3421 3422 3423 3424
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3425
	spin_unlock(&hugetlb_lock);
3426
	return ret;
3427
}
3428
#endif