hugetlb.c 72.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include <linux/node.h>
28
#include "internal.h"
L
Linus Torvalds 已提交
29 30

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
31 32
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
33

34 35 36 37
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

38 39
__initdata LIST_HEAD(huge_boot_pages);

40 41 42
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
43
static unsigned long __initdata default_hstate_size;
44 45 46

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
47

48 49 50 51
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
52

53 54 55
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
56 57 58 59 60 61 62 63 64 65
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

212 213 214 215
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
216 217
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
218
{
219 220
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
221 222
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
238
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
239

240 241 242 243 244 245 246 247 248 249 250 251 252
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

253 254 255 256 257 258 259
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
260
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
261

262 263 264 265 266 267 268 269 270
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
271 272 273 274 275 276 277 278 279
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
280
 */
281 282 283 284 285 286 287 288 289 290 291
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

292 293 294 295 296
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

297
static struct resv_map *resv_map_alloc(void)
298 299 300 301 302 303 304 305 306 307 308
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

309
static void resv_map_release(struct kref *ref)
310 311 312 313 314 315 316 317 318
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
319 320
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
321
	if (!(vma->vm_flags & VM_MAYSHARE))
322 323
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
324
	return NULL;
325 326
}

327
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
331

332 333
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
334 335 336 337 338
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340 341

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
342 343 344 345 346
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
347 348

	return (get_vma_private_data(vma) & flag) != 0;
349 350 351
}

/* Decrement the reserved pages in the hugepage pool by one */
352 353
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
354
{
355 356 357
	if (vma->vm_flags & VM_NORESERVE)
		return;

358
	if (vma->vm_flags & VM_MAYSHARE) {
359
		/* Shared mappings always use reserves */
360
		h->resv_huge_pages--;
361
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
362 363 364 365
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
366
		h->resv_huge_pages--;
367 368 369
	}
}

370
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
371 372 373
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
374
	if (!(vma->vm_flags & VM_MAYSHARE))
375 376 377 378
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
379
static int vma_has_reserves(struct vm_area_struct *vma)
380
{
381
	if (vma->vm_flags & VM_MAYSHARE)
382 383 384 385
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
386 387
}

388 389 390 391 392 393 394 395 396 397 398 399
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
400 401
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
402 403 404
{
	int i;

405
	if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
H
Hannes Eder 已提交
406 407 408
		clear_gigantic_page(page, addr, sz);
		return;
	}
409

410
	might_sleep();
411
	for (i = 0; i < sz/PAGE_SIZE; i++) {
412
		cond_resched();
413
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
414 415 416
	}
}

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
434
static void copy_huge_page(struct page *dst, struct page *src,
435
			   unsigned long addr, struct vm_area_struct *vma)
436 437
{
	int i;
438
	struct hstate *h = hstate_vma(vma);
439

H
Hannes Eder 已提交
440 441 442 443
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
444

445
	might_sleep();
446
	for (i = 0; i < pages_per_huge_page(h); i++) {
447
		cond_resched();
448
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
449 450 451
	}
}

452
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
453 454
{
	int nid = page_to_nid(page);
455 456 457
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
458 459
}

460 461
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
462
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
463
{
464
	int nid;
L
Linus Torvalds 已提交
465
	struct page *page = NULL;
466
	struct mempolicy *mpol;
467
	nodemask_t *nodemask;
468
	struct zonelist *zonelist;
469 470
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
471

472 473 474
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
475 476 477 478 479
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
480
	if (!vma_has_reserves(vma) &&
481
			h->free_huge_pages - h->resv_huge_pages == 0)
482
		goto err;
483

484
	/* If reserves cannot be used, ensure enough pages are in the pool */
485
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
486
		goto err;;
487

488 489
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
490 491
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
492 493
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
494 495
					  struct page, lru);
			list_del(&page->lru);
496 497
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
498 499

			if (!avoid_reserve)
500
				decrement_hugepage_resv_vma(h, vma);
501

K
Ken Chen 已提交
502
			break;
A
Andrew Morton 已提交
503
		}
L
Linus Torvalds 已提交
504
	}
505
err:
506
	mpol_cond_put(mpol);
507
	put_mems_allowed();
L
Linus Torvalds 已提交
508 509 510
	return page;
}

511
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
512 513
{
	int i;
514

515 516
	VM_BUG_ON(h->order >= MAX_ORDER);

517 518 519
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
520 521 522 523 524 525
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
526
	arch_release_hugepage(page);
527
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
528 529
}

530 531 532 533 534 535 536 537 538 539 540
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

541 542
static void free_huge_page(struct page *page)
{
543 544 545 546
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
547
	struct hstate *h = page_hstate(page);
548
	int nid = page_to_nid(page);
549
	struct address_space *mapping;
550

551
	mapping = (struct address_space *) page_private(page);
552
	set_page_private(page, 0);
553
	page->mapping = NULL;
554
	BUG_ON(page_count(page));
555 556 557
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
558
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
559 560 561
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
562
	} else {
563
		enqueue_huge_page(h, page);
564
	}
565
	spin_unlock(&hugetlb_lock);
566
	if (mapping)
567
		hugetlb_put_quota(mapping, 1);
568 569
}

570
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
571 572 573
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
574 575
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
576 577 578 579
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

608
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
609 610
{
	struct page *page;
611

612 613 614
	if (h->order >= MAX_ORDER)
		return NULL;

615
	page = alloc_pages_exact_node(nid,
616 617
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
618
		huge_page_order(h));
L
Linus Torvalds 已提交
619
	if (page) {
620
		if (arch_prepare_hugepage(page)) {
621
			__free_pages(page, huge_page_order(h));
622
			return NULL;
623
		}
624
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
625
	}
626 627 628 629

	return page;
}

630
/*
631 632 633 634 635
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
636
 */
637
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
638
{
639
	nid = next_node(nid, *nodes_allowed);
640
	if (nid == MAX_NUMNODES)
641
		nid = first_node(*nodes_allowed);
642 643 644 645 646
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

647 648 649 650 651 652 653
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

654
/*
655 656 657 658
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
659
 */
660 661
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
662
{
663 664 665 666 667 668
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
669 670

	return nid;
671 672
}

673
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
674 675 676 677 678 679
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

680
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
681
	next_nid = start_nid;
682 683

	do {
684
		page = alloc_fresh_huge_page_node(h, next_nid);
685
		if (page) {
686
			ret = 1;
687 688
			break;
		}
689
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
690
	} while (next_nid != start_nid);
691

692 693 694 695 696
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

697
	return ret;
L
Linus Torvalds 已提交
698 699
}

700
/*
701 702 703 704
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
705
 */
706
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
707
{
708 709 710 711 712 713
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
714 715

	return nid;
716 717 718 719 720 721 722 723
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
724 725
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
726 727 728 729 730
{
	int start_nid;
	int next_nid;
	int ret = 0;

731
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
732 733 734
	next_nid = start_nid;

	do {
735 736 737 738 739 740
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
741 742 743 744 745 746
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
747 748 749 750
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
751 752
			update_and_free_page(h, page);
			ret = 1;
753
			break;
754
		}
755
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
756
	} while (next_nid != start_nid);
757 758 759 760

	return ret;
}

761 762
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
763 764
{
	struct page *page;
765
	unsigned int nid;
766

767 768 769
	if (h->order >= MAX_ORDER)
		return NULL;

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
794
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
795 796 797
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
798 799
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
800 801 802
	}
	spin_unlock(&hugetlb_lock);

803 804
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
805
					huge_page_order(h));
806

807 808 809 810 811
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

812
	spin_lock(&hugetlb_lock);
813
	if (page) {
814 815 816 817 818 819
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
820
		nid = page_to_nid(page);
821
		set_compound_page_dtor(page, free_huge_page);
822 823 824
		/*
		 * We incremented the global counters already
		 */
825 826
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
827
		__count_vm_event(HTLB_BUDDY_PGALLOC);
828
	} else {
829 830
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
831
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
832
	}
833
	spin_unlock(&hugetlb_lock);
834 835 836 837

	return page;
}

838 839 840 841
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
842
static int gather_surplus_pages(struct hstate *h, int delta)
843 844 845 846 847 848
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

849
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
850
	if (needed <= 0) {
851
		h->resv_huge_pages += delta;
852
		return 0;
853
	}
854 855 856 857 858 859 860 861

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
862
		page = alloc_buddy_huge_page(h, NULL, 0);
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
883 884
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
885 886 887 888 889 890 891
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
892 893 894
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
895 896
	 */
	needed += allocated;
897
	h->resv_huge_pages += delta;
898 899
	ret = 0;
free:
900
	/* Free the needed pages to the hugetlb pool */
901
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
902 903
		if ((--needed) < 0)
			break;
904
		list_del(&page->lru);
905
		enqueue_huge_page(h, page);
906 907 908 909 910 911 912
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
913
			/*
914 915 916
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
917 918 919
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
920
			free_huge_page(page);
921
		}
922
		spin_lock(&hugetlb_lock);
923 924 925 926 927 928 929 930 931
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
932
 * Called with hugetlb_lock held.
933
 */
934 935
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
936 937 938
{
	unsigned long nr_pages;

939
	/* Uncommit the reservation */
940
	h->resv_huge_pages -= unused_resv_pages;
941

942 943 944 945
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

946
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
947

948 949
	/*
	 * We want to release as many surplus pages as possible, spread
950 951 952 953 954
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
955 956
	 */
	while (nr_pages--) {
957
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
958
			break;
959 960 961
	}
}

962 963 964 965 966 967 968 969 970
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
971
static long vma_needs_reservation(struct hstate *h,
972
			struct vm_area_struct *vma, unsigned long addr)
973 974 975 976
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

977
	if (vma->vm_flags & VM_MAYSHARE) {
978
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
979 980 981
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

982 983
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
984

985
	} else  {
986
		long err;
987
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
988 989 990 991 992 993 994
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
995
}
996 997
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
998 999 1000 1001
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1002
	if (vma->vm_flags & VM_MAYSHARE) {
1003
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1004
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1005 1006

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1007
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008 1009 1010 1011
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1012 1013 1014
	}
}

1015
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1016
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1017
{
1018
	struct hstate *h = hstate_vma(vma);
1019
	struct page *page;
1020 1021
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1022
	long chg;
1023 1024 1025 1026 1027

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1028 1029
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1030
	 */
1031
	chg = vma_needs_reservation(h, vma, addr);
1032 1033 1034
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1035 1036
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1037 1038

	spin_lock(&hugetlb_lock);
1039
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1040
	spin_unlock(&hugetlb_lock);
1041

K
Ken Chen 已提交
1042
	if (!page) {
1043
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1044
		if (!page) {
1045
			hugetlb_put_quota(inode->i_mapping, chg);
1046
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1047 1048
		}
	}
1049

1050 1051
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1052

1053
	vma_commit_reservation(h, vma, addr);
1054

1055
	return page;
1056 1057
}

1058
int __weak alloc_bootmem_huge_page(struct hstate *h)
1059 1060
{
	struct huge_bootmem_page *m;
1061
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1062 1063 1064 1065 1066

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1067
				NODE_DATA(hstate_next_node_to_alloc(h,
1068
						&node_states[N_HIGH_MEMORY])),
1069 1070 1071 1072 1073 1074 1075 1076 1077
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1078
			goto found;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1092 1093 1094 1095 1096 1097 1098 1099
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1110
		prep_compound_huge_page(page, h->order);
1111 1112 1113 1114
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1115
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1116 1117
{
	unsigned long i;
1118

1119
	for (i = 0; i < h->max_huge_pages; ++i) {
1120 1121 1122
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1123 1124
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1125 1126
			break;
	}
1127
	h->max_huge_pages = i;
1128 1129 1130 1131 1132 1133 1134
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1135 1136 1137
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1138 1139 1140
	}
}

A
Andi Kleen 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1152 1153 1154 1155 1156
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1157 1158 1159 1160 1161
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1162 1163 1164
	}
}

L
Linus Torvalds 已提交
1165
#ifdef CONFIG_HIGHMEM
1166 1167
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1168
{
1169 1170
	int i;

1171 1172 1173
	if (h->order >= MAX_ORDER)
		return;

1174
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1175
		struct page *page, *next;
1176 1177 1178
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1179
				return;
L
Linus Torvalds 已提交
1180 1181 1182
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1183
			update_and_free_page(h, page);
1184 1185
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1186 1187 1188 1189
		}
	}
}
#else
1190 1191
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1192 1193 1194 1195
{
}
#endif

1196 1197 1198 1199 1200
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1201 1202
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1203
{
1204
	int start_nid, next_nid;
1205 1206 1207 1208
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1209
	if (delta < 0)
1210
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1211
	else
1212
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1213 1214 1215 1216 1217 1218 1219 1220
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1221
			if (!h->surplus_huge_pages_node[nid]) {
1222 1223
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1224
				continue;
1225
			}
1226 1227 1228 1229 1230 1231
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1232
						h->nr_huge_pages_node[nid]) {
1233 1234
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1235
				continue;
1236
			}
1237
		}
1238 1239 1240 1241 1242

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1243
	} while (next_nid != start_nid);
1244 1245 1246 1247

	return ret;
}

1248
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1249 1250
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1251
{
1252
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1253

1254 1255 1256
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1257 1258 1259 1260
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1261 1262 1263 1264 1265 1266
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1267
	 */
L
Linus Torvalds 已提交
1268
	spin_lock(&hugetlb_lock);
1269
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1270
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1271 1272 1273
			break;
	}

1274
	while (count > persistent_huge_pages(h)) {
1275 1276 1277 1278 1279 1280
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1281
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1282 1283 1284 1285
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1286 1287 1288
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1289 1290 1291 1292 1293 1294 1295 1296
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1297 1298 1299 1300 1301 1302 1303 1304
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1305
	 */
1306
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1307
	min_count = max(count, min_count);
1308
	try_to_free_low(h, min_count, nodes_allowed);
1309
	while (min_count < persistent_huge_pages(h)) {
1310
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1311 1312
			break;
	}
1313
	while (count < persistent_huge_pages(h)) {
1314
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1315 1316 1317
			break;
	}
out:
1318
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1319
	spin_unlock(&hugetlb_lock);
1320
	return ret;
L
Linus Torvalds 已提交
1321 1322
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1333 1334 1335
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1336 1337
{
	int i;
1338

1339
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1340 1341 1342
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1343
			return &hstates[i];
1344 1345 1346
		}

	return kobj_to_node_hstate(kobj, nidp);
1347 1348
}

1349
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1350 1351
					struct kobj_attribute *attr, char *buf)
{
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1363
}
1364 1365 1366
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1367 1368
{
	int err;
1369
	int nid;
1370
	unsigned long count;
1371
	struct hstate *h;
1372
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1373

1374
	err = strict_strtoul(buf, 10, &count);
1375 1376 1377
	if (err)
		return 0;

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1398
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1399

1400
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
		NODEMASK_FREE(nodes_allowed);

	return len;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1416 1417 1418
}
HSTATE_ATTR(nr_hugepages);

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1440 1441 1442
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1443
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1444 1445 1446 1447 1448 1449 1450
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1451
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1479 1480 1481 1482 1483 1484
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1485
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1486 1487 1488 1489 1490 1491 1492
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1504 1505 1506 1507 1508 1509 1510 1511 1512
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1513 1514 1515
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1516 1517 1518 1519 1520 1521 1522
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1523 1524 1525
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1526 1527
{
	int retval;
1528
	int hi = h - hstates;
1529

1530 1531
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1532 1533
		return -ENOMEM;

1534
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1535
	if (retval)
1536
		kobject_put(hstate_kobjs[hi]);
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1551 1552
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1553 1554 1555 1556 1557 1558
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1621
		return;		/* no hstate attributes */
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1686 1687 1688
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1689 1690 1691 1692 1693
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1694
	for_each_node_state(nid, N_HIGH_MEMORY) {
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1723 1724 1725 1726
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1727 1728
	hugetlb_unregister_all_nodes();

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1739 1740 1741 1742 1743 1744
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1745

1746 1747 1748 1749
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1750
	}
1751 1752 1753
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1754 1755 1756

	hugetlb_init_hstates();

1757 1758
	gather_bootmem_prealloc();

1759 1760 1761 1762
	report_hugepages();

	hugetlb_sysfs_init();

1763 1764
	hugetlb_register_all_nodes();

1765 1766 1767 1768 1769 1770 1771 1772
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1773 1774
	unsigned long i;

1775 1776 1777 1778 1779 1780 1781 1782 1783
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1784 1785 1786 1787
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1788 1789
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1790 1791
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1792

1793 1794 1795
	parsed_hstate = h;
}

1796
static int __init hugetlb_nrpages_setup(char *s)
1797 1798
{
	unsigned long *mhp;
1799
	static unsigned long *last_mhp;
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1810 1811 1812 1813 1814 1815
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1816 1817 1818
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1829 1830
	return 1;
}
1831 1832 1833 1834 1835 1836 1837 1838
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1839

1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1852 1853 1854
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1855
{
1856 1857 1858 1859 1860 1861 1862 1863
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1864
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1865

1866
	if (write) {
1867 1868
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1879

L
Linus Torvalds 已提交
1880 1881
	return 0;
}
1882

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1900
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1901
			void __user *buffer,
1902 1903
			size_t *length, loff_t *ppos)
{
1904
	proc_dointvec(table, write, buffer, length, ppos);
1905 1906 1907 1908 1909 1910 1911
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1912
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1913
			void __user *buffer,
1914 1915
			size_t *length, loff_t *ppos)
{
1916
	struct hstate *h = &default_hstate;
1917 1918 1919 1920 1921 1922 1923
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1924
	proc_doulongvec_minmax(table, write, buffer, length, ppos);
1925 1926 1927 1928 1929 1930 1931

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1932 1933 1934
	return 0;
}

L
Linus Torvalds 已提交
1935 1936
#endif /* CONFIG_SYSCTL */

1937
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1938
{
1939
	struct hstate *h = &default_hstate;
1940
	seq_printf(m,
1941 1942 1943 1944 1945
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1946 1947 1948 1949 1950
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1951 1952 1953 1954
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1955
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1956 1957
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1958 1959
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1960 1961 1962
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1968 1969
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1970 1971
}

1972
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1995
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1996 1997
			goto out;

1998 1999
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2000 2001 2002 2003 2004 2005
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2006
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2007 2008 2009 2010 2011 2012

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2029 2030
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2031
	struct hstate *h = hstate_vma(vma);
2032 2033 2034 2035 2036 2037
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2038 2039
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2040 2041 2042 2043 2044 2045

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2046
		if (reserve) {
2047
			hugetlb_acct_memory(h, -reserve);
2048 2049
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2050
	}
2051 2052
}

L
Linus Torvalds 已提交
2053 2054 2055 2056 2057 2058
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2059
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2060 2061
{
	BUG();
N
Nick Piggin 已提交
2062
	return 0;
L
Linus Torvalds 已提交
2063 2064
}

2065
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2066
	.fault = hugetlb_vm_op_fault,
2067
	.open = hugetlb_vm_op_open,
2068
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2069 2070
};

2071 2072
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2073 2074 2075
{
	pte_t entry;

2076
	if (writable) {
D
David Gibson 已提交
2077 2078 2079
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2080
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2081 2082 2083 2084 2085 2086 2087
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2088 2089 2090 2091 2092
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2093 2094
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2095
		update_mmu_cache(vma, address, ptep);
2096
	}
2097 2098 2099
}


D
David Gibson 已提交
2100 2101 2102 2103 2104
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2105
	unsigned long addr;
2106
	int cow;
2107 2108
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2109 2110

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2111

2112
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2113 2114 2115
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2116
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2117 2118
		if (!dst_pte)
			goto nomem;
2119 2120 2121 2122 2123

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2124
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2125
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2126
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2127
			if (cow)
2128 2129
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2130 2131 2132 2133 2134
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2135
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2136 2137 2138 2139 2140 2141 2142
	}
	return 0;

nomem:
	return -ENOMEM;
}

2143
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2144
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2145 2146 2147
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2148
	pte_t *ptep;
D
David Gibson 已提交
2149 2150
	pte_t pte;
	struct page *page;
2151
	struct page *tmp;
2152 2153 2154
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2155 2156 2157 2158 2159
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2160
	LIST_HEAD(page_list);
D
David Gibson 已提交
2161 2162

	WARN_ON(!is_vm_hugetlb_page(vma));
2163 2164
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2165

A
Andrea Arcangeli 已提交
2166
	mmu_notifier_invalidate_range_start(mm, start, end);
2167
	spin_lock(&mm->page_table_lock);
2168
	for (address = start; address < end; address += sz) {
2169
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2170
		if (!ptep)
2171 2172
			continue;

2173 2174 2175
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2197
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2198
		if (huge_pte_none(pte))
D
David Gibson 已提交
2199
			continue;
2200

D
David Gibson 已提交
2201
		page = pte_page(pte);
2202 2203
		if (pte_dirty(pte))
			set_page_dirty(page);
2204
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2205
	}
L
Linus Torvalds 已提交
2206
	spin_unlock(&mm->page_table_lock);
2207
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2208
	mmu_notifier_invalidate_range_end(mm, start, end);
2209 2210 2211 2212
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2213
}
D
David Gibson 已提交
2214

2215
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2216
			  unsigned long end, struct page *ref_page)
2217
{
2218 2219 2220
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2221 2222
}

2223 2224 2225 2226 2227 2228
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2229 2230
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2231
{
2232
	struct hstate *h = hstate_vma(vma);
2233 2234 2235 2236 2237 2238 2239 2240 2241
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2242
	address = address & huge_page_mask(h);
2243 2244 2245 2246
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2247 2248 2249 2250 2251 2252
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
	spin_lock(&mapping->i_mmap_lock);
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2266
			__unmap_hugepage_range(iter_vma,
2267
				address, address + huge_page_size(h),
2268 2269
				page);
	}
2270
	spin_unlock(&mapping->i_mmap_lock);
2271 2272 2273 2274

	return 1;
}

2275
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2276 2277
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2278
{
2279
	struct hstate *h = hstate_vma(vma);
2280
	struct page *old_page, *new_page;
2281
	int avoidcopy;
2282
	int outside_reserve = 0;
2283 2284 2285

	old_page = pte_page(pte);

2286
retry_avoidcopy:
2287 2288 2289 2290 2291
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2292
		return 0;
2293 2294
	}

2295 2296 2297 2298 2299 2300 2301 2302 2303
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2304
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2305 2306 2307 2308
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2309
	page_cache_get(old_page);
2310 2311 2312

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2313
	new_page = alloc_huge_page(vma, address, outside_reserve);
2314

2315
	if (IS_ERR(new_page)) {
2316
		page_cache_release(old_page);
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2330
				spin_lock(&mm->page_table_lock);
2331 2332 2333 2334 2335
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2336 2337
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2338
		return -PTR_ERR(new_page);
2339 2340
	}

2341
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
2342
	__SetPageUptodate(new_page);
2343

2344 2345 2346 2347 2348
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2349
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2350
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2351
		/* Break COW */
2352
		huge_ptep_clear_flush(vma, address, ptep);
2353 2354 2355 2356 2357 2358 2359
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2360
	return 0;
2361 2362
}

2363
/* Return the pagecache page at a given address within a VMA */
2364 2365
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2366 2367
{
	struct address_space *mapping;
2368
	pgoff_t idx;
2369 2370

	mapping = vma->vm_file->f_mapping;
2371
	idx = vma_hugecache_offset(h, vma, address);
2372 2373 2374 2375

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2376 2377 2378 2379 2380
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2396
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2397
			unsigned long address, pte_t *ptep, unsigned int flags)
2398
{
2399
	struct hstate *h = hstate_vma(vma);
2400
	int ret = VM_FAULT_SIGBUS;
2401
	pgoff_t idx;
A
Adam Litke 已提交
2402 2403 2404
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2405
	pte_t new_pte;
A
Adam Litke 已提交
2406

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2419
	mapping = vma->vm_file->f_mapping;
2420
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2421 2422 2423 2424 2425

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2426 2427 2428
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2429
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2430 2431
		if (idx >= size)
			goto out;
2432
		page = alloc_huge_page(vma, address, 0);
2433 2434
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2435 2436
			goto out;
		}
2437
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2438
		__SetPageUptodate(page);
2439

2440
		if (vma->vm_flags & VM_MAYSHARE) {
2441
			int err;
K
Ken Chen 已提交
2442
			struct inode *inode = mapping->host;
2443 2444 2445 2446 2447 2448 2449 2450

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2451 2452

			spin_lock(&inode->i_lock);
2453
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2454
			spin_unlock(&inode->i_lock);
2455
		} else {
2456
			lock_page(page);
2457 2458
			page->mapping = HUGETLB_POISON;
		}
2459
	}
2460

2461 2462 2463 2464 2465 2466
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2467
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2468 2469 2470 2471
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2472

2473
	spin_lock(&mm->page_table_lock);
2474
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2475 2476 2477
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2478
	ret = 0;
2479
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2480 2481
		goto backout;

2482 2483 2484 2485
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2486
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2487
		/* Optimization, do the COW without a second fault */
2488
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2489 2490
	}

2491
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2492 2493
	unlock_page(page);
out:
2494
	return ret;
A
Adam Litke 已提交
2495 2496 2497

backout:
	spin_unlock(&mm->page_table_lock);
2498
backout_unlocked:
A
Adam Litke 已提交
2499 2500 2501
	unlock_page(page);
	put_page(page);
	goto out;
2502 2503
}

2504
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2505
			unsigned long address, unsigned int flags)
2506 2507 2508
{
	pte_t *ptep;
	pte_t entry;
2509
	int ret;
2510
	struct page *pagecache_page = NULL;
2511
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2512
	struct hstate *h = hstate_vma(vma);
2513

2514
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2515 2516 2517
	if (!ptep)
		return VM_FAULT_OOM;

2518 2519 2520 2521 2522 2523
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2524 2525
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2526
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2527
		goto out_mutex;
2528
	}
2529

N
Nick Piggin 已提交
2530
	ret = 0;
2531

2532 2533 2534 2535 2536 2537 2538 2539
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2540
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2541 2542
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2543
			goto out_mutex;
2544
		}
2545

2546
		if (!(vma->vm_flags & VM_MAYSHARE))
2547 2548 2549 2550
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2551 2552
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2553 2554 2555 2556
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2557
	if (flags & FAULT_FLAG_WRITE) {
2558
		if (!pte_write(entry)) {
2559 2560
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2561 2562 2563 2564 2565
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2566 2567
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2568
		update_mmu_cache(vma, address, ptep);
2569 2570

out_page_table_lock:
2571
	spin_unlock(&mm->page_table_lock);
2572 2573 2574 2575 2576 2577

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2578
out_mutex:
2579
	mutex_unlock(&hugetlb_instantiation_mutex);
2580 2581

	return ret;
2582 2583
}

A
Andi Kleen 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2593 2594
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2595
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2596
			unsigned int flags)
D
David Gibson 已提交
2597
{
2598 2599
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2600
	int remainder = *length;
2601
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2602

2603
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2604
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2605
		pte_t *pte;
H
Hugh Dickins 已提交
2606
		int absent;
A
Adam Litke 已提交
2607
		struct page *page;
D
David Gibson 已提交
2608

A
Adam Litke 已提交
2609 2610
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2611
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2612 2613
		 * first, for the page indexing below to work.
		 */
2614
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2615 2616 2617 2618
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2619 2620 2621 2622
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2623
		 */
H
Hugh Dickins 已提交
2624 2625
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2626 2627 2628
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2629

H
Hugh Dickins 已提交
2630 2631
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2632
			int ret;
D
David Gibson 已提交
2633

A
Adam Litke 已提交
2634
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2635 2636
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2637
			spin_lock(&mm->page_table_lock);
2638
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2639
				continue;
D
David Gibson 已提交
2640

A
Adam Litke 已提交
2641 2642 2643 2644
			remainder = 0;
			break;
		}

2645
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2646
		page = pte_page(huge_ptep_get(pte));
2647
same_page:
2648
		if (pages) {
H
Hugh Dickins 已提交
2649
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2650
			get_page(pages[i]);
2651
		}
D
David Gibson 已提交
2652 2653 2654 2655 2656

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2657
		++pfn_offset;
D
David Gibson 已提交
2658 2659
		--remainder;
		++i;
2660
		if (vaddr < vma->vm_end && remainder &&
2661
				pfn_offset < pages_per_huge_page(h)) {
2662 2663 2664 2665 2666 2667
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2668
	}
2669
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2670 2671 2672
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2673
	return i ? i : -EFAULT;
D
David Gibson 已提交
2674
}
2675 2676 2677 2678 2679 2680 2681 2682

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2683
	struct hstate *h = hstate_vma(vma);
2684 2685 2686 2687

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2688
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2689
	spin_lock(&mm->page_table_lock);
2690
	for (; address < end; address += huge_page_size(h)) {
2691 2692 2693
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2694 2695
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2696
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2697 2698 2699 2700 2701 2702
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2703
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2704 2705 2706 2707

	flush_tlb_range(vma, start, end);
}

2708 2709
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2710 2711
					struct vm_area_struct *vma,
					int acctflag)
2712
{
2713
	long ret, chg;
2714
	struct hstate *h = hstate_inode(inode);
2715

2716 2717 2718 2719 2720 2721 2722 2723
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2724 2725 2726 2727 2728 2729
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2730
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2731
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2732 2733 2734 2735 2736
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2737
		chg = to - from;
2738

2739 2740 2741 2742
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2743 2744
	if (chg < 0)
		return chg;
2745

2746
	/* There must be enough filesystem quota for the mapping */
2747 2748
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2749 2750

	/*
2751 2752
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2753
	 */
2754
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2755 2756
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2757
		return ret;
K
Ken Chen 已提交
2758
	}
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2771
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2772
		region_add(&inode->i_mapping->private_list, from, to);
2773 2774 2775 2776 2777
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2778
	struct hstate *h = hstate_inode(inode);
2779
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2780 2781

	spin_lock(&inode->i_lock);
2782
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2783 2784
	spin_unlock(&inode->i_lock);

2785
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2786
	hugetlb_acct_memory(h, -(chg - freed));
2787
}