hugetlb.c 106.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66 67 68
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242 243 244 245 246 247
/*
 * Add the huge page range represented by [f, t) to the reserve
 * map.  Existing regions will be expanded to accommodate the
 * specified range.  We know only existing regions need to be
 * expanded, because region_add is only called after region_chg
 * with the same range.  If a new file_region structure must
 * be allocated, it is done in region_chg.
248 249 250
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
251
 */
252
static long region_add(struct resv_map *resv, long f, long t)
253
{
254
	struct list_head *head = &resv->regions;
255
	struct file_region *rg, *nrg, *trg;
256
	long add = 0;
257

258
	spin_lock(&resv->lock);
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
282 283 284 285 286
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
287 288 289 290
			list_del(&rg->link);
			kfree(rg);
		}
	}
291 292

	add += (nrg->from - f);		/* Added to beginning of region */
293
	nrg->from = f;
294
	add += t - nrg->to;		/* Added to end of region */
295
	nrg->to = t;
296

297
	spin_unlock(&resv->lock);
298 299
	VM_BUG_ON(add < 0);
	return add;
300 301
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
 * Returns the number of huge pages that need to be added
 * to the existing reservation map for the range [f, t).
 * This number is greater or equal to zero.  -ENOMEM is
 * returned if a new file_region structure is needed and can
 * not be allocated.
 */
321
static long region_chg(struct resv_map *resv, long f, long t)
322
{
323
	struct list_head *head = &resv->regions;
324
	struct file_region *rg, *nrg = NULL;
325 326
	long chg = 0;

327 328
retry:
	spin_lock(&resv->lock);
329 330 331 332 333 334 335 336 337
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
338 339 340 341 342 343 344 345 346 347 348
		if (!nrg) {
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
349

350 351 352
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
353 354 355 356 357 358 359 360 361 362 363 364
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
365
			goto out;
366

L
Lucas De Marchi 已提交
367
		/* We overlap with this area, if it extends further than
368 369 370 371 372 373 374 375
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
376 377 378 379 380 381 382 383

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
384 385 386
	return chg;
}

387 388 389 390 391
/*
 * Truncate the reserve map at index 'end'.  Modify/truncate any
 * region which contains end.  Delete any regions past end.
 * Return the number of huge pages removed from the map.
 */
392
static long region_truncate(struct resv_map *resv, long end)
393
{
394
	struct list_head *head = &resv->regions;
395 396 397
	struct file_region *rg, *trg;
	long chg = 0;

398
	spin_lock(&resv->lock);
399 400 401 402 403
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
404
		goto out;
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
421 422 423

out:
	spin_unlock(&resv->lock);
424 425 426
	return chg;
}

427 428 429 430
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
431
static long region_count(struct resv_map *resv, long f, long t)
432
{
433
	struct list_head *head = &resv->regions;
434 435 436
	struct file_region *rg;
	long chg = 0;

437
	spin_lock(&resv->lock);
438 439
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
440 441
		long seg_from;
		long seg_to;
442 443 444 445 446 447 448 449 450 451 452

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
453
	spin_unlock(&resv->lock);
454 455 456 457

	return chg;
}

458 459 460 461
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
462 463
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
464
{
465 466
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
467 468
}

469 470 471 472 473 474
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

475 476 477 478 479 480 481 482 483 484 485 486 487
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

488
	return 1UL << huge_page_shift(hstate);
489
}
490
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
491

492 493 494 495 496 497 498 499 500 501 502 503 504
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

505 506 507 508 509 510 511
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
512
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
513

514 515 516 517 518 519 520 521 522
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
523 524 525 526 527 528 529 530 531
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
532
 */
533 534 535 536 537 538 539 540 541 542 543
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

544
struct resv_map *resv_map_alloc(void)
545 546 547 548 549 550
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
551
	spin_lock_init(&resv_map->lock);
552 553 554 555 556
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

557
void resv_map_release(struct kref *ref)
558 559 560 561
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
562
	region_truncate(resv_map, 0);
563 564 565
	kfree(resv_map);
}

566 567 568 569 570
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

571
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
572
{
573
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
574 575 576 577 578 579 580
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
581 582
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
583
	}
584 585
}

586
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
587
{
588 589
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
590

591 592
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
593 594 595 596
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
597 598
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
599 600

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
601 602 603 604
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
605
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
606 607

	return (get_vma_private_data(vma) & flag) != 0;
608 609
}

610
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
611 612
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
613
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
614
	if (!(vma->vm_flags & VM_MAYSHARE))
615 616 617 618
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
619
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
620
{
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
636 637

	/* Shared mappings always use reserves */
638
	if (vma->vm_flags & VM_MAYSHARE)
639
		return 1;
640 641 642 643 644

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
645 646
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
647

648
	return 0;
649 650
}

651
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
652 653
{
	int nid = page_to_nid(page);
654
	list_move(&page->lru, &h->hugepage_freelists[nid]);
655 656
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
657 658
}

659 660 661 662
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

663 664 665 666 667 668 669 670
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
671
		return NULL;
672
	list_move(&page->lru, &h->hugepage_activelist);
673
	set_page_refcounted(page);
674 675 676 677 678
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

679 680 681
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
682
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
683 684 685 686 687
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

688 689
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
690 691
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
692
{
693
	struct page *page = NULL;
694
	struct mempolicy *mpol;
695
	nodemask_t *nodemask;
696
	struct zonelist *zonelist;
697 698
	struct zone *zone;
	struct zoneref *z;
699
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
700

701 702 703 704 705
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
706
	if (!vma_has_reserves(vma, chg) &&
707
			h->free_huge_pages - h->resv_huge_pages == 0)
708
		goto err;
709

710
	/* If reserves cannot be used, ensure enough pages are in the pool */
711
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
712
		goto err;
713

714
retry_cpuset:
715
	cpuset_mems_cookie = read_mems_allowed_begin();
716
	zonelist = huge_zonelist(vma, address,
717
					htlb_alloc_mask(h), &mpol, &nodemask);
718

719 720
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
721
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
722 723
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
724 725 726 727 728
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

729
				SetPagePrivate(page);
730
				h->resv_huge_pages--;
731 732
				break;
			}
A
Andrew Morton 已提交
733
		}
L
Linus Torvalds 已提交
734
	}
735

736
	mpol_cond_put(mpol);
737
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
738
		goto retry_cpuset;
L
Linus Torvalds 已提交
739
	return page;
740 741 742

err:
	return NULL;
L
Linus Torvalds 已提交
743 744
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
					unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__ClearPageTail(p);
		set_page_refcounted(p);
		p->first_page = NULL;
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

static void free_gigantic_page(struct page *page, unsigned order)
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

static struct page *alloc_gigantic_page(int nid, unsigned order)
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
static void prep_compound_gigantic_page(struct page *page, unsigned long order);

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
static inline void free_gigantic_page(struct page *page, unsigned order) { }
static inline void destroy_compound_gigantic_page(struct page *page,
						unsigned long order) { }
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

956
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
957 958
{
	int i;
959

960 961
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
962

963 964 965
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
966 967
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
968 969
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
970
	}
971
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
A
Adam Litke 已提交
972 973
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
974 975 976 977 978 979 980
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		arch_release_hugepage(page);
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
981 982
}

983 984 985 986 987 988 989 990 991 992 993
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1019
void free_huge_page(struct page *page)
1020
{
1021 1022 1023 1024
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1025
	struct hstate *h = page_hstate(page);
1026
	int nid = page_to_nid(page);
1027 1028
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1029
	bool restore_reserve;
1030

1031
	set_page_private(page, 0);
1032
	page->mapping = NULL;
1033
	BUG_ON(page_count(page));
1034
	BUG_ON(page_mapcount(page));
1035
	restore_reserve = PagePrivate(page);
1036
	ClearPagePrivate(page);
1037

1038 1039 1040 1041 1042 1043 1044 1045
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1046
	spin_lock(&hugetlb_lock);
1047
	clear_page_huge_active(page);
1048 1049
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1050 1051 1052
	if (restore_reserve)
		h->resv_huge_pages++;

1053
	if (h->surplus_huge_pages_node[nid]) {
1054 1055
		/* remove the page from active list */
		list_del(&page->lru);
1056 1057 1058
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1059
	} else {
1060
		arch_clear_hugepage_flags(page);
1061
		enqueue_huge_page(h, page);
1062
	}
1063 1064 1065
	spin_unlock(&hugetlb_lock);
}

1066
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1067
{
1068
	INIT_LIST_HEAD(&page->lru);
1069 1070
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
1071
	set_hugetlb_cgroup(page, NULL);
1072 1073
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1074 1075 1076 1077
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1078
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1079 1080 1081 1082 1083 1084 1085 1086
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1087
	__ClearPageReserved(page);
1088
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1102
		set_page_count(p, 0);
1103
		p->first_page = page;
1104 1105 1106
		/* Make sure p->first_page is always valid for PageTail() */
		smp_wmb();
		__SetPageTail(p);
1107 1108 1109
	}
}

A
Andrew Morton 已提交
1110 1111 1112 1113 1114
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1115 1116 1117 1118 1119 1120
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1121
	return get_compound_page_dtor(page) == free_huge_page;
1122
}
1123 1124
EXPORT_SYMBOL_GPL(PageHuge);

1125 1126 1127 1128 1129 1130 1131 1132 1133
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1134
	return get_compound_page_dtor(page_head) == free_huge_page;
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1154
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1155 1156
{
	struct page *page;
1157

1158
	page = alloc_pages_exact_node(nid,
1159
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1160
						__GFP_REPEAT|__GFP_NOWARN,
1161
		huge_page_order(h));
L
Linus Torvalds 已提交
1162
	if (page) {
1163
		if (arch_prepare_hugepage(page)) {
1164
			__free_pages(page, huge_page_order(h));
1165
			return NULL;
1166
		}
1167
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1168
	}
1169 1170 1171 1172

	return page;
}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1195 1196 1197 1198 1199 1200
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1201 1202
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1203
{
1204
	int nr_nodes, node;
1205 1206
	int ret = 0;

1207
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1208 1209 1210 1211
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1212 1213
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1214
			struct page *page =
1215
				list_entry(h->hugepage_freelists[node].next,
1216 1217 1218
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1219
			h->free_huge_pages_node[node]--;
1220 1221
			if (acct_surplus) {
				h->surplus_huge_pages--;
1222
				h->surplus_huge_pages_node[node]--;
1223
			}
1224 1225
			update_and_free_page(h, page);
			ret = 1;
1226
			break;
1227
		}
1228
	}
1229 1230 1231 1232

	return ret;
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1260 1261 1262
	if (!hugepages_supported())
		return;

1263 1264
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1265 1266 1267
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1268
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1269 1270
{
	struct page *page;
1271
	unsigned int r_nid;
1272

1273
	if (hstate_is_gigantic(h))
1274 1275
		return NULL;

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1300
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1301 1302 1303
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1304 1305
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1306 1307 1308
	}
	spin_unlock(&hugetlb_lock);

1309
	if (nid == NUMA_NO_NODE)
1310
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1311 1312 1313 1314
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
1315
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1316
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1317

1318 1319
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
1320
		page = NULL;
1321 1322
	}

1323
	spin_lock(&hugetlb_lock);
1324
	if (page) {
1325
		INIT_LIST_HEAD(&page->lru);
1326
		r_nid = page_to_nid(page);
1327
		set_compound_page_dtor(page, free_huge_page);
1328
		set_hugetlb_cgroup(page, NULL);
1329 1330 1331
		/*
		 * We incremented the global counters already
		 */
1332 1333
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1334
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1335
	} else {
1336 1337
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1338
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1339
	}
1340
	spin_unlock(&hugetlb_lock);
1341 1342 1343 1344

	return page;
}

1345 1346 1347 1348 1349 1350 1351
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1352
	struct page *page = NULL;
1353 1354

	spin_lock(&hugetlb_lock);
1355 1356
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1357 1358
	spin_unlock(&hugetlb_lock);

1359
	if (!page)
1360 1361 1362 1363 1364
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1365
/*
L
Lucas De Marchi 已提交
1366
 * Increase the hugetlb pool such that it can accommodate a reservation
1367 1368
 * of size 'delta'.
 */
1369
static int gather_surplus_pages(struct hstate *h, int delta)
1370 1371 1372 1373 1374
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1375
	bool alloc_ok = true;
1376

1377
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1378
	if (needed <= 0) {
1379
		h->resv_huge_pages += delta;
1380
		return 0;
1381
	}
1382 1383 1384 1385 1386 1387 1388 1389

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1390
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1391 1392 1393 1394
		if (!page) {
			alloc_ok = false;
			break;
		}
1395 1396
		list_add(&page->lru, &surplus_list);
	}
1397
	allocated += i;
1398 1399 1400 1401 1402 1403

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1404 1405
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1416 1417
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1418
	 * needed to accommodate the reservation.  Add the appropriate number
1419
	 * of pages to the hugetlb pool and free the extras back to the buddy
1420 1421 1422
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1423 1424
	 */
	needed += allocated;
1425
	h->resv_huge_pages += delta;
1426
	ret = 0;
1427

1428
	/* Free the needed pages to the hugetlb pool */
1429
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1430 1431
		if ((--needed) < 0)
			break;
1432 1433 1434 1435 1436
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1437
		VM_BUG_ON_PAGE(page_count(page), page);
1438
		enqueue_huge_page(h, page);
1439
	}
1440
free:
1441
	spin_unlock(&hugetlb_lock);
1442 1443

	/* Free unnecessary surplus pages to the buddy allocator */
1444 1445
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1446
	spin_lock(&hugetlb_lock);
1447 1448 1449 1450 1451 1452 1453 1454

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1455
 * Called with hugetlb_lock held.
1456
 */
1457 1458
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1459 1460 1461
{
	unsigned long nr_pages;

1462
	/* Uncommit the reservation */
1463
	h->resv_huge_pages -= unused_resv_pages;
1464

1465
	/* Cannot return gigantic pages currently */
1466
	if (hstate_is_gigantic(h))
1467 1468
		return;

1469
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1470

1471 1472
	/*
	 * We want to release as many surplus pages as possible, spread
1473 1474 1475 1476 1477
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1478 1479
	 */
	while (nr_pages--) {
1480
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1481
			break;
1482
		cond_resched_lock(&hugetlb_lock);
1483 1484 1485
	}
}

1486
/*
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
 * vma_needs_reservation and vma_commit_reservation are used by the huge
 * page allocation routines to manage reservations.
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
 * to add the page to the reservation map.
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1502
 */
1503 1504 1505
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
				bool commit)
1506
{
1507 1508
	struct resv_map *resv;
	pgoff_t idx;
1509
	long ret;
1510

1511 1512
	resv = vma_resv_map(vma);
	if (!resv)
1513
		return 1;
1514

1515
	idx = vma_hugecache_offset(h, vma, addr);
1516 1517 1518 1519
	if (commit)
		ret = region_add(resv, idx, idx + 1);
	else
		ret = region_chg(resv, idx, idx + 1);
1520

1521
	if (vma->vm_flags & VM_MAYSHARE)
1522
		return ret;
1523
	else
1524
		return ret < 0 ? ret : 0;
1525
}
1526 1527

static long vma_needs_reservation(struct hstate *h,
1528
			struct vm_area_struct *vma, unsigned long addr)
1529
{
1530 1531
	return __vma_reservation_common(h, vma, addr, false);
}
1532

1533 1534 1535 1536
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
	return __vma_reservation_common(h, vma, addr, true);
1537 1538
}

1539
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1540
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1541
{
1542
	struct hugepage_subpool *spool = subpool_vma(vma);
1543
	struct hstate *h = hstate_vma(vma);
1544
	struct page *page;
1545
	long chg;
1546 1547
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1548

1549
	idx = hstate_index(h);
1550
	/*
1551 1552 1553 1554 1555 1556
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1557
	 */
1558
	chg = vma_needs_reservation(h, vma, addr);
1559
	if (chg < 0)
1560
		return ERR_PTR(-ENOMEM);
1561
	if (chg || avoid_reserve)
1562
		if (hugepage_subpool_get_pages(spool, 1) < 0)
1563
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1564

1565
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1566 1567 1568
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1569
	spin_lock(&hugetlb_lock);
1570
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1571
	if (!page) {
1572
		spin_unlock(&hugetlb_lock);
1573
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1574 1575 1576
		if (!page)
			goto out_uncharge_cgroup;

1577 1578
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1579
		/* Fall through */
K
Ken Chen 已提交
1580
	}
1581 1582
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1583

1584
	set_page_private(page, (unsigned long)spool);
1585

1586
	vma_commit_reservation(h, vma, addr);
1587
	return page;
1588 1589 1590 1591 1592 1593 1594

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
	if (chg || avoid_reserve)
		hugepage_subpool_put_pages(spool, 1);
	return ERR_PTR(-ENOSPC);
1595 1596
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1611
int __weak alloc_bootmem_huge_page(struct hstate *h)
1612 1613
{
	struct huge_bootmem_page *m;
1614
	int nr_nodes, node;
1615

1616
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1617 1618
		void *addr;

1619 1620 1621
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1622 1623 1624 1625 1626 1627 1628
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1629
			goto found;
1630 1631 1632 1633 1634
		}
	}
	return 0;

found:
1635
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1636 1637 1638 1639 1640 1641
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1642
static void __init prep_compound_huge_page(struct page *page, int order)
1643 1644 1645 1646 1647 1648 1649
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1650 1651 1652 1653 1654 1655 1656
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1657 1658 1659 1660
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1661 1662
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1663 1664 1665
#else
		page = virt_to_page(m);
#endif
1666
		WARN_ON(page_count(page) != 1);
1667
		prep_compound_huge_page(page, h->order);
1668
		WARN_ON(PageReserved(page));
1669
		prep_new_huge_page(h, page, page_to_nid(page));
1670 1671 1672 1673 1674 1675
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
1676
		if (hstate_is_gigantic(h))
1677
			adjust_managed_page_count(page, 1 << h->order);
1678 1679 1680
	}
}

1681
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1682 1683
{
	unsigned long i;
1684

1685
	for (i = 0; i < h->max_huge_pages; ++i) {
1686
		if (hstate_is_gigantic(h)) {
1687 1688
			if (!alloc_bootmem_huge_page(h))
				break;
1689
		} else if (!alloc_fresh_huge_page(h,
1690
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1691 1692
			break;
	}
1693
	h->max_huge_pages = i;
1694 1695 1696 1697 1698 1699 1700
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1701 1702 1703
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

1704
		/* oversize hugepages were init'ed in early boot */
1705
		if (!hstate_is_gigantic(h))
1706
			hugetlb_hstate_alloc_pages(h);
1707
	}
1708
	VM_BUG_ON(minimum_order == UINT_MAX);
1709 1710
}

A
Andi Kleen 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1722 1723 1724 1725 1726
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1727
		char buf[32];
1728
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1729 1730
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1731 1732 1733
	}
}

L
Linus Torvalds 已提交
1734
#ifdef CONFIG_HIGHMEM
1735 1736
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1737
{
1738 1739
	int i;

1740
	if (hstate_is_gigantic(h))
1741 1742
		return;

1743
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1744
		struct page *page, *next;
1745 1746 1747
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1748
				return;
L
Linus Torvalds 已提交
1749 1750 1751
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1752
			update_and_free_page(h, page);
1753 1754
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1755 1756 1757 1758
		}
	}
}
#else
1759 1760
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1761 1762 1763 1764
{
}
#endif

1765 1766 1767 1768 1769
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1770 1771
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1772
{
1773
	int nr_nodes, node;
1774 1775 1776

	VM_BUG_ON(delta != -1 && delta != 1);

1777 1778 1779 1780
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1781
		}
1782 1783 1784 1785 1786
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1787
		}
1788 1789
	}
	return 0;
1790

1791 1792 1793 1794
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1795 1796
}

1797
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1798 1799
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1800
{
1801
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1802

1803
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
1804 1805
		return h->max_huge_pages;

1806 1807 1808 1809
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1810 1811 1812 1813 1814 1815
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1816
	 */
L
Linus Torvalds 已提交
1817
	spin_lock(&hugetlb_lock);
1818
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1819
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1820 1821 1822
			break;
	}

1823
	while (count > persistent_huge_pages(h)) {
1824 1825 1826 1827 1828 1829
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1830 1831 1832 1833
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
1834 1835 1836 1837
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1838 1839 1840
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1841 1842 1843 1844 1845 1846 1847 1848
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1849 1850 1851 1852 1853 1854 1855 1856
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1857
	 */
1858
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1859
	min_count = max(count, min_count);
1860
	try_to_free_low(h, min_count, nodes_allowed);
1861
	while (min_count < persistent_huge_pages(h)) {
1862
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1863
			break;
1864
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
1865
	}
1866
	while (count < persistent_huge_pages(h)) {
1867
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1868 1869 1870
			break;
	}
out:
1871
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1872
	spin_unlock(&hugetlb_lock);
1873
	return ret;
L
Linus Torvalds 已提交
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1886 1887 1888
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1889 1890
{
	int i;
1891

1892
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1893 1894 1895
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1896
			return &hstates[i];
1897 1898 1899
		}

	return kobj_to_node_hstate(kobj, nidp);
1900 1901
}

1902
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1903 1904
					struct kobj_attribute *attr, char *buf)
{
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1916
}
1917

1918 1919 1920
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
1921 1922
{
	int err;
1923
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1924

1925
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1926 1927 1928 1929
		err = -EINVAL;
		goto out;
	}

1930 1931 1932 1933 1934 1935 1936
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1937
			nodes_allowed = &node_states[N_MEMORY];
1938 1939 1940 1941 1942 1943 1944 1945 1946
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1947
		nodes_allowed = &node_states[N_MEMORY];
1948

1949
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1950

1951
	if (nodes_allowed != &node_states[N_MEMORY])
1952 1953 1954
		NODEMASK_FREE(nodes_allowed);

	return len;
1955 1956 1957
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1958 1959
}

1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

1977 1978 1979 1980 1981 1982 1983 1984 1985
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
1986
	return nr_hugepages_store_common(false, kobj, buf, len);
1987 1988 1989
}
HSTATE_ATTR(nr_hugepages);

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2005
	return nr_hugepages_store_common(true, kobj, buf, len);
2006 2007 2008 2009 2010
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2011 2012 2013
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2014
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2015 2016
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2017

2018 2019 2020 2021 2022
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2023
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2024

2025
	if (hstate_is_gigantic(h))
2026 2027
		return -EINVAL;

2028
	err = kstrtoul(buf, 10, &input);
2029
	if (err)
2030
		return err;
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2054 2055 2056 2057 2058 2059
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2060
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2061 2062 2063 2064 2065 2066 2067
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2079 2080 2081 2082 2083 2084 2085 2086 2087
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2088 2089 2090
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2091 2092 2093 2094 2095 2096 2097
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2098 2099 2100
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2101 2102
{
	int retval;
2103
	int hi = hstate_index(h);
2104

2105 2106
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2107 2108
		return -ENOMEM;

2109
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2110
	if (retval)
2111
		kobject_put(hstate_kobjs[hi]);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2126 2127
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2128
		if (err)
2129
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2130 2131 2132
	}
}

2133 2134 2135 2136
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2137 2138 2139
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2140 2141 2142 2143 2144 2145 2146 2147 2148
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
2149
 * A subset of global hstate attributes for node devices
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2163
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2186
 * Unregister hstate attributes from a single node device.
2187 2188
 * No-op if no hstate attributes attached.
 */
2189
static void hugetlb_unregister_node(struct node *node)
2190 2191
{
	struct hstate *h;
2192
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2193 2194

	if (!nhs->hugepages_kobj)
2195
		return;		/* no hstate attributes */
2196

2197 2198 2199 2200 2201
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2202
		}
2203
	}
2204 2205 2206 2207 2208 2209

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2210
 * hugetlb module exit:  unregister hstate attributes from node devices
2211 2212 2213 2214 2215 2216 2217
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2218
	 * disable node device registrations.
2219 2220 2221 2222 2223 2224 2225
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2226
		hugetlb_unregister_node(node_devices[nid]);
2227 2228 2229
}

/*
2230
 * Register hstate attributes for a single node device.
2231 2232
 * No-op if attributes already registered.
 */
2233
static void hugetlb_register_node(struct node *node)
2234 2235
{
	struct hstate *h;
2236
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2237 2238 2239 2240 2241 2242
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2243
							&node->dev.kobj);
2244 2245 2246 2247 2248 2249 2250 2251
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2252 2253
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2254 2255 2256 2257 2258 2259 2260
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2261
 * hugetlb init time:  register hstate attributes for all registered node
2262 2263
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2264
 */
2265
static void __init hugetlb_register_all_nodes(void)
2266 2267 2268
{
	int nid;

2269
	for_each_node_state(nid, N_MEMORY) {
2270
		struct node *node = node_devices[nid];
2271
		if (node->dev.id == nid)
2272 2273 2274 2275
			hugetlb_register_node(node);
	}

	/*
2276
	 * Let the node device driver know we're here so it can
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2298 2299 2300 2301
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2302 2303
	hugetlb_unregister_all_nodes();

2304
	for_each_hstate(h) {
2305
		kobject_put(hstate_kobjs[hstate_index(h)]);
2306 2307 2308
	}

	kobject_put(hugepages_kobj);
2309
	kfree(htlb_fault_mutex_table);
2310 2311 2312 2313 2314
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2315 2316
	int i;

2317
	if (!hugepages_supported())
2318
		return 0;
2319

2320 2321 2322 2323
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2324
	}
2325
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2326 2327
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2328 2329

	hugetlb_init_hstates();
2330
	gather_bootmem_prealloc();
2331 2332 2333
	report_hugepages();

	hugetlb_sysfs_init();
2334
	hugetlb_register_all_nodes();
2335
	hugetlb_cgroup_file_init();
2336

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
	htlb_fault_mutex_table =
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
	BUG_ON(!htlb_fault_mutex_table);

	for (i = 0; i < num_fault_mutexes; i++)
		mutex_init(&htlb_fault_mutex_table[i]);
2348 2349 2350 2351 2352 2353 2354 2355
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
2356 2357
	unsigned long i;

2358
	if (size_to_hstate(PAGE_SIZE << order)) {
2359
		pr_warning("hugepagesz= specified twice, ignoring\n");
2360 2361
		return;
	}
2362
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2363
	BUG_ON(order == 0);
2364
	h = &hstates[hugetlb_max_hstate++];
2365 2366
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2367 2368 2369 2370
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2371
	INIT_LIST_HEAD(&h->hugepage_activelist);
2372 2373
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2374 2375
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2376

2377 2378 2379
	parsed_hstate = h;
}

2380
static int __init hugetlb_nrpages_setup(char *s)
2381 2382
{
	unsigned long *mhp;
2383
	static unsigned long *last_mhp;
2384 2385

	/*
2386
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2387 2388
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2389
	if (!hugetlb_max_hstate)
2390 2391 2392 2393
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2394
	if (mhp == last_mhp) {
2395 2396
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2397 2398 2399
		return 1;
	}

2400 2401 2402
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2403 2404 2405 2406 2407
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2408
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2409 2410 2411 2412
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2413 2414
	return 1;
}
2415 2416 2417 2418 2419 2420 2421 2422
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2423

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2436 2437 2438
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2439
{
2440
	struct hstate *h = &default_hstate;
2441
	unsigned long tmp = h->max_huge_pages;
2442
	int ret;
2443

2444 2445 2446
	if (!hugepages_supported())
		return -ENOTSUPP;

2447 2448
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2449 2450 2451
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2452

2453 2454 2455
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2456 2457
out:
	return ret;
L
Linus Torvalds 已提交
2458
}
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2477
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2478
			void __user *buffer,
2479 2480
			size_t *length, loff_t *ppos)
{
2481
	struct hstate *h = &default_hstate;
2482
	unsigned long tmp;
2483
	int ret;
2484

2485 2486 2487
	if (!hugepages_supported())
		return -ENOTSUPP;

2488
	tmp = h->nr_overcommit_huge_pages;
2489

2490
	if (write && hstate_is_gigantic(h))
2491 2492
		return -EINVAL;

2493 2494
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2495 2496 2497
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2498 2499 2500 2501 2502 2503

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2504 2505
out:
	return ret;
2506 2507
}

L
Linus Torvalds 已提交
2508 2509
#endif /* CONFIG_SYSCTL */

2510
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2511
{
2512
	struct hstate *h = &default_hstate;
2513 2514
	if (!hugepages_supported())
		return;
2515
	seq_printf(m,
2516 2517 2518 2519 2520
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2521 2522 2523 2524 2525
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2526 2527 2528 2529
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2530
	struct hstate *h = &default_hstate;
2531 2532
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2533 2534
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2535 2536
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2537 2538 2539
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2540 2541
}

2542 2543 2544 2545 2546
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2547 2548 2549
	if (!hugepages_supported())
		return;

2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2560 2561 2562
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2563 2564 2565 2566 2567 2568
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2569 2570
}

2571
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2594
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2595 2596
			goto out;

2597 2598
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2599 2600 2601 2602 2603 2604
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2605
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2606 2607 2608 2609 2610 2611

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2612 2613
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2614
	struct resv_map *resv = vma_resv_map(vma);
2615 2616 2617 2618 2619

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2620
	 * has a reference to the reservation map it cannot disappear until
2621 2622 2623
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2624
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2625
		kref_get(&resv->refs);
2626 2627
}

2628 2629
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2630
	struct hstate *h = hstate_vma(vma);
2631
	struct resv_map *resv = vma_resv_map(vma);
2632
	struct hugepage_subpool *spool = subpool_vma(vma);
2633
	unsigned long reserve, start, end;
2634
	long gbl_reserve;
2635

2636 2637
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2638

2639 2640
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2641

2642
	reserve = (end - start) - region_count(resv, start, end);
2643

2644 2645 2646
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2647 2648 2649 2650 2651 2652
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
2653
	}
2654 2655
}

L
Linus Torvalds 已提交
2656 2657 2658 2659 2660 2661
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2662
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2663 2664
{
	BUG();
N
Nick Piggin 已提交
2665
	return 0;
L
Linus Torvalds 已提交
2666 2667
}

2668
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2669
	.fault = hugetlb_vm_op_fault,
2670
	.open = hugetlb_vm_op_open,
2671
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2672 2673
};

2674 2675
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2676 2677 2678
{
	pte_t entry;

2679
	if (writable) {
2680 2681
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2682
	} else {
2683 2684
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2685 2686 2687
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2688
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2689 2690 2691 2692

	return entry;
}

2693 2694 2695 2696 2697
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2698
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2699
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2700
		update_mmu_cache(vma, address, ptep);
2701 2702
}

2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
2728

D
David Gibson 已提交
2729 2730 2731 2732 2733
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2734
	unsigned long addr;
2735
	int cow;
2736 2737
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2738 2739 2740
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2741 2742

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2743

2744 2745 2746 2747 2748
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2749
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2750
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2751 2752 2753
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2754
		dst_pte = huge_pte_alloc(dst, addr, sz);
2755 2756 2757 2758
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2759 2760 2761 2762 2763

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2764 2765 2766
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
2785
			if (cow) {
2786
				huge_ptep_set_wrprotect(src, addr, src_pte);
2787 2788 2789
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
2790
			entry = huge_ptep_get(src_pte);
2791 2792
			ptepage = pte_page(entry);
			get_page(ptepage);
2793
			page_dup_rmap(ptepage);
2794 2795
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2796 2797
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2798 2799
	}

2800 2801 2802 2803
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2804 2805
}

2806 2807 2808
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2809
{
2810
	int force_flush = 0;
D
David Gibson 已提交
2811 2812
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2813
	pte_t *ptep;
D
David Gibson 已提交
2814
	pte_t pte;
2815
	spinlock_t *ptl;
D
David Gibson 已提交
2816
	struct page *page;
2817 2818
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2819 2820
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2821

D
David Gibson 已提交
2822
	WARN_ON(!is_vm_hugetlb_page(vma));
2823 2824
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2825

2826
	tlb_start_vma(tlb, vma);
2827
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2828
	address = start;
2829
again:
2830
	for (; address < end; address += sz) {
2831
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2832
		if (!ptep)
2833 2834
			continue;

2835
		ptl = huge_pte_lock(h, mm, ptep);
2836
		if (huge_pmd_unshare(mm, &address, ptep))
2837
			goto unlock;
2838

2839 2840
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2841
			goto unlock;
2842 2843

		/*
2844 2845
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
2846
		 */
2847
		if (unlikely(!pte_present(pte))) {
2848
			huge_pte_clear(mm, address, ptep);
2849
			goto unlock;
2850
		}
2851 2852

		page = pte_page(pte);
2853 2854 2855 2856 2857 2858 2859
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2860
				goto unlock;
2861 2862 2863 2864 2865 2866 2867 2868 2869

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2870
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2871
		tlb_remove_tlb_entry(tlb, ptep, address);
2872
		if (huge_pte_dirty(pte))
2873
			set_page_dirty(page);
2874

2875 2876
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2877
		if (force_flush) {
2878
			address += sz;
2879
			spin_unlock(ptl);
2880
			break;
2881
		}
2882
		/* Bail out after unmapping reference page if supplied */
2883 2884
		if (ref_page) {
			spin_unlock(ptl);
2885
			break;
2886 2887 2888
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2889
	}
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2900
	}
2901
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2902
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2903
}
D
David Gibson 已提交
2904

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
2917
	 * is to clear it before releasing the i_mmap_rwsem. This works
2918
	 * because in the context this is called, the VMA is about to be
2919
	 * destroyed and the i_mmap_rwsem is held.
2920 2921 2922 2923
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2924
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2925
			  unsigned long end, struct page *ref_page)
2926
{
2927 2928 2929 2930 2931
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2932
	tlb_gather_mmu(&tlb, mm, start, end);
2933 2934
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2935 2936
}

2937 2938 2939 2940 2941 2942
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2943 2944
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
2945
{
2946
	struct hstate *h = hstate_vma(vma);
2947 2948 2949 2950 2951 2952 2953 2954
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2955
	address = address & huge_page_mask(h);
2956 2957
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2958
	mapping = file_inode(vma->vm_file)->i_mapping;
2959

2960 2961 2962 2963 2964
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2965
	i_mmap_lock_write(mapping);
2966
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2979 2980
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2981
	}
2982
	i_mmap_unlock_write(mapping);
2983 2984
}

2985 2986
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2987 2988 2989
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2990
 */
2991
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2992
			unsigned long address, pte_t *ptep, pte_t pte,
2993
			struct page *pagecache_page, spinlock_t *ptl)
2994
{
2995
	struct hstate *h = hstate_vma(vma);
2996
	struct page *old_page, *new_page;
2997
	int ret = 0, outside_reserve = 0;
2998 2999
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3000 3001 3002

	old_page = pte_page(pte);

3003
retry_avoidcopy:
3004 3005
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3006 3007
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3008
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3009
		return 0;
3010 3011
	}

3012 3013 3014 3015 3016 3017 3018 3019 3020
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3021
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3022 3023 3024
			old_page != pagecache_page)
		outside_reserve = 1;

3025
	page_cache_get(old_page);
3026

3027 3028 3029 3030
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3031
	spin_unlock(ptl);
3032
	new_page = alloc_huge_page(vma, address, outside_reserve);
3033

3034
	if (IS_ERR(new_page)) {
3035 3036 3037 3038 3039 3040 3041 3042
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3043
			page_cache_release(old_page);
3044
			BUG_ON(huge_pte_none(pte));
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3057 3058
		}

3059 3060 3061
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3062 3063
	}

3064 3065 3066 3067
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3068
	if (unlikely(anon_vma_prepare(vma))) {
3069 3070
		ret = VM_FAULT_OOM;
		goto out_release_all;
3071
	}
3072

A
Andrea Arcangeli 已提交
3073 3074
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3075
	__SetPageUptodate(new_page);
3076
	set_page_huge_active(new_page);
3077

3078 3079 3080
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3081

3082
	/*
3083
	 * Retake the page table lock to check for racing updates
3084 3085
	 * before the page tables are altered
	 */
3086
	spin_lock(ptl);
3087
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3088
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3089 3090
		ClearPagePrivate(new_page);

3091
		/* Break COW */
3092
		huge_ptep_clear_flush(vma, address, ptep);
3093
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3094 3095
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3096
		page_remove_rmap(old_page);
3097
		hugepage_add_new_anon_rmap(new_page, vma, address);
3098 3099 3100
		/* Make the old page be freed below */
		new_page = old_page;
	}
3101
	spin_unlock(ptl);
3102
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3103
out_release_all:
3104
	page_cache_release(new_page);
3105
out_release_old:
3106
	page_cache_release(old_page);
3107

3108 3109
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3110 3111
}

3112
/* Return the pagecache page at a given address within a VMA */
3113 3114
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3115 3116
{
	struct address_space *mapping;
3117
	pgoff_t idx;
3118 3119

	mapping = vma->vm_file->f_mapping;
3120
	idx = vma_hugecache_offset(h, vma, address);
3121 3122 3123 3124

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3125 3126 3127 3128 3129
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3145
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3146 3147
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3148
{
3149
	struct hstate *h = hstate_vma(vma);
3150
	int ret = VM_FAULT_SIGBUS;
3151
	int anon_rmap = 0;
A
Adam Litke 已提交
3152 3153
	unsigned long size;
	struct page *page;
3154
	pte_t new_pte;
3155
	spinlock_t *ptl;
A
Adam Litke 已提交
3156

3157 3158 3159
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3160
	 * COW. Warn that such a situation has occurred as it may not be obvious
3161 3162
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3163 3164
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3165 3166 3167
		return ret;
	}

A
Adam Litke 已提交
3168 3169 3170 3171
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3172 3173 3174
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3175
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3176 3177
		if (idx >= size)
			goto out;
3178
		page = alloc_huge_page(vma, address, 0);
3179
		if (IS_ERR(page)) {
3180 3181 3182 3183 3184
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3185 3186
			goto out;
		}
A
Andrea Arcangeli 已提交
3187
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3188
		__SetPageUptodate(page);
3189
		set_page_huge_active(page);
3190

3191
		if (vma->vm_flags & VM_MAYSHARE) {
3192
			int err;
K
Ken Chen 已提交
3193
			struct inode *inode = mapping->host;
3194 3195 3196 3197 3198 3199 3200 3201

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3202
			ClearPagePrivate(page);
K
Ken Chen 已提交
3203 3204

			spin_lock(&inode->i_lock);
3205
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
3206
			spin_unlock(&inode->i_lock);
3207
		} else {
3208
			lock_page(page);
3209 3210 3211 3212
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3213
			anon_rmap = 1;
3214
		}
3215
	} else {
3216 3217 3218 3219 3220 3221
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3222
			ret = VM_FAULT_HWPOISON |
3223
				VM_FAULT_SET_HINDEX(hstate_index(h));
3224 3225
			goto backout_unlocked;
		}
3226
	}
3227

3228 3229 3230 3231 3232 3233
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3234
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3235 3236 3237 3238
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3239

3240 3241
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3242
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3243 3244 3245
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3246
	ret = 0;
3247
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3248 3249
		goto backout;

3250 3251
	if (anon_rmap) {
		ClearPagePrivate(page);
3252
		hugepage_add_new_anon_rmap(page, vma, address);
3253
	} else
3254
		page_dup_rmap(page);
3255 3256 3257 3258
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3259
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3260
		/* Optimization, do the COW without a second fault */
3261
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3262 3263
	}

3264
	spin_unlock(ptl);
A
Adam Litke 已提交
3265 3266
	unlock_page(page);
out:
3267
	return ret;
A
Adam Litke 已提交
3268 3269

backout:
3270
	spin_unlock(ptl);
3271
backout_unlocked:
A
Adam Litke 已提交
3272 3273 3274
	unlock_page(page);
	put_page(page);
	goto out;
3275 3276
}

3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
#ifdef CONFIG_SMP
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3312
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3313
			unsigned long address, unsigned int flags)
3314
{
3315
	pte_t *ptep, entry;
3316
	spinlock_t *ptl;
3317
	int ret;
3318 3319
	u32 hash;
	pgoff_t idx;
3320
	struct page *page = NULL;
3321
	struct page *pagecache_page = NULL;
3322
	struct hstate *h = hstate_vma(vma);
3323
	struct address_space *mapping;
3324
	int need_wait_lock = 0;
3325

3326 3327
	address &= huge_page_mask(h);

3328 3329 3330
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3331
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3332
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3333 3334
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3335
			return VM_FAULT_HWPOISON_LARGE |
3336
				VM_FAULT_SET_HINDEX(hstate_index(h));
3337 3338
	}

3339
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3340 3341 3342
	if (!ptep)
		return VM_FAULT_OOM;

3343 3344 3345
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3346 3347 3348 3349 3350
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3351 3352 3353
	hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&htlb_fault_mutex_table[hash]);

3354 3355
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3356
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3357
		goto out_mutex;
3358
	}
3359

N
Nick Piggin 已提交
3360
	ret = 0;
3361

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3372 3373 3374 3375 3376 3377 3378 3379
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3380
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3381 3382
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3383
			goto out_mutex;
3384
		}
3385

3386
		if (!(vma->vm_flags & VM_MAYSHARE))
3387 3388 3389 3390
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3391 3392 3393 3394 3395 3396
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3397 3398 3399 3400 3401 3402 3403
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3404 3405 3406 3407
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3408

3409
	get_page(page);
3410

3411
	if (flags & FAULT_FLAG_WRITE) {
3412
		if (!huge_pte_write(entry)) {
3413
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3414
					pagecache_page, ptl);
3415
			goto out_put_page;
3416
		}
3417
		entry = huge_pte_mkdirty(entry);
3418 3419
	}
	entry = pte_mkyoung(entry);
3420 3421
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3422
		update_mmu_cache(vma, address, ptep);
3423 3424 3425 3426
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3427 3428
out_ptl:
	spin_unlock(ptl);
3429 3430 3431 3432 3433

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3434
out_mutex:
3435
	mutex_unlock(&htlb_fault_mutex_table[hash]);
3436 3437 3438 3439 3440 3441 3442 3443 3444
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3445
	return ret;
3446 3447
}

3448 3449 3450 3451
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3452
{
3453 3454
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3455
	unsigned long remainder = *nr_pages;
3456
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3457 3458

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3459
		pte_t *pte;
3460
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3461
		int absent;
A
Adam Litke 已提交
3462
		struct page *page;
D
David Gibson 已提交
3463

3464 3465 3466 3467 3468 3469 3470 3471 3472
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3473 3474
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3475
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3476
		 * first, for the page indexing below to work.
3477 3478
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3479
		 */
3480
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3481 3482
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3483 3484 3485 3486
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3487 3488 3489 3490
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3491
		 */
H
Hugh Dickins 已提交
3492 3493
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3494 3495
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3496 3497 3498
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3499

3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3511 3512
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3513
			int ret;
D
David Gibson 已提交
3514

3515 3516
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3517 3518
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3519
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3520
				continue;
D
David Gibson 已提交
3521

A
Adam Litke 已提交
3522 3523 3524 3525
			remainder = 0;
			break;
		}

3526
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3527
		page = pte_page(huge_ptep_get(pte));
3528
same_page:
3529
		if (pages) {
H
Hugh Dickins 已提交
3530
			pages[i] = mem_map_offset(page, pfn_offset);
3531
			get_page_foll(pages[i]);
3532
		}
D
David Gibson 已提交
3533 3534 3535 3536 3537

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3538
		++pfn_offset;
D
David Gibson 已提交
3539 3540
		--remainder;
		++i;
3541
		if (vaddr < vma->vm_end && remainder &&
3542
				pfn_offset < pages_per_huge_page(h)) {
3543 3544 3545 3546 3547 3548
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3549
		spin_unlock(ptl);
D
David Gibson 已提交
3550
	}
3551
	*nr_pages = remainder;
D
David Gibson 已提交
3552 3553
	*position = vaddr;

H
Hugh Dickins 已提交
3554
	return i ? i : -EFAULT;
D
David Gibson 已提交
3555
}
3556

3557
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3558 3559 3560 3561 3562 3563
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3564
	struct hstate *h = hstate_vma(vma);
3565
	unsigned long pages = 0;
3566 3567 3568 3569

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3570
	mmu_notifier_invalidate_range_start(mm, start, end);
3571
	i_mmap_lock_write(vma->vm_file->f_mapping);
3572
	for (; address < end; address += huge_page_size(h)) {
3573
		spinlock_t *ptl;
3574 3575 3576
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3577
		ptl = huge_pte_lock(h, mm, ptep);
3578 3579
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3580
			spin_unlock(ptl);
3581
			continue;
3582
		}
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3603
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3604
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3605
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3606
			set_huge_pte_at(mm, address, ptep, pte);
3607
			pages++;
3608
		}
3609
		spin_unlock(ptl);
3610
	}
3611
	/*
3612
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3613
	 * may have cleared our pud entry and done put_page on the page table:
3614
	 * once we release i_mmap_rwsem, another task can do the final put_page
3615 3616
	 * and that page table be reused and filled with junk.
	 */
3617
	flush_tlb_range(vma, start, end);
3618
	mmu_notifier_invalidate_range(mm, start, end);
3619
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3620
	mmu_notifier_invalidate_range_end(mm, start, end);
3621 3622

	return pages << h->order;
3623 3624
}

3625 3626
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3627
					struct vm_area_struct *vma,
3628
					vm_flags_t vm_flags)
3629
{
3630
	long ret, chg;
3631
	struct hstate *h = hstate_inode(inode);
3632
	struct hugepage_subpool *spool = subpool_inode(inode);
3633
	struct resv_map *resv_map;
3634
	long gbl_reserve;
3635

3636 3637 3638
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3639
	 * without using reserves
3640
	 */
3641
	if (vm_flags & VM_NORESERVE)
3642 3643
		return 0;

3644 3645 3646 3647 3648 3649
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3650
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
3651
		resv_map = inode_resv_map(inode);
3652

3653
		chg = region_chg(resv_map, from, to);
3654 3655 3656

	} else {
		resv_map = resv_map_alloc();
3657 3658 3659
		if (!resv_map)
			return -ENOMEM;

3660
		chg = to - from;
3661

3662 3663 3664 3665
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3666 3667 3668 3669
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3670

3671 3672 3673 3674 3675 3676 3677
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
3678 3679 3680
		ret = -ENOSPC;
		goto out_err;
	}
3681 3682

	/*
3683
	 * Check enough hugepages are available for the reservation.
3684
	 * Hand the pages back to the subpool if there are not
3685
	 */
3686
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
3687
	if (ret < 0) {
3688 3689
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
3690
		goto out_err;
K
Ken Chen 已提交
3691
	}
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3704
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3705
		region_add(resv_map, from, to);
3706
	return 0;
3707
out_err:
J
Joonsoo Kim 已提交
3708 3709
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
3710
	return ret;
3711 3712 3713 3714
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3715
	struct hstate *h = hstate_inode(inode);
3716
	struct resv_map *resv_map = inode_resv_map(inode);
3717
	long chg = 0;
3718
	struct hugepage_subpool *spool = subpool_inode(inode);
3719
	long gbl_reserve;
K
Ken Chen 已提交
3720

3721
	if (resv_map)
3722
		chg = region_truncate(resv_map, offset);
K
Ken Chen 已提交
3723
	spin_lock(&inode->i_lock);
3724
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3725 3726
	spin_unlock(&inode->i_lock);

3727 3728 3729 3730 3731 3732
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
3733
}
3734

3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
3780
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3794
	spinlock_t *ptl;
3795 3796 3797 3798

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

3799
	i_mmap_lock_write(mapping);
3800 3801 3802 3803 3804 3805 3806 3807
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
3808
				mm_inc_nr_pmds(mm);
3809 3810 3811 3812 3813 3814 3815 3816 3817
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3818 3819
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3820
	if (pud_none(*pud)) {
3821 3822
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
3823
	} else {
3824
		put_page(virt_to_page(spte));
3825 3826
		mm_inc_nr_pmds(mm);
	}
3827
	spin_unlock(ptl);
3828 3829
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
3830
	i_mmap_unlock_write(mapping);
3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3841
 * called with page table lock held.
3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
3857
	mm_dec_nr_pmds(mm);
3858 3859 3860
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3861 3862 3863 3864 3865 3866
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
3867 3868 3869 3870 3871

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
3872
#define want_pmd_share()	(0)
3873 3874
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
3933
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3934
		pmd_t *pmd, int flags)
3935
{
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
3948
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
3964 3965 3966
	return page;
}

3967
struct page * __weak
3968
follow_huge_pud(struct mm_struct *mm, unsigned long address,
3969
		pud_t *pud, int flags)
3970
{
3971 3972
	if (flags & FOLL_GET)
		return NULL;
3973

3974
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3975 3976
}

3977 3978
#ifdef CONFIG_MEMORY_FAILURE

3979 3980 3981 3982
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3983
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3984 3985 3986
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3987
	int ret = -EBUSY;
3988 3989

	spin_lock(&hugetlb_lock);
3990 3991 3992 3993 3994
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
3995 3996 3997 3998 3999 4000 4001
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4002
		set_page_refcounted(hpage);
4003 4004 4005 4006
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4007
	spin_unlock(&hugetlb_lock);
4008
	return ret;
4009
}
4010
#endif
4011 4012 4013

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4014 4015
	bool ret = true;

4016
	VM_BUG_ON_PAGE(!PageHead(page), page);
4017
	spin_lock(&hugetlb_lock);
4018 4019 4020 4021 4022
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4023
	list_move_tail(&page->lru, list);
4024
unlock:
4025
	spin_unlock(&hugetlb_lock);
4026
	return ret;
4027 4028 4029 4030
}

void putback_active_hugepage(struct page *page)
{
4031
	VM_BUG_ON_PAGE(!PageHead(page), page);
4032
	spin_lock(&hugetlb_lock);
4033
	set_page_huge_active(page);
4034 4035 4036 4037
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}