hugetlb.c 92.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25

D
David Gibson 已提交
26 27
#include <asm/page.h>
#include <asm/pgtable.h>
28
#include <asm/tlb.h>
D
David Gibson 已提交
29

30
#include <linux/io.h>
D
David Gibson 已提交
31
#include <linux/hugetlb.h>
32
#include <linux/hugetlb_cgroup.h>
33
#include <linux/node.h>
34
#include "internal.h"
L
Linus Torvalds 已提交
35 36

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50
/*
51 52
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
53
 */
54
DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
131
	return subpool_inode(file_inode(vma->vm_file));
132 133
}

134 135 136
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
137 138
 *
 * The region data structures are protected by a combination of the mmap_sem
139
 * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140
 * must either hold the mmap_sem for write, or the mmap_sem for read and
141
 * the hugetlb_instantiation_mutex:
142
 *
143
 *	down_write(&mm->mmap_sem);
144
 * or
145 146
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
227
		/* We overlap with this area, if it extends further than
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

269 270 271 272 273 274 275
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
276 277
		long seg_from;
		long seg_to;
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

293 294 295 296
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
297 298
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
299
{
300 301
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
302 303
}

304 305 306 307 308 309
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

310 311 312 313 314 315 316 317 318 319 320 321 322
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

323
	return 1UL << huge_page_shift(hstate);
324
}
325
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326

327 328 329 330 331 332 333 334 335 336 337 338 339
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

340 341 342 343 344 345 346
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
347
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348

349 350 351 352 353 354 355 356 357
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
358 359 360 361 362 363 364 365 366
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
367
 */
368 369 370 371 372 373 374 375 376 377 378
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

379 380 381 382 383
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

384
static struct resv_map *resv_map_alloc(void)
385 386 387 388 389 390 391 392 393 394 395
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

396
static void resv_map_release(struct kref *ref)
397 398 399 400 401 402 403 404 405
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 407
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
408
	if (!(vma->vm_flags & VM_MAYSHARE))
409 410
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
411
	return NULL;
412 413
}

414
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 416
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
417
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418

419 420
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
421 422 423 424 425
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
426
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427 428

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 430 431 432 433
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
434 435

	return (get_vma_private_data(vma) & flag) != 0;
436 437
}

438
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 440 441
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
442
	if (!(vma->vm_flags & VM_MAYSHARE))
443 444 445 446
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
447
static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448
{
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
			return 1;
		else
			return 0;
	}
464 465

	/* Shared mappings always use reserves */
466
	if (vma->vm_flags & VM_MAYSHARE)
467
		return 1;
468 469 470 471 472

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
473 474
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
475

476
	return 0;
477 478
}

479
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
480 481
{
	int nid = page_to_nid(page);
482
	list_move(&page->lru, &h->hugepage_freelists[nid]);
483 484
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
485 486
}

487 488 489 490
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

491 492 493 494 495 496 497 498
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
499
		return NULL;
500
	list_move(&page->lru, &h->hugepage_activelist);
501
	set_page_refcounted(page);
502 503 504 505 506
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

507 508 509 510 511 512 513 514 515
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
	if (hugepages_treat_as_movable || hugepage_migration_support(h))
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

516 517
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
518 519
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
520
{
521
	struct page *page = NULL;
522
	struct mempolicy *mpol;
523
	nodemask_t *nodemask;
524
	struct zonelist *zonelist;
525 526
	struct zone *zone;
	struct zoneref *z;
527
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
528

529 530 531 532 533
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
534
	if (!vma_has_reserves(vma, chg) &&
535
			h->free_huge_pages - h->resv_huge_pages == 0)
536
		goto err;
537

538
	/* If reserves cannot be used, ensure enough pages are in the pool */
539
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540
		goto err;
541

542 543 544
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
545
					htlb_alloc_mask(h), &mpol, &nodemask);
546

547 548
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
549
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 551
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
552 553 554 555 556
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

557
				SetPagePrivate(page);
558
				h->resv_huge_pages--;
559 560
				break;
			}
A
Andrew Morton 已提交
561
		}
L
Linus Torvalds 已提交
562
	}
563

564
	mpol_cond_put(mpol);
565 566
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
567
	return page;
568 569 570

err:
	return NULL;
L
Linus Torvalds 已提交
571 572
}

573
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
574 575
{
	int i;
576

577 578
	VM_BUG_ON(h->order >= MAX_ORDER);

579 580 581
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
582 583 584 585
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
586
	}
587
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
588 589
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
590
	arch_release_hugepage(page);
591
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
592 593
}

594 595 596 597 598 599 600 601 602 603 604
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

605 606
static void free_huge_page(struct page *page)
{
607 608 609 610
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
611
	struct hstate *h = page_hstate(page);
612
	int nid = page_to_nid(page);
613 614
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
615
	bool restore_reserve;
616

617
	set_page_private(page, 0);
618
	page->mapping = NULL;
619
	BUG_ON(page_count(page));
620
	BUG_ON(page_mapcount(page));
621
	restore_reserve = PagePrivate(page);
622
	ClearPagePrivate(page);
623 624

	spin_lock(&hugetlb_lock);
625 626
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
627 628 629
	if (restore_reserve)
		h->resv_huge_pages++;

630
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 632
		/* remove the page from active list */
		list_del(&page->lru);
633 634 635
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
636
	} else {
637
		arch_clear_hugepage_flags(page);
638
		enqueue_huge_page(h, page);
639
	}
640
	spin_unlock(&hugetlb_lock);
641
	hugepage_subpool_put_pages(spool, 1);
642 643
}

644
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645
{
646
	INIT_LIST_HEAD(&page->lru);
647 648
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
649
	set_hugetlb_cgroup(page, NULL);
650 651
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
652 653 654 655
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

656 657 658 659 660 661 662 663 664
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
665
	__ClearPageReserved(page);
666 667
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
668 669 670 671 672 673 674 675 676 677 678 679 680
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
681
		set_page_count(p, 0);
682 683 684 685
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
686 687 688 689 690
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
691 692 693 694 695 696
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
697
	return get_compound_page_dtor(page) == free_huge_page;
698
}
699 700
EXPORT_SYMBOL_GPL(PageHuge);

701 702 703 704 705 706 707 708 709
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

710
	return get_compound_page_dtor(page_head) == free_huge_page;
711 712
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

730
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
731 732
{
	struct page *page;
733

734 735 736
	if (h->order >= MAX_ORDER)
		return NULL;

737
	page = alloc_pages_exact_node(nid,
738
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739
						__GFP_REPEAT|__GFP_NOWARN,
740
		huge_page_order(h));
L
Linus Torvalds 已提交
741
	if (page) {
742
		if (arch_prepare_hugepage(page)) {
743
			__free_pages(page, huge_page_order(h));
744
			return NULL;
745
		}
746
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
747
	}
748 749 750 751

	return page;
}

752
/*
753 754 755 756 757
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
758
 */
759
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
760
{
761
	nid = next_node(nid, *nodes_allowed);
762
	if (nid == MAX_NUMNODES)
763
		nid = first_node(*nodes_allowed);
764 765 766 767 768
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

769 770 771 772 773 774 775
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

776
/*
777 778 779 780
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
781
 */
782 783
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
784
{
785 786 787 788 789 790
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
791 792

	return nid;
793 794
}

795
/*
796 797 798 799
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
800
 */
801
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
802
{
803 804 805 806 807 808
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
809 810

	return nid;
811 812
}

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

847 848 849 850 851 852
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
853 854
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
855
{
856
	int nr_nodes, node;
857 858
	int ret = 0;

859
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
860 861 862 863
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
864 865
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
866
			struct page *page =
867
				list_entry(h->hugepage_freelists[node].next,
868 869 870
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
871
			h->free_huge_pages_node[node]--;
872 873
			if (acct_surplus) {
				h->surplus_huge_pages--;
874
				h->surplus_huge_pages_node[node]--;
875
			}
876 877
			update_and_free_page(h, page);
			ret = 1;
878
			break;
879
		}
880
	}
881 882 883 884

	return ret;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned int order = 8 * sizeof(void *);
	unsigned long pfn;
	struct hstate *h;

	/* Set scan step to minimum hugepage size */
	for_each_hstate(h)
		if (order > huge_page_order(h))
			order = huge_page_order(h);
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
		dissolve_free_huge_page(pfn_to_page(pfn));
}

923
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
924 925
{
	struct page *page;
926
	unsigned int r_nid;
927

928 929 930
	if (h->order >= MAX_ORDER)
		return NULL;

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
955
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956 957 958
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
959 960
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
961 962 963
	}
	spin_unlock(&hugetlb_lock);

964
	if (nid == NUMA_NO_NODE)
965
		page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966 967 968 969
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
970
			htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
972

973 974
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
975
		page = NULL;
976 977
	}

978
	spin_lock(&hugetlb_lock);
979
	if (page) {
980
		INIT_LIST_HEAD(&page->lru);
981
		r_nid = page_to_nid(page);
982
		set_compound_page_dtor(page, free_huge_page);
983
		set_hugetlb_cgroup(page, NULL);
984 985 986
		/*
		 * We incremented the global counters already
		 */
987 988
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
989
		__count_vm_event(HTLB_BUDDY_PGALLOC);
990
	} else {
991 992
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
993
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
994
	}
995
	spin_unlock(&hugetlb_lock);
996 997 998 999

	return page;
}

1000 1001 1002 1003 1004 1005 1006
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1007
	struct page *page = NULL;
1008 1009

	spin_lock(&hugetlb_lock);
1010 1011
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1012 1013
	spin_unlock(&hugetlb_lock);

1014
	if (!page)
1015 1016 1017 1018 1019
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

1020
/*
L
Lucas De Marchi 已提交
1021
 * Increase the hugetlb pool such that it can accommodate a reservation
1022 1023
 * of size 'delta'.
 */
1024
static int gather_surplus_pages(struct hstate *h, int delta)
1025 1026 1027 1028 1029
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1030
	bool alloc_ok = true;
1031

1032
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033
	if (needed <= 0) {
1034
		h->resv_huge_pages += delta;
1035
		return 0;
1036
	}
1037 1038 1039 1040 1041 1042 1043 1044

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1045
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046 1047 1048 1049
		if (!page) {
			alloc_ok = false;
			break;
		}
1050 1051
		list_add(&page->lru, &surplus_list);
	}
1052
	allocated += i;
1053 1054 1055 1056 1057 1058

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1059 1060
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1071 1072
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1073
	 * needed to accommodate the reservation.  Add the appropriate number
1074
	 * of pages to the hugetlb pool and free the extras back to the buddy
1075 1076 1077
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1078 1079
	 */
	needed += allocated;
1080
	h->resv_huge_pages += delta;
1081
	ret = 0;
1082

1083
	/* Free the needed pages to the hugetlb pool */
1084
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085 1086
		if ((--needed) < 0)
			break;
1087 1088 1089 1090 1091 1092
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1093
		enqueue_huge_page(h, page);
1094
	}
1095
free:
1096
	spin_unlock(&hugetlb_lock);
1097 1098

	/* Free unnecessary surplus pages to the buddy allocator */
1099 1100
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1101
	spin_lock(&hugetlb_lock);
1102 1103 1104 1105 1106 1107 1108 1109

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1110
 * Called with hugetlb_lock held.
1111
 */
1112 1113
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1114 1115 1116
{
	unsigned long nr_pages;

1117
	/* Uncommit the reservation */
1118
	h->resv_huge_pages -= unused_resv_pages;
1119

1120 1121 1122 1123
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1124
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1125

1126 1127
	/*
	 * We want to release as many surplus pages as possible, spread
1128 1129 1130 1131 1132
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1133 1134
	 */
	while (nr_pages--) {
1135
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136
			break;
1137 1138 1139
	}
}

1140 1141 1142
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1143 1144 1145 1146 1147 1148
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1149
 */
1150
static long vma_needs_reservation(struct hstate *h,
1151
			struct vm_area_struct *vma, unsigned long addr)
1152 1153 1154 1155
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1156
	if (vma->vm_flags & VM_MAYSHARE) {
1157
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1158 1159 1160
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1161 1162
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1163

1164
	} else  {
1165
		long err;
1166
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1167
		struct resv_map *resv = vma_resv_map(vma);
1168

1169
		err = region_chg(&resv->regions, idx, idx + 1);
1170 1171 1172 1173
		if (err < 0)
			return err;
		return 0;
	}
1174
}
1175 1176
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1177 1178 1179 1180
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1181
	if (vma->vm_flags & VM_MAYSHARE) {
1182
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1183
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1184 1185

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1186
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1187
		struct resv_map *resv = vma_resv_map(vma);
1188 1189

		/* Mark this page used in the map. */
1190
		region_add(&resv->regions, idx, idx + 1);
1191 1192 1193
	}
}

1194
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1195
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1196
{
1197
	struct hugepage_subpool *spool = subpool_vma(vma);
1198
	struct hstate *h = hstate_vma(vma);
1199
	struct page *page;
1200
	long chg;
1201 1202
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1203

1204
	idx = hstate_index(h);
1205
	/*
1206 1207 1208 1209 1210 1211
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1212
	 */
1213
	chg = vma_needs_reservation(h, vma, addr);
1214
	if (chg < 0)
1215
		return ERR_PTR(-ENOMEM);
1216 1217
	if (chg || avoid_reserve)
		if (hugepage_subpool_get_pages(spool, 1))
1218
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1219

1220 1221
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
1222 1223
		if (chg || avoid_reserve)
			hugepage_subpool_put_pages(spool, 1);
1224 1225
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1226
	spin_lock(&hugetlb_lock);
1227
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1228
	if (!page) {
1229
		spin_unlock(&hugetlb_lock);
1230
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1231
		if (!page) {
1232 1233 1234
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1235 1236
			if (chg || avoid_reserve)
				hugepage_subpool_put_pages(spool, 1);
1237
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1238
		}
1239 1240
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1241
		/* Fall through */
K
Ken Chen 已提交
1242
	}
1243 1244
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1245

1246
	set_page_private(page, (unsigned long)spool);
1247

1248
	vma_commit_reservation(h, vma, addr);
1249
	return page;
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1266
int __weak alloc_bootmem_huge_page(struct hstate *h)
1267 1268
{
	struct huge_bootmem_page *m;
1269
	int nr_nodes, node;
1270

1271
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1272 1273
		void *addr;

1274 1275 1276
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1277 1278 1279 1280 1281 1282 1283
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1284
			goto found;
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		}
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1297 1298 1299 1300 1301 1302 1303 1304
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1305 1306 1307 1308 1309 1310 1311
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1312 1313 1314 1315
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
1316 1317
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
1318 1319 1320
#else
		page = virt_to_page(m);
#endif
1321
		WARN_ON(page_count(page) != 1);
1322
		prep_compound_huge_page(page, h->order);
1323
		WARN_ON(PageReserved(page));
1324
		prep_new_huge_page(h, page, page_to_nid(page));
1325 1326 1327 1328 1329 1330 1331
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
1332
			adjust_managed_page_count(page, 1 << h->order);
1333 1334 1335
	}
}

1336
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1337 1338
{
	unsigned long i;
1339

1340
	for (i = 0; i < h->max_huge_pages; ++i) {
1341 1342 1343
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1344
		} else if (!alloc_fresh_huge_page(h,
1345
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1346 1347
			break;
	}
1348
	h->max_huge_pages = i;
1349 1350 1351 1352 1353 1354 1355
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1356 1357 1358
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1359 1360 1361
	}
}

A
Andi Kleen 已提交
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1373 1374 1375 1376 1377
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1378
		char buf[32];
1379
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
1380 1381
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1382 1383 1384
	}
}

L
Linus Torvalds 已提交
1385
#ifdef CONFIG_HIGHMEM
1386 1387
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1388
{
1389 1390
	int i;

1391 1392 1393
	if (h->order >= MAX_ORDER)
		return;

1394
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1395
		struct page *page, *next;
1396 1397 1398
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1399
				return;
L
Linus Torvalds 已提交
1400 1401 1402
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1403
			update_and_free_page(h, page);
1404 1405
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1406 1407 1408 1409
		}
	}
}
#else
1410 1411
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1412 1413 1414 1415
{
}
#endif

1416 1417 1418 1419 1420
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1421 1422
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1423
{
1424
	int nr_nodes, node;
1425 1426 1427

	VM_BUG_ON(delta != -1 && delta != 1);

1428 1429 1430 1431
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
1432
		}
1433 1434 1435 1436 1437
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
1438
		}
1439 1440
	}
	return 0;
1441

1442 1443 1444 1445
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
1446 1447
}

1448
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1449 1450
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1451
{
1452
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1453

1454 1455 1456
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1457 1458 1459 1460
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1461 1462 1463 1464 1465 1466
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1467
	 */
L
Linus Torvalds 已提交
1468
	spin_lock(&hugetlb_lock);
1469
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1470
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1471 1472 1473
			break;
	}

1474
	while (count > persistent_huge_pages(h)) {
1475 1476 1477 1478 1479 1480
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1481
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1482 1483 1484 1485
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1486 1487 1488
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1489 1490 1491 1492 1493 1494 1495 1496
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1497 1498 1499 1500 1501 1502 1503 1504
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1505
	 */
1506
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1507
	min_count = max(count, min_count);
1508
	try_to_free_low(h, min_count, nodes_allowed);
1509
	while (min_count < persistent_huge_pages(h)) {
1510
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1511 1512
			break;
	}
1513
	while (count < persistent_huge_pages(h)) {
1514
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1515 1516 1517
			break;
	}
out:
1518
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1519
	spin_unlock(&hugetlb_lock);
1520
	return ret;
L
Linus Torvalds 已提交
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1533 1534 1535
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1536 1537
{
	int i;
1538

1539
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1540 1541 1542
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1543
			return &hstates[i];
1544 1545 1546
		}

	return kobj_to_node_hstate(kobj, nidp);
1547 1548
}

1549
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1550 1551
					struct kobj_attribute *attr, char *buf)
{
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1563
}
1564

1565 1566 1567
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1568 1569
{
	int err;
1570
	int nid;
1571
	unsigned long count;
1572
	struct hstate *h;
1573
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1574

1575
	err = kstrtoul(buf, 10, &count);
1576
	if (err)
1577
		goto out;
1578

1579
	h = kobj_to_hstate(kobj, &nid);
1580 1581 1582 1583 1584
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1585 1586 1587 1588 1589 1590 1591
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1592
			nodes_allowed = &node_states[N_MEMORY];
1593 1594 1595 1596 1597 1598 1599 1600 1601
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1602
		nodes_allowed = &node_states[N_MEMORY];
1603

1604
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1605

1606
	if (nodes_allowed != &node_states[N_MEMORY])
1607 1608 1609
		NODEMASK_FREE(nodes_allowed);

	return len;
1610 1611 1612
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1625 1626 1627
}
HSTATE_ATTR(nr_hugepages);

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1649 1650 1651
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1652
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1653 1654
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1655

1656 1657 1658 1659 1660
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1661
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1662

1663 1664 1665
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1666
	err = kstrtoul(buf, 10, &input);
1667
	if (err)
1668
		return err;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1692 1693 1694 1695 1696 1697
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1698
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1699 1700 1701 1702 1703 1704 1705
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1717 1718 1719 1720 1721 1722 1723 1724 1725
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1726 1727 1728
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1729 1730 1731 1732 1733 1734 1735
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1736 1737 1738
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1739 1740
{
	int retval;
1741
	int hi = hstate_index(h);
1742

1743 1744
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1745 1746
		return -ENOMEM;

1747
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1748
	if (retval)
1749
		kobject_put(hstate_kobjs[hi]);
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1764 1765
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1766
		if (err)
1767
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
1768 1769 1770
	}
}

1771 1772 1773 1774
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1775 1776 1777
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1778 1779 1780 1781 1782 1783 1784 1785 1786
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1787
 * A subset of global hstate attributes for node devices
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1801
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1824
 * Unregister hstate attributes from a single node device.
1825 1826
 * No-op if no hstate attributes attached.
 */
1827
static void hugetlb_unregister_node(struct node *node)
1828 1829
{
	struct hstate *h;
1830
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1831 1832

	if (!nhs->hugepages_kobj)
1833
		return;		/* no hstate attributes */
1834

1835 1836 1837 1838 1839
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1840
		}
1841
	}
1842 1843 1844 1845 1846 1847

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1848
 * hugetlb module exit:  unregister hstate attributes from node devices
1849 1850 1851 1852 1853 1854 1855
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1856
	 * disable node device registrations.
1857 1858 1859 1860 1861 1862 1863
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1864
		hugetlb_unregister_node(node_devices[nid]);
1865 1866 1867
}

/*
1868
 * Register hstate attributes for a single node device.
1869 1870
 * No-op if attributes already registered.
 */
1871
static void hugetlb_register_node(struct node *node)
1872 1873
{
	struct hstate *h;
1874
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1875 1876 1877 1878 1879 1880
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1881
							&node->dev.kobj);
1882 1883 1884 1885 1886 1887 1888 1889
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
1890 1891
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
1892 1893 1894 1895 1896 1897 1898
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1899
 * hugetlb init time:  register hstate attributes for all registered node
1900 1901
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1902 1903 1904 1905 1906
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1907
	for_each_node_state(nid, N_MEMORY) {
1908
		struct node *node = node_devices[nid];
1909
		if (node->dev.id == nid)
1910 1911 1912 1913
			hugetlb_register_node(node);
	}

	/*
1914
	 * Let the node device driver know we're here so it can
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1936 1937 1938 1939
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1940 1941
	hugetlb_unregister_all_nodes();

1942
	for_each_hstate(h) {
1943
		kobject_put(hstate_kobjs[hstate_index(h)]);
1944 1945 1946 1947 1948 1949 1950 1951
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1952 1953 1954 1955 1956 1957
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1958

1959 1960 1961 1962
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1963
	}
1964
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1965 1966
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1967 1968

	hugetlb_init_hstates();
1969
	gather_bootmem_prealloc();
1970 1971 1972
	report_hugepages();

	hugetlb_sysfs_init();
1973
	hugetlb_register_all_nodes();
1974
	hugetlb_cgroup_file_init();
1975

1976 1977 1978 1979 1980 1981 1982 1983
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1984 1985
	unsigned long i;

1986
	if (size_to_hstate(PAGE_SIZE << order)) {
1987
		pr_warning("hugepagesz= specified twice, ignoring\n");
1988 1989
		return;
	}
1990
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1991
	BUG_ON(order == 0);
1992
	h = &hstates[hugetlb_max_hstate++];
1993 1994
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1995 1996 1997 1998
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1999
	INIT_LIST_HEAD(&h->hugepage_activelist);
2000 2001
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2002 2003
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2004

2005 2006 2007
	parsed_hstate = h;
}

2008
static int __init hugetlb_nrpages_setup(char *s)
2009 2010
{
	unsigned long *mhp;
2011
	static unsigned long *last_mhp;
2012 2013

	/*
2014
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2015 2016
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2017
	if (!hugetlb_max_hstate)
2018 2019 2020 2021
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2022
	if (mhp == last_mhp) {
2023 2024
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2025 2026 2027
		return 1;
	}

2028 2029 2030
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2031 2032 2033 2034 2035
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2036
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2037 2038 2039 2040
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2041 2042
	return 1;
}
2043 2044 2045 2046 2047 2048 2049 2050
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2051

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2064 2065 2066
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2067
{
2068 2069
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2070
	int ret;
2071

2072
	tmp = h->max_huge_pages;
2073

2074 2075 2076
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2077 2078
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2079 2080 2081
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2082

2083
	if (write) {
2084 2085
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2086 2087 2088
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2089
			nodes_allowed = &node_states[N_MEMORY];
2090 2091 2092
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2093
		if (nodes_allowed != &node_states[N_MEMORY])
2094 2095
			NODEMASK_FREE(nodes_allowed);
	}
2096 2097
out:
	return ret;
L
Linus Torvalds 已提交
2098
}
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2117
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2118
			void __user *buffer,
2119 2120
			size_t *length, loff_t *ppos)
{
2121
	struct hstate *h = &default_hstate;
2122
	unsigned long tmp;
2123
	int ret;
2124

2125
	tmp = h->nr_overcommit_huge_pages;
2126

2127 2128 2129
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2130 2131
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2132 2133 2134
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2135 2136 2137 2138 2139 2140

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2141 2142
out:
	return ret;
2143 2144
}

L
Linus Torvalds 已提交
2145 2146
#endif /* CONFIG_SYSCTL */

2147
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2148
{
2149
	struct hstate *h = &default_hstate;
2150
	seq_printf(m,
2151 2152 2153 2154 2155
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2156 2157 2158 2159 2160
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2161 2162 2163 2164
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2165
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2166 2167
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2168 2169
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2170 2171 2172
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2173 2174
}

2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2190 2191 2192
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2193 2194 2195 2196 2197 2198
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2199 2200
}

2201
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2224
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2225 2226
			goto out;

2227 2228
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2229 2230 2231 2232 2233 2234
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2235
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2236 2237 2238 2239 2240 2241

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2242 2243
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2244
	struct resv_map *resv = vma_resv_map(vma);
2245 2246 2247 2248 2249

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2250
	 * has a reference to the reservation map it cannot disappear until
2251 2252 2253
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2254 2255
	if (resv)
		kref_get(&resv->refs);
2256 2257
}

2258 2259
static void resv_map_put(struct vm_area_struct *vma)
{
2260
	struct resv_map *resv = vma_resv_map(vma);
2261

2262
	if (!resv)
2263
		return;
2264
	kref_put(&resv->refs, resv_map_release);
2265 2266
}

2267 2268
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2269
	struct hstate *h = hstate_vma(vma);
2270
	struct resv_map *resv = vma_resv_map(vma);
2271
	struct hugepage_subpool *spool = subpool_vma(vma);
2272 2273 2274 2275
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

2276
	if (resv) {
2277 2278
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2279 2280

		reserve = (end - start) -
2281
			region_count(&resv->regions, start, end);
2282

2283
		resv_map_put(vma);
2284

2285
		if (reserve) {
2286
			hugetlb_acct_memory(h, -reserve);
2287
			hugepage_subpool_put_pages(spool, reserve);
2288
		}
2289
	}
2290 2291
}

L
Linus Torvalds 已提交
2292 2293 2294 2295 2296 2297
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2298
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2299 2300
{
	BUG();
N
Nick Piggin 已提交
2301
	return 0;
L
Linus Torvalds 已提交
2302 2303
}

2304
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2305
	.fault = hugetlb_vm_op_fault,
2306
	.open = hugetlb_vm_op_open,
2307
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2308 2309
};

2310 2311
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2312 2313 2314
{
	pte_t entry;

2315
	if (writable) {
2316 2317
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
2318
	} else {
2319 2320
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
2321 2322 2323
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2324
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2325 2326 2327 2328

	return entry;
}

2329 2330 2331 2332 2333
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2334
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2335
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2336
		update_mmu_cache(vma, address, ptep);
2337 2338 2339
}


D
David Gibson 已提交
2340 2341 2342 2343 2344
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2345
	unsigned long addr;
2346
	int cow;
2347 2348
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2349 2350 2351
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
2352 2353

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2354

2355 2356 2357 2358 2359
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

2360
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2361
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
2362 2363 2364
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2365
		dst_pte = huge_pte_alloc(dst, addr, sz);
2366 2367 2368 2369
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
2370 2371 2372 2373 2374

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

2375 2376 2377
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2378
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2379
			if (cow)
2380 2381
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2382 2383
			ptepage = pte_page(entry);
			get_page(ptepage);
2384
			page_dup_rmap(ptepage);
2385 2386
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
2387 2388
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
2389 2390
	}

2391 2392 2393 2394
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
2395 2396
}

N
Naoya Horiguchi 已提交
2397 2398 2399 2400 2401 2402 2403
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2404
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2405
		return 1;
2406
	else
N
Naoya Horiguchi 已提交
2407 2408 2409
		return 0;
}

2410 2411 2412 2413 2414 2415 2416
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2417
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2418
		return 1;
2419
	else
2420 2421 2422
		return 0;
}

2423 2424 2425
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2426
{
2427
	int force_flush = 0;
D
David Gibson 已提交
2428 2429
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2430
	pte_t *ptep;
D
David Gibson 已提交
2431
	pte_t pte;
2432
	spinlock_t *ptl;
D
David Gibson 已提交
2433
	struct page *page;
2434 2435
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2436 2437
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2438

D
David Gibson 已提交
2439
	WARN_ON(!is_vm_hugetlb_page(vma));
2440 2441
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2442

2443
	tlb_start_vma(tlb, vma);
2444
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2445
again:
2446
	for (address = start; address < end; address += sz) {
2447
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2448
		if (!ptep)
2449 2450
			continue;

2451
		ptl = huge_pte_lock(h, mm, ptep);
2452
		if (huge_pmd_unshare(mm, &address, ptep))
2453
			goto unlock;
2454

2455 2456
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
2457
			goto unlock;
2458 2459 2460 2461

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2462
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2463
			huge_pte_clear(mm, address, ptep);
2464
			goto unlock;
2465
		}
2466 2467

		page = pte_page(pte);
2468 2469 2470 2471 2472 2473 2474
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
2475
				goto unlock;
2476 2477 2478 2479 2480 2481 2482 2483 2484

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2485
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2486
		tlb_remove_tlb_entry(tlb, ptep, address);
2487
		if (huge_pte_dirty(pte))
2488
			set_page_dirty(page);
2489

2490 2491
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
2492 2493
		if (force_flush) {
			spin_unlock(ptl);
2494
			break;
2495
		}
2496
		/* Bail out after unmapping reference page if supplied */
2497 2498
		if (ref_page) {
			spin_unlock(ptl);
2499
			break;
2500 2501 2502
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
2503
	}
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2514
	}
2515
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2516
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2517
}
D
David Gibson 已提交
2518

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2538
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2539
			  unsigned long end, struct page *ref_page)
2540
{
2541 2542 2543 2544 2545
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

2546
	tlb_gather_mmu(&tlb, mm, start, end);
2547 2548
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2549 2550
}

2551 2552 2553 2554 2555 2556
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2557 2558
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2559
{
2560
	struct hstate *h = hstate_vma(vma);
2561 2562 2563 2564 2565 2566 2567 2568
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2569
	address = address & huge_page_mask(h);
2570 2571
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
2572
	mapping = file_inode(vma->vm_file)->i_mapping;
2573

2574 2575 2576 2577 2578
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2579
	mutex_lock(&mapping->i_mmap_mutex);
2580
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2593 2594
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2595
	}
2596
	mutex_unlock(&mapping->i_mmap_mutex);
2597 2598 2599 2600

	return 1;
}

2601 2602
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2603 2604 2605
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2606
 */
2607
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2608
			unsigned long address, pte_t *ptep, pte_t pte,
2609
			struct page *pagecache_page, spinlock_t *ptl)
2610
{
2611
	struct hstate *h = hstate_vma(vma);
2612
	struct page *old_page, *new_page;
2613
	int outside_reserve = 0;
2614 2615
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2616 2617 2618

	old_page = pte_page(pte);

2619
retry_avoidcopy:
2620 2621
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2622 2623
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
2624
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2625
		return 0;
2626 2627
	}

2628 2629 2630 2631 2632 2633 2634 2635 2636
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2637
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2638 2639 2640
			old_page != pagecache_page)
		outside_reserve = 1;

2641
	page_cache_get(old_page);
2642

2643 2644
	/* Drop page table lock as buddy allocator may be called */
	spin_unlock(ptl);
2645
	new_page = alloc_huge_page(vma, address, outside_reserve);
2646

2647
	if (IS_ERR(new_page)) {
2648
		long err = PTR_ERR(new_page);
2649
		page_cache_release(old_page);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2662
				spin_lock(ptl);
2663 2664 2665 2666
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
2667 2668
				 * race occurs while re-acquiring page table
				 * lock, and our job is done.
2669 2670
				 */
				return 0;
2671 2672 2673 2674
			}
			WARN_ON_ONCE(1);
		}

2675
		/* Caller expects lock to be held */
2676
		spin_lock(ptl);
2677 2678 2679 2680
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2681 2682
	}

2683 2684 2685 2686
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2687
	if (unlikely(anon_vma_prepare(vma))) {
2688 2689
		page_cache_release(new_page);
		page_cache_release(old_page);
2690
		/* Caller expects lock to be held */
2691
		spin_lock(ptl);
2692
		return VM_FAULT_OOM;
2693
	}
2694

A
Andrea Arcangeli 已提交
2695 2696
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2697
	__SetPageUptodate(new_page);
2698

2699 2700 2701
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2702
	/*
2703
	 * Retake the page table lock to check for racing updates
2704 2705
	 * before the page tables are altered
	 */
2706
	spin_lock(ptl);
2707
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2708
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2709 2710
		ClearPagePrivate(new_page);

2711
		/* Break COW */
2712
		huge_ptep_clear_flush(vma, address, ptep);
2713 2714
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2715
		page_remove_rmap(old_page);
2716
		hugepage_add_new_anon_rmap(new_page, vma, address);
2717 2718 2719
		/* Make the old page be freed below */
		new_page = old_page;
	}
2720
	spin_unlock(ptl);
2721
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2722 2723
	page_cache_release(new_page);
	page_cache_release(old_page);
2724 2725

	/* Caller expects lock to be held */
2726
	spin_lock(ptl);
N
Nick Piggin 已提交
2727
	return 0;
2728 2729
}

2730
/* Return the pagecache page at a given address within a VMA */
2731 2732
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2733 2734
{
	struct address_space *mapping;
2735
	pgoff_t idx;
2736 2737

	mapping = vma->vm_file->f_mapping;
2738
	idx = vma_hugecache_offset(h, vma, address);
2739 2740 2741 2742

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2743 2744 2745 2746 2747
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2763
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2764
			unsigned long address, pte_t *ptep, unsigned int flags)
2765
{
2766
	struct hstate *h = hstate_vma(vma);
2767
	int ret = VM_FAULT_SIGBUS;
2768
	int anon_rmap = 0;
2769
	pgoff_t idx;
A
Adam Litke 已提交
2770 2771 2772
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2773
	pte_t new_pte;
2774
	spinlock_t *ptl;
A
Adam Litke 已提交
2775

2776 2777 2778
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2779
	 * COW. Warn that such a situation has occurred as it may not be obvious
2780 2781
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2782 2783
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
2784 2785 2786
		return ret;
	}

A
Adam Litke 已提交
2787
	mapping = vma->vm_file->f_mapping;
2788
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2789 2790 2791 2792 2793

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2794 2795 2796
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2797
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2798 2799
		if (idx >= size)
			goto out;
2800
		page = alloc_huge_page(vma, address, 0);
2801
		if (IS_ERR(page)) {
2802 2803 2804 2805 2806
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2807 2808
			goto out;
		}
A
Andrea Arcangeli 已提交
2809
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2810
		__SetPageUptodate(page);
2811

2812
		if (vma->vm_flags & VM_MAYSHARE) {
2813
			int err;
K
Ken Chen 已提交
2814
			struct inode *inode = mapping->host;
2815 2816 2817 2818 2819 2820 2821 2822

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
2823
			ClearPagePrivate(page);
K
Ken Chen 已提交
2824 2825

			spin_lock(&inode->i_lock);
2826
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2827
			spin_unlock(&inode->i_lock);
2828
		} else {
2829
			lock_page(page);
2830 2831 2832 2833
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2834
			anon_rmap = 1;
2835
		}
2836
	} else {
2837 2838 2839 2840 2841 2842
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2843
			ret = VM_FAULT_HWPOISON |
2844
				VM_FAULT_SET_HINDEX(hstate_index(h));
2845 2846
			goto backout_unlocked;
		}
2847
	}
2848

2849 2850 2851 2852 2853 2854
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2855
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2856 2857 2858 2859
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2860

2861 2862
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2863
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2864 2865 2866
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2867
	ret = 0;
2868
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2869 2870
		goto backout;

2871 2872
	if (anon_rmap) {
		ClearPagePrivate(page);
2873
		hugepage_add_new_anon_rmap(page, vma, address);
2874
	}
2875 2876
	else
		page_dup_rmap(page);
2877 2878 2879 2880
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2881
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2882
		/* Optimization, do the COW without a second fault */
2883
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2884 2885
	}

2886
	spin_unlock(ptl);
A
Adam Litke 已提交
2887 2888
	unlock_page(page);
out:
2889
	return ret;
A
Adam Litke 已提交
2890 2891

backout:
2892
	spin_unlock(ptl);
2893
backout_unlocked:
A
Adam Litke 已提交
2894 2895 2896
	unlock_page(page);
	put_page(page);
	goto out;
2897 2898
}

2899
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2900
			unsigned long address, unsigned int flags)
2901 2902 2903
{
	pte_t *ptep;
	pte_t entry;
2904
	spinlock_t *ptl;
2905
	int ret;
2906
	struct page *page = NULL;
2907
	struct page *pagecache_page = NULL;
2908
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2909
	struct hstate *h = hstate_vma(vma);
2910

2911 2912
	address &= huge_page_mask(h);

2913 2914 2915
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2916
		if (unlikely(is_hugetlb_entry_migration(entry))) {
2917
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
2918 2919
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2920
			return VM_FAULT_HWPOISON_LARGE |
2921
				VM_FAULT_SET_HINDEX(hstate_index(h));
2922 2923
	}

2924
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2925 2926 2927
	if (!ptep)
		return VM_FAULT_OOM;

2928 2929 2930 2931 2932 2933
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2934 2935
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2936
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2937
		goto out_mutex;
2938
	}
2939

N
Nick Piggin 已提交
2940
	ret = 0;
2941

2942 2943 2944 2945 2946 2947 2948 2949
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2950
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2951 2952
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2953
			goto out_mutex;
2954
		}
2955

2956
		if (!(vma->vm_flags & VM_MAYSHARE))
2957 2958 2959 2960
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2961 2962 2963 2964 2965 2966 2967 2968
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2969
	get_page(page);
2970
	if (page != pagecache_page)
2971 2972
		lock_page(page);

2973 2974
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
2975
	/* Check for a racing update before calling hugetlb_cow */
2976
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2977
		goto out_ptl;
2978 2979


2980
	if (flags & FAULT_FLAG_WRITE) {
2981
		if (!huge_pte_write(entry)) {
2982
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
2983 2984
					pagecache_page, ptl);
			goto out_ptl;
2985
		}
2986
		entry = huge_pte_mkdirty(entry);
2987 2988
	}
	entry = pte_mkyoung(entry);
2989 2990
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2991
		update_mmu_cache(vma, address, ptep);
2992

2993 2994
out_ptl:
	spin_unlock(ptl);
2995 2996 2997 2998 2999

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3000 3001
	if (page != pagecache_page)
		unlock_page(page);
3002
	put_page(page);
3003

3004
out_mutex:
3005
	mutex_unlock(&hugetlb_instantiation_mutex);
3006 3007

	return ret;
3008 3009
}

3010 3011 3012 3013
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3014
{
3015 3016
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3017
	unsigned long remainder = *nr_pages;
3018
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3019 3020

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3021
		pte_t *pte;
3022
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3023
		int absent;
A
Adam Litke 已提交
3024
		struct page *page;
D
David Gibson 已提交
3025

A
Adam Litke 已提交
3026 3027
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3028
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3029
		 * first, for the page indexing below to work.
3030 3031
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3032
		 */
3033
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3034 3035
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3036 3037 3038 3039
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3040 3041 3042 3043
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3044
		 */
H
Hugh Dickins 已提交
3045 3046
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3047 3048
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3049 3050 3051
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3052

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3064 3065
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3066
			int ret;
D
David Gibson 已提交
3067

3068 3069
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3070 3071
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3072
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3073
				continue;
D
David Gibson 已提交
3074

A
Adam Litke 已提交
3075 3076 3077 3078
			remainder = 0;
			break;
		}

3079
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3080
		page = pte_page(huge_ptep_get(pte));
3081
same_page:
3082
		if (pages) {
H
Hugh Dickins 已提交
3083
			pages[i] = mem_map_offset(page, pfn_offset);
3084
			get_page_foll(pages[i]);
3085
		}
D
David Gibson 已提交
3086 3087 3088 3089 3090

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3091
		++pfn_offset;
D
David Gibson 已提交
3092 3093
		--remainder;
		++i;
3094
		if (vaddr < vma->vm_end && remainder &&
3095
				pfn_offset < pages_per_huge_page(h)) {
3096 3097 3098 3099 3100 3101
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3102
		spin_unlock(ptl);
D
David Gibson 已提交
3103
	}
3104
	*nr_pages = remainder;
D
David Gibson 已提交
3105 3106
	*position = vaddr;

H
Hugh Dickins 已提交
3107
	return i ? i : -EFAULT;
D
David Gibson 已提交
3108
}
3109

3110
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3111 3112 3113 3114 3115 3116
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3117
	struct hstate *h = hstate_vma(vma);
3118
	unsigned long pages = 0;
3119 3120 3121 3122

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3123
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3124
	for (; address < end; address += huge_page_size(h)) {
3125
		spinlock_t *ptl;
3126 3127 3128
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3129
		ptl = huge_pte_lock(h, mm, ptep);
3130 3131
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3132
			spin_unlock(ptl);
3133
			continue;
3134
		}
3135
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3136
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3137
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3138
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3139
			set_huge_pte_at(mm, address, ptep, pte);
3140
			pages++;
3141
		}
3142
		spin_unlock(ptl);
3143
	}
3144 3145 3146 3147 3148 3149
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3150
	flush_tlb_range(vma, start, end);
3151
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3152 3153

	return pages << h->order;
3154 3155
}

3156 3157
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3158
					struct vm_area_struct *vma,
3159
					vm_flags_t vm_flags)
3160
{
3161
	long ret, chg;
3162
	struct hstate *h = hstate_inode(inode);
3163
	struct hugepage_subpool *spool = subpool_inode(inode);
3164

3165 3166 3167
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3168
	 * without using reserves
3169
	 */
3170
	if (vm_flags & VM_NORESERVE)
3171 3172
		return 0;

3173 3174 3175 3176 3177 3178
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3179
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3180
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3181 3182 3183 3184 3185
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3186
		chg = to - from;
3187

3188 3189 3190 3191
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3192 3193 3194 3195
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3196

3197
	/* There must be enough pages in the subpool for the mapping */
3198 3199 3200 3201
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3202 3203

	/*
3204
	 * Check enough hugepages are available for the reservation.
3205
	 * Hand the pages back to the subpool if there are not
3206
	 */
3207
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3208
	if (ret < 0) {
3209
		hugepage_subpool_put_pages(spool, chg);
3210
		goto out_err;
K
Ken Chen 已提交
3211
	}
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3224
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3225
		region_add(&inode->i_mapping->private_list, from, to);
3226
	return 0;
3227
out_err:
3228 3229
	if (vma)
		resv_map_put(vma);
3230
	return ret;
3231 3232 3233 3234
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3235
	struct hstate *h = hstate_inode(inode);
3236
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3237
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3238 3239

	spin_lock(&inode->i_lock);
3240
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3241 3242
	spin_unlock(&inode->i_lock);

3243
	hugepage_subpool_put_pages(spool, (chg - freed));
3244
	hugetlb_acct_memory(h, -(chg - freed));
3245
}
3246

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
		return 1;
	return 0;
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
 * pud has to be populated inside the same i_mmap_mutex section - otherwise
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
3306
	spinlock_t *ptl;
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

	mutex_lock(&mapping->i_mmap_mutex);
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

3329 3330
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
3331 3332 3333 3334 3335
	if (pud_none(*pud))
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
	else
		put_page(virt_to_page(spte));
3336
	spin_unlock(ptl);
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
	mutex_unlock(&mapping->i_mmap_mutex);
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
3350
 * called with page table lock held.
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
3369 3370 3371 3372 3373 3374 3375
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
#define want_pmd_share()	(0)
3376 3377
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

struct page *
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
		pmd_t *pmd, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pmd);
	if (page)
		page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
	return page;
}

struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
		pud_t *pud, int write)
{
	struct page *page;

	page = pte_page(*(pte_t *)pud);
	if (page)
		page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
	return page;
}

#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

3459 3460
#ifdef CONFIG_MEMORY_FAILURE

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3475 3476 3477 3478
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3479
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3480 3481 3482
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3483
	int ret = -EBUSY;
3484 3485

	spin_lock(&hugetlb_lock);
3486
	if (is_hugepage_on_freelist(hpage)) {
3487 3488 3489 3490 3491 3492 3493
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3494
		set_page_refcounted(hpage);
3495 3496 3497 3498
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3499
	spin_unlock(&hugetlb_lock);
3500
	return ret;
3501
}
3502
#endif
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522

bool isolate_huge_page(struct page *page, struct list_head *list)
{
	VM_BUG_ON(!PageHead(page));
	if (!get_page_unless_zero(page))
		return false;
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, list);
	spin_unlock(&hugetlb_lock);
	return true;
}

void putback_active_hugepage(struct page *page)
{
	VM_BUG_ON(!PageHead(page));
	spin_lock(&hugetlb_lock);
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544

bool is_hugepage_active(struct page *page)
{
	VM_BUG_ON(!PageHuge(page));
	/*
	 * This function can be called for a tail page because the caller,
	 * scan_movable_pages, scans through a given pfn-range which typically
	 * covers one memory block. In systems using gigantic hugepage (1GB
	 * for x86_64,) a hugepage is larger than a memory block, and we don't
	 * support migrating such large hugepages for now, so return false
	 * when called for tail pages.
	 */
	if (PageTail(page))
		return false;
	/*
	 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
	 * so we should return false for them.
	 */
	if (unlikely(PageHWPoison(page)))
		return false;
	return page_count(page) > 0;
}