hugetlb.c 118.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/compiler.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21
#include <linux/slab.h>
22
#include <linux/rmap.h>
23 24
#include <linux/swap.h>
#include <linux/swapops.h>
25
#include <linux/page-isolation.h>
26
#include <linux/jhash.h>
27

D
David Gibson 已提交
28 29
#include <asm/page.h>
#include <asm/pgtable.h>
30
#include <asm/tlb.h>
D
David Gibson 已提交
31

32
#include <linux/io.h>
D
David Gibson 已提交
33
#include <linux/hugetlb.h>
34
#include <linux/hugetlb_cgroup.h>
35
#include <linux/node.h>
36
#include "internal.h"
L
Linus Torvalds 已提交
37

38
int hugepages_treat_as_movable;
39

40
int hugetlb_max_hstate __read_mostly;
41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
43 44 45 46 47
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
48

49 50
__initdata LIST_HEAD(huge_boot_pages);

51 52 53
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
54
static unsigned long __initdata default_hstate_size;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
164 165 166
	return ret;
}

167 168 169 170 171 172 173
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 175
				       long delta)
{
176 177
	long ret = delta;

178
	if (!spool)
179
		return delta;
180 181

	spin_lock(&spool->lock);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

	if (spool->min_hpages != -1) {		/* minimum size accounting */
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
201
	unlock_or_release_subpool(spool);
202 203

	return ret;
204 205 206 207 208 209 210 211 212
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
213
	return subpool_inode(file_inode(vma->vm_file));
214 215
}

216 217 218
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
219
 *
220 221 222 223 224 225 226 227 228 229 230 231 232 233
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
234 235 236 237 238 239 240
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

241 242
/*
 * Add the huge page range represented by [f, t) to the reserve
243 244 245 246 247 248 249 250
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
251 252 253
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
254
 */
255
static long region_add(struct resv_map *resv, long f, long t)
256
{
257
	struct list_head *head = &resv->regions;
258
	struct file_region *rg, *nrg, *trg;
259
	long add = 0;
260

261
	spin_lock(&resv->lock);
262 263 264 265 266
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
307 308 309 310 311
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
312 313 314 315
			list_del(&rg->link);
			kfree(rg);
		}
	}
316 317

	add += (nrg->from - f);		/* Added to beginning of region */
318
	nrg->from = f;
319
	add += t - nrg->to;		/* Added to end of region */
320
	nrg->to = t;
321

322 323
out_locked:
	resv->adds_in_progress--;
324
	spin_unlock(&resv->lock);
325 326
	VM_BUG_ON(add < 0);
	return add;
327 328
}

329 330 331 332 333 334 335 336 337 338 339 340 341
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
342 343 344 345 346 347 348 349
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
350
 */
351
static long region_chg(struct resv_map *resv, long f, long t)
352
{
353
	struct list_head *head = &resv->regions;
354
	struct file_region *rg, *nrg = NULL;
355 356
	long chg = 0;

357 358
retry:
	spin_lock(&resv->lock);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 376
		if (!trg) {
			kfree(nrg);
377
			return -ENOMEM;
378
		}
379 380 381 382 383 384 385

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

386 387 388 389 390 391 392 393 394
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
395
		if (!nrg) {
396
			resv->adds_in_progress--;
397 398 399 400 401 402 403 404 405 406
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
407

408 409 410
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
411 412 413 414 415 416 417 418 419 420 421 422
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
423
			goto out;
424

L
Lucas De Marchi 已提交
425
		/* We overlap with this area, if it extends further than
426 427 428 429 430 431 432 433
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
434 435 436 437 438 439 440 441

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
442 443 444
	return chg;
}

445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

464
/*
465 466 467 468 469 470 471 472 473 474 475 476
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
477
 */
478
static long region_del(struct resv_map *resv, long f, long t)
479
{
480
	struct list_head *head = &resv->regions;
481
	struct file_region *rg, *trg;
482 483
	struct file_region *nrg = NULL;
	long del = 0;
484

485
retry:
486
	spin_lock(&resv->lock);
487
	list_for_each_entry_safe(rg, trg, head, link) {
488 489 490 491 492 493 494 495
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
496
			continue;
497

498
		if (rg->from >= t)
499 500
			break;

501 502 503 504 505 506 507 508 509 510 511 512 513
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
514

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
535
			break;
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
552
	}
553 554

	spin_unlock(&resv->lock);
555 556
	kfree(nrg);
	return del;
557 558
}

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

581 582 583 584
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
585
static long region_count(struct resv_map *resv, long f, long t)
586
{
587
	struct list_head *head = &resv->regions;
588 589 590
	struct file_region *rg;
	long chg = 0;

591
	spin_lock(&resv->lock);
592 593
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
594 595
		long seg_from;
		long seg_to;
596 597 598 599 600 601 602 603 604 605 606

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
607
	spin_unlock(&resv->lock);
608 609 610 611

	return chg;
}

612 613 614 615
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
616 617
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
618
{
619 620
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
621 622
}

623 624 625 626 627 628
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

629 630 631 632 633 634 635 636 637 638 639 640 641
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

642
	return 1UL << huge_page_shift(hstate);
643
}
644
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
645

646 647 648 649 650 651 652 653 654 655 656 657 658
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

659 660 661 662 663 664 665
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
666
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
667

668 669 670 671 672 673 674 675 676
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
677 678 679 680 681 682 683 684 685
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
686
 */
687 688 689 690 691 692 693 694 695 696 697
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

698
struct resv_map *resv_map_alloc(void)
699 700
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
701 702 703 704 705
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
706
		return NULL;
707
	}
708 709

	kref_init(&resv_map->refs);
710
	spin_lock_init(&resv_map->lock);
711 712
	INIT_LIST_HEAD(&resv_map->regions);

713 714 715 716 717 718
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

719 720 721
	return resv_map;
}

722
void resv_map_release(struct kref *ref)
723 724
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
725 726
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
727 728

	/* Clear out any active regions before we release the map. */
729
	region_del(resv_map, 0, LONG_MAX);
730 731 732 733 734 735 736 737 738

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

739 740 741
	kfree(resv_map);
}

742 743 744 745 746
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

747
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
748
{
749
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
750 751 752 753 754 755 756
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
757 758
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
759
	}
760 761
}

762
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
763
{
764 765
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
766

767 768
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
769 770 771 772
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
773 774
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
775 776

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
777 778 779 780
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
781
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
782 783

	return (get_vma_private_data(vma) & flag) != 0;
784 785
}

786
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
787 788
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
789
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
790
	if (!(vma->vm_flags & VM_MAYSHARE))
791 792 793 794
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
795
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
796
{
797 798 799 800 801 802 803 804 805 806 807
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
808
			return true;
809
		else
810
			return false;
811
	}
812 813

	/* Shared mappings always use reserves */
814 815 816 817 818 819 820 821 822 823 824 825 826
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
827 828 829 830 831

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
832
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
833
		return true;
834

835
	return false;
836 837
}

838
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
839 840
{
	int nid = page_to_nid(page);
841
	list_move(&page->lru, &h->hugepage_freelists[nid]);
842 843
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
844 845
}

846 847 848 849
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

850 851 852 853 854 855 856 857
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
858
		return NULL;
859
	list_move(&page->lru, &h->hugepage_activelist);
860
	set_page_refcounted(page);
861 862 863 864 865
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

866 867 868
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
869
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
870 871 872 873 874
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

875 876
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
877 878
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
879
{
880
	struct page *page = NULL;
881
	struct mempolicy *mpol;
882
	nodemask_t *nodemask;
883
	struct zonelist *zonelist;
884 885
	struct zone *zone;
	struct zoneref *z;
886
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
887

888 889 890 891 892
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
893
	if (!vma_has_reserves(vma, chg) &&
894
			h->free_huge_pages - h->resv_huge_pages == 0)
895
		goto err;
896

897
	/* If reserves cannot be used, ensure enough pages are in the pool */
898
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
899
		goto err;
900

901
retry_cpuset:
902
	cpuset_mems_cookie = read_mems_allowed_begin();
903
	zonelist = huge_zonelist(vma, address,
904
					htlb_alloc_mask(h), &mpol, &nodemask);
905

906 907
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
908
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
909 910
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
911 912 913 914 915
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

916
				SetPagePrivate(page);
917
				h->resv_huge_pages--;
918 919
				break;
			}
A
Andrew Morton 已提交
920
		}
L
Linus Torvalds 已提交
921
	}
922

923
	mpol_cond_put(mpol);
924
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
925
		goto retry_cpuset;
L
Linus Torvalds 已提交
926
	return page;
927 928 929

err:
	return NULL;
L
Linus Torvalds 已提交
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	nid = next_node(nid, *nodes_allowed);
	if (nid == MAX_NUMNODES)
		nid = first_node(*nodes_allowed);
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1005 1006
#if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
static void destroy_compound_gigantic_page(struct page *page,
1007
					unsigned int order)
1008 1009 1010 1011 1012 1013
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1014
		clear_compound_head(p);
1015 1016 1017 1018 1019 1020 1021
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1022
static void free_gigantic_page(struct page *page, unsigned int order)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

static bool pfn_range_valid_gigantic(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1066
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
			if (pfn_range_valid_gigantic(pfn, nr_pages)) {
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1102
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1135
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1136
static inline void destroy_compound_gigantic_page(struct page *page,
1137
						unsigned int order) { }
1138 1139 1140 1141
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1142
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1143 1144
{
	int i;
1145

1146 1147
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1148

1149 1150 1151
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1152 1153
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1154 1155
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1156
	}
1157
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1158
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1159
	set_page_refcounted(page);
1160 1161 1162 1163 1164 1165
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1204
void free_huge_page(struct page *page)
1205
{
1206 1207 1208 1209
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1210
	struct hstate *h = page_hstate(page);
1211
	int nid = page_to_nid(page);
1212 1213
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1214
	bool restore_reserve;
1215

1216
	set_page_private(page, 0);
1217
	page->mapping = NULL;
1218
	BUG_ON(page_count(page));
1219
	BUG_ON(page_mapcount(page));
1220
	restore_reserve = PagePrivate(page);
1221
	ClearPagePrivate(page);
1222

1223 1224 1225 1226 1227 1228 1229 1230
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1231
	spin_lock(&hugetlb_lock);
1232
	clear_page_huge_active(page);
1233 1234
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1235 1236 1237
	if (restore_reserve)
		h->resv_huge_pages++;

1238
	if (h->surplus_huge_pages_node[nid]) {
1239 1240
		/* remove the page from active list */
		list_del(&page->lru);
1241 1242 1243
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1244
	} else {
1245
		arch_clear_hugepage_flags(page);
1246
		enqueue_huge_page(h, page);
1247
	}
1248 1249 1250
	spin_unlock(&hugetlb_lock);
}

1251
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1252
{
1253
	INIT_LIST_HEAD(&page->lru);
1254
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255
	spin_lock(&hugetlb_lock);
1256
	set_hugetlb_cgroup(page, NULL);
1257 1258
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1259 1260 1261 1262
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1263
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 1265 1266 1267 1268 1269 1270 1271
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
1272
	__ClearPageReserved(page);
1273
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1287
		set_page_count(p, 0);
1288
		set_compound_head(p, page);
1289 1290 1291
	}
}

A
Andrew Morton 已提交
1292 1293 1294 1295 1296
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1297 1298 1299 1300 1301 1302
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1303
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1304
}
1305 1306
EXPORT_SYMBOL_GPL(PageHuge);

1307 1308 1309 1310 1311 1312 1313 1314 1315
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1316
	return get_compound_page_dtor(page_head) == free_huge_page;
1317 1318
}

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1336
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1337 1338
{
	struct page *page;
1339

1340
	page = __alloc_pages_node(nid,
1341
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1342
						__GFP_REPEAT|__GFP_NOWARN,
1343
		huge_page_order(h));
L
Linus Torvalds 已提交
1344
	if (page) {
1345
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1346
	}
1347 1348 1349 1350

	return page;
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1373 1374 1375 1376 1377 1378
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1379 1380
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1381
{
1382
	int nr_nodes, node;
1383 1384
	int ret = 0;

1385
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1386 1387 1388 1389
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1390 1391
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1392
			struct page *page =
1393
				list_entry(h->hugepage_freelists[node].next,
1394 1395 1396
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1397
			h->free_huge_pages_node[node]--;
1398 1399
			if (acct_surplus) {
				h->surplus_huge_pages--;
1400
				h->surplus_huge_pages_node[node]--;
1401
			}
1402 1403
			update_and_free_page(h, page);
			ret = 1;
1404
			break;
1405
		}
1406
	}
1407 1408 1409 1410

	return ret;
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1438 1439 1440
	if (!hugepages_supported())
		return;

1441 1442
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1443 1444 1445
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1464 1465 1466 1467 1468 1469
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1470
	 */
D
Dave Hansen 已提交
1471
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1488 1489
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1522 1523
{
	struct page *page;
1524
	unsigned int r_nid;
1525

1526
	if (hstate_is_gigantic(h))
1527 1528
		return NULL;

1529 1530 1531 1532 1533 1534
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1535 1536
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1537
	}
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1562
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1563 1564 1565
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1566 1567
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1568 1569 1570
	}
	spin_unlock(&hugetlb_lock);

1571
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1572 1573

	spin_lock(&hugetlb_lock);
1574
	if (page) {
1575
		INIT_LIST_HEAD(&page->lru);
1576
		r_nid = page_to_nid(page);
1577
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1578
		set_hugetlb_cgroup(page, NULL);
1579 1580 1581
		/*
		 * We incremented the global counters already
		 */
1582 1583
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1584
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1585
	} else {
1586 1587
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1588
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1589
	}
1590
	spin_unlock(&hugetlb_lock);
1591 1592 1593 1594

	return page;
}

1595 1596 1597 1598 1599
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1600
static
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1611
static
1612 1613 1614 1615 1616 1617
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1618 1619 1620 1621 1622 1623 1624
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1625
	struct page *page = NULL;
1626 1627

	spin_lock(&hugetlb_lock);
1628 1629
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1630 1631
	spin_unlock(&hugetlb_lock);

1632
	if (!page)
1633
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1634 1635 1636 1637

	return page;
}

1638
/*
L
Lucas De Marchi 已提交
1639
 * Increase the hugetlb pool such that it can accommodate a reservation
1640 1641
 * of size 'delta'.
 */
1642
static int gather_surplus_pages(struct hstate *h, int delta)
1643 1644 1645 1646 1647
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1648
	bool alloc_ok = true;
1649

1650
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1651
	if (needed <= 0) {
1652
		h->resv_huge_pages += delta;
1653
		return 0;
1654
	}
1655 1656 1657 1658 1659 1660 1661 1662

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1663
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1664 1665 1666 1667
		if (!page) {
			alloc_ok = false;
			break;
		}
1668 1669
		list_add(&page->lru, &surplus_list);
	}
1670
	allocated += i;
1671 1672 1673 1674 1675 1676

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1677 1678
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1689 1690
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1691
	 * needed to accommodate the reservation.  Add the appropriate number
1692
	 * of pages to the hugetlb pool and free the extras back to the buddy
1693 1694 1695
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1696 1697
	 */
	needed += allocated;
1698
	h->resv_huge_pages += delta;
1699
	ret = 0;
1700

1701
	/* Free the needed pages to the hugetlb pool */
1702
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1703 1704
		if ((--needed) < 0)
			break;
1705 1706 1707 1708 1709
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1710
		VM_BUG_ON_PAGE(page_count(page), page);
1711
		enqueue_huge_page(h, page);
1712
	}
1713
free:
1714
	spin_unlock(&hugetlb_lock);
1715 1716

	/* Free unnecessary surplus pages to the buddy allocator */
1717 1718
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1719
	spin_lock(&hugetlb_lock);
1720 1721 1722 1723 1724 1725 1726 1727

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1728
 * Called with hugetlb_lock held.
1729
 */
1730 1731
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1732 1733 1734
{
	unsigned long nr_pages;

1735
	/* Uncommit the reservation */
1736
	h->resv_huge_pages -= unused_resv_pages;
1737

1738
	/* Cannot return gigantic pages currently */
1739
	if (hstate_is_gigantic(h))
1740 1741
		return;

1742
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1743

1744 1745
	/*
	 * We want to release as many surplus pages as possible, spread
1746 1747 1748 1749 1750
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1751 1752
	 */
	while (nr_pages--) {
1753
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1754
			break;
1755
		cond_resched_lock(&hugetlb_lock);
1756 1757 1758
	}
}

1759

1760
/*
1761
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1762
 * are used by the huge page allocation routines to manage reservations.
1763 1764 1765 1766 1767 1768
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1769 1770 1771
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1772 1773 1774 1775 1776 1777
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1778
 */
1779 1780 1781
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1782
	VMA_END_RESV,
1783
};
1784 1785
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1786
				enum vma_resv_mode mode)
1787
{
1788 1789
	struct resv_map *resv;
	pgoff_t idx;
1790
	long ret;
1791

1792 1793
	resv = vma_resv_map(vma);
	if (!resv)
1794
		return 1;
1795

1796
	idx = vma_hugecache_offset(h, vma, addr);
1797 1798
	switch (mode) {
	case VMA_NEEDS_RESV:
1799
		ret = region_chg(resv, idx, idx + 1);
1800 1801 1802 1803
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1804
	case VMA_END_RESV:
1805 1806 1807 1808 1809 1810
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1811

1812
	if (vma->vm_flags & VM_MAYSHARE)
1813
		return ret;
1814
	else
1815
		return ret < 0 ? ret : 0;
1816
}
1817 1818

static long vma_needs_reservation(struct hstate *h,
1819
			struct vm_area_struct *vma, unsigned long addr)
1820
{
1821
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1822
}
1823

1824 1825 1826
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1827 1828 1829
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1830
static void vma_end_reservation(struct hstate *h,
1831 1832
			struct vm_area_struct *vma, unsigned long addr)
{
1833
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1834 1835
}

1836
struct page *alloc_huge_page(struct vm_area_struct *vma,
1837
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1838
{
1839
	struct hugepage_subpool *spool = subpool_vma(vma);
1840
	struct hstate *h = hstate_vma(vma);
1841
	struct page *page;
1842 1843
	long map_chg, map_commit;
	long gbl_chg;
1844 1845
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1846

1847
	idx = hstate_index(h);
1848
	/*
1849 1850 1851
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1852
	 */
1853 1854
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1855
		return ERR_PTR(-ENOMEM);
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1867
			vma_end_reservation(h, vma, addr);
1868
			return ERR_PTR(-ENOSPC);
1869
		}
L
Linus Torvalds 已提交
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1883
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1884 1885 1886
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1887
	spin_lock(&hugetlb_lock);
1888 1889 1890 1891 1892 1893
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1894
	if (!page) {
1895
		spin_unlock(&hugetlb_lock);
1896
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1897 1898
		if (!page)
			goto out_uncharge_cgroup;
1899 1900 1901 1902
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
1903 1904
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1905
		/* Fall through */
K
Ken Chen 已提交
1906
	}
1907 1908
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1909

1910
	set_page_private(page, (unsigned long)spool);
1911

1912 1913
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1928
	return page;
1929 1930 1931 1932

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1933
	if (map_chg || avoid_reserve)
1934
		hugepage_subpool_put_pages(spool, 1);
1935
	vma_end_reservation(h, vma, addr);
1936
	return ERR_PTR(-ENOSPC);
1937 1938
}

1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1953
int __weak alloc_bootmem_huge_page(struct hstate *h)
1954 1955
{
	struct huge_bootmem_page *m;
1956
	int nr_nodes, node;
1957

1958
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1959 1960
		void *addr;

1961 1962 1963
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1964 1965 1966 1967 1968 1969 1970
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1971
			goto found;
1972 1973 1974 1975 1976
		}
	}
	return 0;

found:
1977
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1978 1979 1980 1981 1982 1983
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1984 1985
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
1986 1987 1988 1989 1990 1991 1992
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1993 1994 1995 1996 1997 1998 1999
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2000 2001 2002 2003
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2004 2005
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2006 2007 2008
#else
		page = virt_to_page(m);
#endif
2009
		WARN_ON(page_count(page) != 1);
2010
		prep_compound_huge_page(page, h->order);
2011
		WARN_ON(PageReserved(page));
2012
		prep_new_huge_page(h, page, page_to_nid(page));
2013 2014 2015 2016 2017 2018
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2019
		if (hstate_is_gigantic(h))
2020
			adjust_managed_page_count(page, 1 << h->order);
2021 2022 2023
	}
}

2024
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2025 2026
{
	unsigned long i;
2027

2028
	for (i = 0; i < h->max_huge_pages; ++i) {
2029
		if (hstate_is_gigantic(h)) {
2030 2031
			if (!alloc_bootmem_huge_page(h))
				break;
2032
		} else if (!alloc_fresh_huge_page(h,
2033
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2034 2035
			break;
	}
2036
	h->max_huge_pages = i;
2037 2038 2039 2040 2041 2042 2043
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2044 2045 2046
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2047
		/* oversize hugepages were init'ed in early boot */
2048
		if (!hstate_is_gigantic(h))
2049
			hugetlb_hstate_alloc_pages(h);
2050
	}
2051
	VM_BUG_ON(minimum_order == UINT_MAX);
2052 2053
}

A
Andi Kleen 已提交
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2065 2066 2067 2068 2069
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2070
		char buf[32];
2071
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2072 2073
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2074 2075 2076
	}
}

L
Linus Torvalds 已提交
2077
#ifdef CONFIG_HIGHMEM
2078 2079
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2080
{
2081 2082
	int i;

2083
	if (hstate_is_gigantic(h))
2084 2085
		return;

2086
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2087
		struct page *page, *next;
2088 2089 2090
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2091
				return;
L
Linus Torvalds 已提交
2092 2093 2094
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2095
			update_and_free_page(h, page);
2096 2097
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2098 2099 2100 2101
		}
	}
}
#else
2102 2103
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2104 2105 2106 2107
{
}
#endif

2108 2109 2110 2111 2112
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2113 2114
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2115
{
2116
	int nr_nodes, node;
2117 2118 2119

	VM_BUG_ON(delta != -1 && delta != 1);

2120 2121 2122 2123
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2124
		}
2125 2126 2127 2128 2129
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2130
		}
2131 2132
	}
	return 0;
2133

2134 2135 2136 2137
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2138 2139
}

2140
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2141 2142
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2143
{
2144
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2145

2146
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2147 2148
		return h->max_huge_pages;

2149 2150 2151 2152
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2153
	 *
N
Naoya Horiguchi 已提交
2154
	 * We might race with __alloc_buddy_huge_page() here and be unable
2155 2156 2157 2158
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2159
	 */
L
Linus Torvalds 已提交
2160
	spin_lock(&hugetlb_lock);
2161
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2162
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2163 2164 2165
			break;
	}

2166
	while (count > persistent_huge_pages(h)) {
2167 2168 2169 2170 2171 2172
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2173 2174 2175 2176
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2177 2178 2179 2180
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2181 2182 2183
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2184 2185 2186 2187 2188 2189 2190 2191
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2192 2193 2194 2195
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2196
	 * __alloc_buddy_huge_page() is checking the global counter,
2197 2198 2199
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2200
	 */
2201
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2202
	min_count = max(count, min_count);
2203
	try_to_free_low(h, min_count, nodes_allowed);
2204
	while (min_count < persistent_huge_pages(h)) {
2205
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2206
			break;
2207
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2208
	}
2209
	while (count < persistent_huge_pages(h)) {
2210
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2211 2212 2213
			break;
	}
out:
2214
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2215
	spin_unlock(&hugetlb_lock);
2216
	return ret;
L
Linus Torvalds 已提交
2217 2218
}

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2229 2230 2231
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2232 2233
{
	int i;
2234

2235
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2236 2237 2238
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2239
			return &hstates[i];
2240 2241 2242
		}

	return kobj_to_node_hstate(kobj, nidp);
2243 2244
}

2245
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2246 2247
					struct kobj_attribute *attr, char *buf)
{
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2259
}
2260

2261 2262 2263
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2264 2265
{
	int err;
2266
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2267

2268
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2269 2270 2271 2272
		err = -EINVAL;
		goto out;
	}

2273 2274 2275 2276 2277 2278 2279
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2280
			nodes_allowed = &node_states[N_MEMORY];
2281 2282 2283 2284 2285 2286 2287 2288 2289
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2290
		nodes_allowed = &node_states[N_MEMORY];
2291

2292
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2293

2294
	if (nodes_allowed != &node_states[N_MEMORY])
2295 2296 2297
		NODEMASK_FREE(nodes_allowed);

	return len;
2298 2299 2300
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2301 2302
}

2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2320 2321 2322 2323 2324 2325 2326 2327 2328
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2329
	return nr_hugepages_store_common(false, kobj, buf, len);
2330 2331 2332
}
HSTATE_ATTR(nr_hugepages);

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2348
	return nr_hugepages_store_common(true, kobj, buf, len);
2349 2350 2351 2352 2353
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2354 2355 2356
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2357
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2358 2359
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2360

2361 2362 2363 2364 2365
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2366
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2367

2368
	if (hstate_is_gigantic(h))
2369 2370
		return -EINVAL;

2371
	err = kstrtoul(buf, 10, &input);
2372
	if (err)
2373
		return err;
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2397 2398 2399 2400 2401 2402
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2403
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2404 2405 2406 2407 2408 2409 2410
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2422 2423 2424 2425 2426 2427 2428 2429 2430
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2431 2432 2433
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2434 2435 2436 2437 2438 2439 2440
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2441 2442 2443
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2444 2445
{
	int retval;
2446
	int hi = hstate_index(h);
2447

2448 2449
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2450 2451
		return -ENOMEM;

2452
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2453
	if (retval)
2454
		kobject_put(hstate_kobjs[hi]);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2469 2470
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2471
		if (err)
2472
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2473 2474 2475
	}
}

2476 2477 2478 2479
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2480 2481 2482
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2483 2484 2485 2486 2487 2488
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2489
static struct node_hstate node_hstates[MAX_NUMNODES];
2490 2491

/*
2492
 * A subset of global hstate attributes for node devices
2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2506
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2529
 * Unregister hstate attributes from a single node device.
2530 2531
 * No-op if no hstate attributes attached.
 */
2532
static void hugetlb_unregister_node(struct node *node)
2533 2534
{
	struct hstate *h;
2535
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2536 2537

	if (!nhs->hugepages_kobj)
2538
		return;		/* no hstate attributes */
2539

2540 2541 2542 2543 2544
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2545
		}
2546
	}
2547 2548 2549 2550 2551 2552

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
2553
 * hugetlb module exit:  unregister hstate attributes from node devices
2554 2555 2556 2557 2558 2559 2560
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
2561
	 * disable node device registrations.
2562 2563 2564 2565 2566 2567 2568
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
2569
		hugetlb_unregister_node(node_devices[nid]);
2570 2571 2572
}

/*
2573
 * Register hstate attributes for a single node device.
2574 2575
 * No-op if attributes already registered.
 */
2576
static void hugetlb_register_node(struct node *node)
2577 2578
{
	struct hstate *h;
2579
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2580 2581 2582 2583 2584 2585
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2586
							&node->dev.kobj);
2587 2588 2589 2590 2591 2592 2593 2594
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2595 2596
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2597 2598 2599 2600 2601 2602 2603
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2604
 * hugetlb init time:  register hstate attributes for all registered node
2605 2606
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2607
 */
2608
static void __init hugetlb_register_all_nodes(void)
2609 2610 2611
{
	int nid;

2612
	for_each_node_state(nid, N_MEMORY) {
2613
		struct node *node = node_devices[nid];
2614
		if (node->dev.id == nid)
2615 2616 2617 2618
			hugetlb_register_node(node);
	}

	/*
2619
	 * Let the node device driver know we're here so it can
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

2641 2642 2643 2644
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

2645 2646
	hugetlb_unregister_all_nodes();

2647
	for_each_hstate(h) {
2648
		kobject_put(hstate_kobjs[hstate_index(h)]);
2649 2650 2651
	}

	kobject_put(hugepages_kobj);
2652
	kfree(hugetlb_fault_mutex_table);
2653 2654 2655 2656 2657
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
2658 2659
	int i;

2660
	if (!hugepages_supported())
2661
		return 0;
2662

2663 2664 2665 2666
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2667
	}
2668
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2669 2670
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2671 2672

	hugetlb_init_hstates();
2673
	gather_bootmem_prealloc();
2674 2675 2676
	report_hugepages();

	hugetlb_sysfs_init();
2677
	hugetlb_register_all_nodes();
2678
	hugetlb_cgroup_file_init();
2679

2680 2681 2682 2683 2684
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2685
	hugetlb_fault_mutex_table =
2686
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2687
	BUG_ON(!hugetlb_fault_mutex_table);
2688 2689

	for (i = 0; i < num_fault_mutexes; i++)
2690
		mutex_init(&hugetlb_fault_mutex_table[i]);
2691 2692 2693 2694 2695
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
2696
void __init hugetlb_add_hstate(unsigned int order)
2697 2698
{
	struct hstate *h;
2699 2700
	unsigned long i;

2701
	if (size_to_hstate(PAGE_SIZE << order)) {
2702
		pr_warning("hugepagesz= specified twice, ignoring\n");
2703 2704
		return;
	}
2705
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2706
	BUG_ON(order == 0);
2707
	h = &hstates[hugetlb_max_hstate++];
2708 2709
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2710 2711 2712 2713
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2714
	INIT_LIST_HEAD(&h->hugepage_activelist);
2715 2716
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2717 2718
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2719

2720 2721 2722
	parsed_hstate = h;
}

2723
static int __init hugetlb_nrpages_setup(char *s)
2724 2725
{
	unsigned long *mhp;
2726
	static unsigned long *last_mhp;
2727 2728

	/*
2729
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2730 2731
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2732
	if (!hugetlb_max_hstate)
2733 2734 2735 2736
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2737
	if (mhp == last_mhp) {
2738 2739
		pr_warning("hugepages= specified twice without "
			   "interleaving hugepagesz=, ignoring\n");
2740 2741 2742
		return 1;
	}

2743 2744 2745
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2746 2747 2748 2749 2750
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2751
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2752 2753 2754 2755
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2756 2757
	return 1;
}
2758 2759 2760 2761 2762 2763 2764 2765
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2766

2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2779 2780 2781
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2782
{
2783
	struct hstate *h = &default_hstate;
2784
	unsigned long tmp = h->max_huge_pages;
2785
	int ret;
2786

2787 2788 2789
	if (!hugepages_supported())
		return -ENOTSUPP;

2790 2791
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2792 2793 2794
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2795

2796 2797 2798
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2799 2800
out:
	return ret;
L
Linus Torvalds 已提交
2801
}
2802

2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2820
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2821
			void __user *buffer,
2822 2823
			size_t *length, loff_t *ppos)
{
2824
	struct hstate *h = &default_hstate;
2825
	unsigned long tmp;
2826
	int ret;
2827

2828 2829 2830
	if (!hugepages_supported())
		return -ENOTSUPP;

2831
	tmp = h->nr_overcommit_huge_pages;
2832

2833
	if (write && hstate_is_gigantic(h))
2834 2835
		return -EINVAL;

2836 2837
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2838 2839 2840
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2841 2842 2843 2844 2845 2846

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2847 2848
out:
	return ret;
2849 2850
}

L
Linus Torvalds 已提交
2851 2852
#endif /* CONFIG_SYSCTL */

2853
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2854
{
2855
	struct hstate *h = &default_hstate;
2856 2857
	if (!hugepages_supported())
		return;
2858
	seq_printf(m,
2859 2860 2861 2862 2863
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2864 2865 2866 2867 2868
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2869 2870 2871 2872
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2873
	struct hstate *h = &default_hstate;
2874 2875
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2876 2877
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2878 2879
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2880 2881 2882
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2883 2884
}

2885 2886 2887 2888 2889
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2890 2891 2892
	if (!hugepages_supported())
		return;

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2903 2904 2905 2906 2907 2908
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2909 2910 2911
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2912 2913 2914 2915 2916 2917
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2918 2919
}

2920
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2943
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2944 2945
			goto out;

2946 2947
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2948 2949 2950 2951 2952 2953
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2954
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2955 2956 2957 2958 2959 2960

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2961 2962
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2963
	struct resv_map *resv = vma_resv_map(vma);
2964 2965 2966 2967 2968

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2969
	 * has a reference to the reservation map it cannot disappear until
2970 2971 2972
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2973
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2974
		kref_get(&resv->refs);
2975 2976
}

2977 2978
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2979
	struct hstate *h = hstate_vma(vma);
2980
	struct resv_map *resv = vma_resv_map(vma);
2981
	struct hugepage_subpool *spool = subpool_vma(vma);
2982
	unsigned long reserve, start, end;
2983
	long gbl_reserve;
2984

2985 2986
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
2987

2988 2989
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
2990

2991
	reserve = (end - start) - region_count(resv, start, end);
2992

2993 2994 2995
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
2996 2997 2998 2999 3000 3001
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3002
	}
3003 3004
}

L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
3011
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
3012 3013
{
	BUG();
N
Nick Piggin 已提交
3014
	return 0;
L
Linus Torvalds 已提交
3015 3016
}

3017
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3018
	.fault = hugetlb_vm_op_fault,
3019
	.open = hugetlb_vm_op_open,
3020
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3021 3022
};

3023 3024
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3025 3026 3027
{
	pte_t entry;

3028
	if (writable) {
3029 3030
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3031
	} else {
3032 3033
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3034 3035 3036
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3037
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3038 3039 3040 3041

	return entry;
}

3042 3043 3044 3045 3046
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3047
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3048
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3049
		update_mmu_cache(vma, address, ptep);
3050 3051
}

3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3077

D
David Gibson 已提交
3078 3079 3080 3081 3082
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3083
	unsigned long addr;
3084
	int cow;
3085 3086
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3087 3088 3089
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3090 3091

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3092

3093 3094 3095 3096 3097
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3098
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3099
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3100 3101 3102
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3103
		dst_pte = huge_pte_alloc(dst, addr, sz);
3104 3105 3106 3107
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3108 3109 3110 3111 3112

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3113 3114 3115
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3134
			if (cow) {
3135
				huge_ptep_set_wrprotect(src, addr, src_pte);
3136 3137 3138
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3139
			entry = huge_ptep_get(src_pte);
3140 3141
			ptepage = pte_page(entry);
			get_page(ptepage);
3142
			page_dup_rmap(ptepage);
3143
			set_huge_pte_at(dst, addr, dst_pte, entry);
3144
			hugetlb_count_add(pages_per_huge_page(h), dst);
3145
		}
3146 3147
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3148 3149
	}

3150 3151 3152 3153
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3154 3155
}

3156 3157 3158
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3159
{
3160
	int force_flush = 0;
D
David Gibson 已提交
3161 3162
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3163
	pte_t *ptep;
D
David Gibson 已提交
3164
	pte_t pte;
3165
	spinlock_t *ptl;
D
David Gibson 已提交
3166
	struct page *page;
3167 3168
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3169 3170
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3171

D
David Gibson 已提交
3172
	WARN_ON(!is_vm_hugetlb_page(vma));
3173 3174
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3175

3176
	tlb_start_vma(tlb, vma);
3177
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3178
	address = start;
3179
again:
3180
	for (; address < end; address += sz) {
3181
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3182
		if (!ptep)
3183 3184
			continue;

3185
		ptl = huge_pte_lock(h, mm, ptep);
3186
		if (huge_pmd_unshare(mm, &address, ptep))
3187
			goto unlock;
3188

3189 3190
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
3191
			goto unlock;
3192 3193

		/*
3194 3195
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3196
		 */
3197
		if (unlikely(!pte_present(pte))) {
3198
			huge_pte_clear(mm, address, ptep);
3199
			goto unlock;
3200
		}
3201 3202

		page = pte_page(pte);
3203 3204 3205 3206 3207 3208 3209
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
3210
				goto unlock;
3211 3212 3213 3214 3215 3216 3217 3218 3219

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3220
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3221
		tlb_remove_tlb_entry(tlb, ptep, address);
3222
		if (huge_pte_dirty(pte))
3223
			set_page_dirty(page);
3224

3225
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3226 3227
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
3228
		if (force_flush) {
3229
			address += sz;
3230
			spin_unlock(ptl);
3231
			break;
3232
		}
3233
		/* Bail out after unmapping reference page if supplied */
3234 3235
		if (ref_page) {
			spin_unlock(ptl);
3236
			break;
3237 3238 3239
		}
unlock:
		spin_unlock(ptl);
D
David Gibson 已提交
3240
	}
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
3251
	}
3252
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3253
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3254
}
D
David Gibson 已提交
3255

3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3268
	 * is to clear it before releasing the i_mmap_rwsem. This works
3269
	 * because in the context this is called, the VMA is about to be
3270
	 * destroyed and the i_mmap_rwsem is held.
3271 3272 3273 3274
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3275
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3276
			  unsigned long end, struct page *ref_page)
3277
{
3278 3279 3280 3281 3282
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3283
	tlb_gather_mmu(&tlb, mm, start, end);
3284 3285
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3286 3287
}

3288 3289 3290 3291 3292 3293
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3294 3295
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3296
{
3297
	struct hstate *h = hstate_vma(vma);
3298 3299 3300 3301 3302 3303 3304 3305
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3306
	address = address & huge_page_mask(h);
3307 3308
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
A
Al Viro 已提交
3309
	mapping = file_inode(vma->vm_file)->i_mapping;
3310

3311 3312 3313 3314 3315
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3316
	i_mmap_lock_write(mapping);
3317
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3318 3319 3320 3321
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3322 3323 3324 3325 3326 3327 3328 3329
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3330 3331 3332 3333 3334 3335 3336 3337
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3338 3339
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3340
	}
3341
	i_mmap_unlock_write(mapping);
3342 3343
}

3344 3345
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3346 3347 3348
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3349
 */
3350
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3351
			unsigned long address, pte_t *ptep, pte_t pte,
3352
			struct page *pagecache_page, spinlock_t *ptl)
3353
{
3354
	struct hstate *h = hstate_vma(vma);
3355
	struct page *old_page, *new_page;
3356
	int ret = 0, outside_reserve = 0;
3357 3358
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3359 3360 3361

	old_page = pte_page(pte);

3362
retry_avoidcopy:
3363 3364
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3365 3366
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
		page_move_anon_rmap(old_page, vma, address);
3367
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3368
		return 0;
3369 3370
	}

3371 3372 3373 3374 3375 3376 3377 3378 3379
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3380
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3381 3382 3383
			old_page != pagecache_page)
		outside_reserve = 1;

3384
	page_cache_get(old_page);
3385

3386 3387 3388 3389
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3390
	spin_unlock(ptl);
3391
	new_page = alloc_huge_page(vma, address, outside_reserve);
3392

3393
	if (IS_ERR(new_page)) {
3394 3395 3396 3397 3398 3399 3400 3401
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3402
			page_cache_release(old_page);
3403
			BUG_ON(huge_pte_none(pte));
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3416 3417
		}

3418 3419 3420
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3421 3422
	}

3423 3424 3425 3426
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3427
	if (unlikely(anon_vma_prepare(vma))) {
3428 3429
		ret = VM_FAULT_OOM;
		goto out_release_all;
3430
	}
3431

A
Andrea Arcangeli 已提交
3432 3433
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3434
	__SetPageUptodate(new_page);
3435
	set_page_huge_active(new_page);
3436

3437 3438 3439
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3440

3441
	/*
3442
	 * Retake the page table lock to check for racing updates
3443 3444
	 * before the page tables are altered
	 */
3445
	spin_lock(ptl);
3446
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3447
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3448 3449
		ClearPagePrivate(new_page);

3450
		/* Break COW */
3451
		huge_ptep_clear_flush(vma, address, ptep);
3452
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3453 3454
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3455
		page_remove_rmap(old_page);
3456
		hugepage_add_new_anon_rmap(new_page, vma, address);
3457 3458 3459
		/* Make the old page be freed below */
		new_page = old_page;
	}
3460
	spin_unlock(ptl);
3461
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3462
out_release_all:
3463
	page_cache_release(new_page);
3464
out_release_old:
3465
	page_cache_release(old_page);
3466

3467 3468
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3469 3470
}

3471
/* Return the pagecache page at a given address within a VMA */
3472 3473
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3474 3475
{
	struct address_space *mapping;
3476
	pgoff_t idx;
3477 3478

	mapping = vma->vm_file->f_mapping;
3479
	idx = vma_hugecache_offset(h, vma, address);
3480 3481 3482 3483

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3484 3485 3486 3487 3488
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3521
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3522 3523
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3524
{
3525
	struct hstate *h = hstate_vma(vma);
3526
	int ret = VM_FAULT_SIGBUS;
3527
	int anon_rmap = 0;
A
Adam Litke 已提交
3528 3529
	unsigned long size;
	struct page *page;
3530
	pte_t new_pte;
3531
	spinlock_t *ptl;
A
Adam Litke 已提交
3532

3533 3534 3535
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3536
	 * COW. Warn that such a situation has occurred as it may not be obvious
3537 3538
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3539 3540
		pr_warning("PID %d killed due to inadequate hugepage pool\n",
			   current->pid);
3541 3542 3543
		return ret;
	}

A
Adam Litke 已提交
3544 3545 3546 3547
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3548 3549 3550
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3551
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3552 3553
		if (idx >= size)
			goto out;
3554
		page = alloc_huge_page(vma, address, 0);
3555
		if (IS_ERR(page)) {
3556 3557 3558 3559 3560
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3561 3562
			goto out;
		}
A
Andrea Arcangeli 已提交
3563
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3564
		__SetPageUptodate(page);
3565
		set_page_huge_active(page);
3566

3567
		if (vma->vm_flags & VM_MAYSHARE) {
3568
			int err = huge_add_to_page_cache(page, mapping, idx);
3569 3570 3571 3572 3573 3574
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3575
		} else {
3576
			lock_page(page);
3577 3578 3579 3580
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3581
			anon_rmap = 1;
3582
		}
3583
	} else {
3584 3585 3586 3587 3588 3589
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3590
			ret = VM_FAULT_HWPOISON |
3591
				VM_FAULT_SET_HINDEX(hstate_index(h));
3592 3593
			goto backout_unlocked;
		}
3594
	}
3595

3596 3597 3598 3599 3600 3601
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3602
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3603 3604 3605 3606
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3607
		/* Just decrements count, does not deallocate */
3608
		vma_end_reservation(h, vma, address);
3609
	}
3610

3611 3612
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3613
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3614 3615 3616
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3617
	ret = 0;
3618
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3619 3620
		goto backout;

3621 3622
	if (anon_rmap) {
		ClearPagePrivate(page);
3623
		hugepage_add_new_anon_rmap(page, vma, address);
3624
	} else
3625
		page_dup_rmap(page);
3626 3627 3628 3629
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3630
	hugetlb_count_add(pages_per_huge_page(h), mm);
3631
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3632
		/* Optimization, do the COW without a second fault */
3633
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3634 3635
	}

3636
	spin_unlock(ptl);
A
Adam Litke 已提交
3637 3638
	unlock_page(page);
out:
3639
	return ret;
A
Adam Litke 已提交
3640 3641

backout:
3642
	spin_unlock(ptl);
3643
backout_unlocked:
A
Adam Litke 已提交
3644 3645 3646
	unlock_page(page);
	put_page(page);
	goto out;
3647 3648
}

3649
#ifdef CONFIG_SMP
3650
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3675
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3676 3677 3678 3679 3680 3681 3682 3683
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3684
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3685
			unsigned long address, unsigned int flags)
3686
{
3687
	pte_t *ptep, entry;
3688
	spinlock_t *ptl;
3689
	int ret;
3690 3691
	u32 hash;
	pgoff_t idx;
3692
	struct page *page = NULL;
3693
	struct page *pagecache_page = NULL;
3694
	struct hstate *h = hstate_vma(vma);
3695
	struct address_space *mapping;
3696
	int need_wait_lock = 0;
3697

3698 3699
	address &= huge_page_mask(h);

3700 3701 3702
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3703
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3704
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3705 3706
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3707
			return VM_FAULT_HWPOISON_LARGE |
3708
				VM_FAULT_SET_HINDEX(hstate_index(h));
3709 3710 3711 3712
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3713 3714
	}

3715 3716 3717
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3718 3719 3720 3721 3722
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3723 3724
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3725

3726 3727
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3728
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3729
		goto out_mutex;
3730
	}
3731

N
Nick Piggin 已提交
3732
	ret = 0;
3733

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3744 3745 3746 3747 3748 3749 3750 3751
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3752
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3753 3754
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3755
			goto out_mutex;
3756
		}
3757
		/* Just decrements count, does not deallocate */
3758
		vma_end_reservation(h, vma, address);
3759

3760
		if (!(vma->vm_flags & VM_MAYSHARE))
3761 3762 3763 3764
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3765 3766 3767 3768 3769 3770
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3771 3772 3773 3774 3775 3776 3777
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3778 3779 3780 3781
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3782

3783
	get_page(page);
3784

3785
	if (flags & FAULT_FLAG_WRITE) {
3786
		if (!huge_pte_write(entry)) {
3787
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3788
					pagecache_page, ptl);
3789
			goto out_put_page;
3790
		}
3791
		entry = huge_pte_mkdirty(entry);
3792 3793
	}
	entry = pte_mkyoung(entry);
3794 3795
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3796
		update_mmu_cache(vma, address, ptep);
3797 3798 3799 3800
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3801 3802
out_ptl:
	spin_unlock(ptl);
3803 3804 3805 3806 3807

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3808
out_mutex:
3809
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3810 3811 3812 3813 3814 3815 3816 3817 3818
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3819
	return ret;
3820 3821
}

3822 3823 3824 3825
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3826
{
3827 3828
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3829
	unsigned long remainder = *nr_pages;
3830
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3831 3832

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3833
		pte_t *pte;
3834
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3835
		int absent;
A
Adam Litke 已提交
3836
		struct page *page;
D
David Gibson 已提交
3837

3838 3839 3840 3841 3842 3843 3844 3845 3846
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3847 3848
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3849
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3850
		 * first, for the page indexing below to work.
3851 3852
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3853
		 */
3854
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3855 3856
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3857 3858 3859 3860
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3861 3862 3863 3864
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3865
		 */
H
Hugh Dickins 已提交
3866 3867
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3868 3869
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3870 3871 3872
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3873

3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3885 3886
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3887
			int ret;
D
David Gibson 已提交
3888

3889 3890
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3891 3892
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3893
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3894
				continue;
D
David Gibson 已提交
3895

A
Adam Litke 已提交
3896 3897 3898 3899
			remainder = 0;
			break;
		}

3900
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3901
		page = pte_page(huge_ptep_get(pte));
3902
same_page:
3903
		if (pages) {
H
Hugh Dickins 已提交
3904
			pages[i] = mem_map_offset(page, pfn_offset);
3905
			get_page_foll(pages[i]);
3906
		}
D
David Gibson 已提交
3907 3908 3909 3910 3911

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3912
		++pfn_offset;
D
David Gibson 已提交
3913 3914
		--remainder;
		++i;
3915
		if (vaddr < vma->vm_end && remainder &&
3916
				pfn_offset < pages_per_huge_page(h)) {
3917 3918 3919 3920 3921 3922
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3923
		spin_unlock(ptl);
D
David Gibson 已提交
3924
	}
3925
	*nr_pages = remainder;
D
David Gibson 已提交
3926 3927
	*position = vaddr;

H
Hugh Dickins 已提交
3928
	return i ? i : -EFAULT;
D
David Gibson 已提交
3929
}
3930

3931
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3932 3933 3934 3935 3936 3937
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3938
	struct hstate *h = hstate_vma(vma);
3939
	unsigned long pages = 0;
3940 3941 3942 3943

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3944
	mmu_notifier_invalidate_range_start(mm, start, end);
3945
	i_mmap_lock_write(vma->vm_file->f_mapping);
3946
	for (; address < end; address += huge_page_size(h)) {
3947
		spinlock_t *ptl;
3948 3949 3950
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3951
		ptl = huge_pte_lock(h, mm, ptep);
3952 3953
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3954
			spin_unlock(ptl);
3955
			continue;
3956
		}
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3977
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3978
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3979
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3980
			set_huge_pte_at(mm, address, ptep, pte);
3981
			pages++;
3982
		}
3983
		spin_unlock(ptl);
3984
	}
3985
	/*
3986
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3987
	 * may have cleared our pud entry and done put_page on the page table:
3988
	 * once we release i_mmap_rwsem, another task can do the final put_page
3989 3990
	 * and that page table be reused and filled with junk.
	 */
3991
	flush_tlb_range(vma, start, end);
3992
	mmu_notifier_invalidate_range(mm, start, end);
3993
	i_mmap_unlock_write(vma->vm_file->f_mapping);
3994
	mmu_notifier_invalidate_range_end(mm, start, end);
3995 3996

	return pages << h->order;
3997 3998
}

3999 4000
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4001
					struct vm_area_struct *vma,
4002
					vm_flags_t vm_flags)
4003
{
4004
	long ret, chg;
4005
	struct hstate *h = hstate_inode(inode);
4006
	struct hugepage_subpool *spool = subpool_inode(inode);
4007
	struct resv_map *resv_map;
4008
	long gbl_reserve;
4009

4010 4011 4012
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4013
	 * without using reserves
4014
	 */
4015
	if (vm_flags & VM_NORESERVE)
4016 4017
		return 0;

4018 4019 4020 4021 4022 4023
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4024
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4025
		resv_map = inode_resv_map(inode);
4026

4027
		chg = region_chg(resv_map, from, to);
4028 4029 4030

	} else {
		resv_map = resv_map_alloc();
4031 4032 4033
		if (!resv_map)
			return -ENOMEM;

4034
		chg = to - from;
4035

4036 4037 4038 4039
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4040 4041 4042 4043
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4044

4045 4046 4047 4048 4049 4050 4051
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4052 4053 4054
		ret = -ENOSPC;
		goto out_err;
	}
4055 4056

	/*
4057
	 * Check enough hugepages are available for the reservation.
4058
	 * Hand the pages back to the subpool if there are not
4059
	 */
4060
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4061
	if (ret < 0) {
4062 4063
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4064
		goto out_err;
K
Ken Chen 已提交
4065
	}
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4096
	return 0;
4097
out_err:
4098 4099
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4100 4101
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4102
	return ret;
4103 4104
}

4105 4106
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4107
{
4108
	struct hstate *h = hstate_inode(inode);
4109
	struct resv_map *resv_map = inode_resv_map(inode);
4110
	long chg = 0;
4111
	struct hugepage_subpool *spool = subpool_inode(inode);
4112
	long gbl_reserve;
K
Ken Chen 已提交
4113

4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4125
	spin_lock(&inode->i_lock);
4126
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4127 4128
	spin_unlock(&inode->i_lock);

4129 4130 4131 4132 4133 4134
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4135 4136

	return 0;
4137
}
4138

4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4150 4151
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4165
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4166 4167 4168 4169 4170 4171 4172 4173 4174
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4175 4176
		return true;
	return false;
4177 4178 4179 4180 4181 4182 4183
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4184
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4198
	spinlock_t *ptl;
4199 4200 4201 4202

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4203
	i_mmap_lock_write(mapping);
4204 4205 4206 4207 4208 4209 4210 4211
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
4212
				mm_inc_nr_pmds(mm);
4213 4214 4215 4216 4217 4218 4219 4220 4221
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4222 4223
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4224
	if (pud_none(*pud)) {
4225 4226
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4227
	} else {
4228
		put_page(virt_to_page(spte));
4229 4230
		mm_inc_nr_pmds(mm);
	}
4231
	spin_unlock(ptl);
4232 4233
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4234
	i_mmap_unlock_write(mapping);
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4245
 * called with page table lock held.
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4261
	mm_dec_nr_pmds(mm);
4262 4263 4264
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4265 4266 4267 4268 4269 4270
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4271 4272 4273 4274 4275

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4276
#define want_pmd_share()	(0)
4277 4278
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4337
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4338
		pmd_t *pmd, int flags)
4339
{
4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4352
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4368 4369 4370
	return page;
}

4371
struct page * __weak
4372
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4373
		pud_t *pud, int flags)
4374
{
4375 4376
	if (flags & FOLL_GET)
		return NULL;
4377

4378
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4379 4380
}

4381 4382
#ifdef CONFIG_MEMORY_FAILURE

4383 4384 4385 4386
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
4387
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4388 4389 4390
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4391
	int ret = -EBUSY;
4392 4393

	spin_lock(&hugetlb_lock);
4394 4395 4396 4397 4398
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4399 4400 4401 4402 4403 4404 4405
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4406
		set_page_refcounted(hpage);
4407 4408 4409 4410
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4411
	spin_unlock(&hugetlb_lock);
4412
	return ret;
4413
}
4414
#endif
4415 4416 4417

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4418 4419
	bool ret = true;

4420
	VM_BUG_ON_PAGE(!PageHead(page), page);
4421
	spin_lock(&hugetlb_lock);
4422 4423 4424 4425 4426
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4427
	list_move_tail(&page->lru, list);
4428
unlock:
4429
	spin_unlock(&hugetlb_lock);
4430
	return ret;
4431 4432 4433 4434
}

void putback_active_hugepage(struct page *page)
{
4435
	VM_BUG_ON_PAGE(!PageHead(page), page);
4436
	spin_lock(&hugetlb_lock);
4437
	set_page_huge_active(page);
4438 4439 4440 4441
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}