hugetlb.c 119.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/mm.h>
8
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
9 10
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
11
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
12
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/compiler.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24
#include <linux/page-isolation.h>
25
#include <linux/jhash.h>
26

D
David Gibson 已提交
27 28
#include <asm/page.h>
#include <asm/pgtable.h>
29
#include <asm/tlb.h>
D
David Gibson 已提交
30

31
#include <linux/io.h>
D
David Gibson 已提交
32
#include <linux/hugetlb.h>
33
#include <linux/hugetlb_cgroup.h>
34
#include <linux/node.h>
35
#include "internal.h"
L
Linus Torvalds 已提交
36

37
int hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];
42 43 44 45 46
/*
 * Minimum page order among possible hugepage sizes, set to a proper value
 * at boot time.
 */
static unsigned int minimum_order __read_mostly = UINT_MAX;
47

48 49
__initdata LIST_HEAD(huge_boot_pages);

50 51 52
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
53
static unsigned long __initdata default_hstate_size;
54
static bool __initdata parsed_valid_hugepagesz = true;
55

56
/*
57 58
 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
 * free_huge_pages, and surplus_huge_pages.
59
 */
60
DEFINE_SPINLOCK(hugetlb_lock);
61

62 63 64 65 66
/*
 * Serializes faults on the same logical page.  This is used to
 * prevent spurious OOMs when the hugepage pool is fully utilized.
 */
static int num_fault_mutexes;
67
struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68

69 70 71
/* Forward declaration */
static int hugetlb_acct_memory(struct hstate *h, long delta);

72 73 74 75 76 77 78
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
79 80 81 82 83 84
	 * remain, give up any reservations mased on minimum size and
	 * free the subpool */
	if (free) {
		if (spool->min_hpages != -1)
			hugetlb_acct_memory(spool->hstate,
						-spool->min_hpages);
85
		kfree(spool);
86
	}
87 88
}

89 90
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
						long min_hpages)
91 92 93
{
	struct hugepage_subpool *spool;

94
	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 96 97 98 99
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
100 101 102 103 104 105 106 107 108
	spool->max_hpages = max_hpages;
	spool->hstate = h;
	spool->min_hpages = min_hpages;

	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
		kfree(spool);
		return NULL;
	}
	spool->rsv_hpages = min_hpages;
109 110 111 112 113 114 115 116 117 118 119 120

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

121 122 123 124 125 126 127 128 129
/*
 * Subpool accounting for allocating and reserving pages.
 * Return -ENOMEM if there are not enough resources to satisfy the
 * the request.  Otherwise, return the number of pages by which the
 * global pools must be adjusted (upward).  The returned value may
 * only be different than the passed value (delta) in the case where
 * a subpool minimum size must be manitained.
 */
static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 131
				      long delta)
{
132
	long ret = delta;
133 134

	if (!spool)
135
		return ret;
136 137

	spin_lock(&spool->lock);
138 139 140 141 142 143 144 145

	if (spool->max_hpages != -1) {		/* maximum size accounting */
		if ((spool->used_hpages + delta) <= spool->max_hpages)
			spool->used_hpages += delta;
		else {
			ret = -ENOMEM;
			goto unlock_ret;
		}
146 147
	}

148 149
	/* minimum size accounting */
	if (spool->min_hpages != -1 && spool->rsv_hpages) {
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
		if (delta > spool->rsv_hpages) {
			/*
			 * Asking for more reserves than those already taken on
			 * behalf of subpool.  Return difference.
			 */
			ret = delta - spool->rsv_hpages;
			spool->rsv_hpages = 0;
		} else {
			ret = 0;	/* reserves already accounted for */
			spool->rsv_hpages -= delta;
		}
	}

unlock_ret:
	spin_unlock(&spool->lock);
165 166 167
	return ret;
}

168 169 170 171 172 173 174
/*
 * Subpool accounting for freeing and unreserving pages.
 * Return the number of global page reservations that must be dropped.
 * The return value may only be different than the passed value (delta)
 * in the case where a subpool minimum size must be maintained.
 */
static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
175 176
				       long delta)
{
177 178
	long ret = delta;

179
	if (!spool)
180
		return delta;
181 182

	spin_lock(&spool->lock);
183 184 185 186

	if (spool->max_hpages != -1)		/* maximum size accounting */
		spool->used_hpages -= delta;

187 188
	 /* minimum size accounting */
	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
189 190 191 192 193 194 195 196 197 198 199 200 201 202
		if (spool->rsv_hpages + delta <= spool->min_hpages)
			ret = 0;
		else
			ret = spool->rsv_hpages + delta - spool->min_hpages;

		spool->rsv_hpages += delta;
		if (spool->rsv_hpages > spool->min_hpages)
			spool->rsv_hpages = spool->min_hpages;
	}

	/*
	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
	 * quota reference, free it now.
	 */
203
	unlock_or_release_subpool(spool);
204 205

	return ret;
206 207 208 209 210 211 212 213 214
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
A
Al Viro 已提交
215
	return subpool_inode(file_inode(vma->vm_file));
216 217
}

218 219 220
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
221
 *
222 223 224 225 226 227 228 229 230 231 232 233 234 235
 * The region data structures are embedded into a resv_map and protected
 * by a resv_map's lock.  The set of regions within the resv_map represent
 * reservations for huge pages, or huge pages that have already been
 * instantiated within the map.  The from and to elements are huge page
 * indicies into the associated mapping.  from indicates the starting index
 * of the region.  to represents the first index past the end of  the region.
 *
 * For example, a file region structure with from == 0 and to == 4 represents
 * four huge pages in a mapping.  It is important to note that the to element
 * represents the first element past the end of the region. This is used in
 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
 *
 * Interval notation of the form [from, to) will be used to indicate that
 * the endpoint from is inclusive and to is exclusive.
236 237 238 239 240 241 242
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

243 244
/*
 * Add the huge page range represented by [f, t) to the reserve
245 246 247 248 249 250 251 252
 * map.  In the normal case, existing regions will be expanded
 * to accommodate the specified range.  Sufficient regions should
 * exist for expansion due to the previous call to region_chg
 * with the same range.  However, it is possible that region_del
 * could have been called after region_chg and modifed the map
 * in such a way that no region exists to be expanded.  In this
 * case, pull a region descriptor from the cache associated with
 * the map and use that for the new range.
253 254 255
 *
 * Return the number of new huge pages added to the map.  This
 * number is greater than or equal to zero.
256
 */
257
static long region_add(struct resv_map *resv, long f, long t)
258
{
259
	struct list_head *head = &resv->regions;
260
	struct file_region *rg, *nrg, *trg;
261
	long add = 0;
262

263
	spin_lock(&resv->lock);
264 265 266 267 268
	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
	/*
	 * If no region exists which can be expanded to include the
	 * specified range, the list must have been modified by an
	 * interleving call to region_del().  Pull a region descriptor
	 * from the cache and use it for this range.
	 */
	if (&rg->link == head || t < rg->from) {
		VM_BUG_ON(resv->region_cache_count <= 0);

		resv->region_cache_count--;
		nrg = list_first_entry(&resv->region_cache, struct file_region,
					link);
		list_del(&nrg->link);

		nrg->from = f;
		nrg->to = t;
		list_add(&nrg->link, rg->link.prev);

		add += t - f;
		goto out_locked;
	}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
309 310 311 312 313
			/* Decrement return value by the deleted range.
			 * Another range will span this area so that by
			 * end of routine add will be >= zero
			 */
			add -= (rg->to - rg->from);
314 315 316 317
			list_del(&rg->link);
			kfree(rg);
		}
	}
318 319

	add += (nrg->from - f);		/* Added to beginning of region */
320
	nrg->from = f;
321
	add += t - nrg->to;		/* Added to end of region */
322
	nrg->to = t;
323

324 325
out_locked:
	resv->adds_in_progress--;
326
	spin_unlock(&resv->lock);
327 328
	VM_BUG_ON(add < 0);
	return add;
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343
/*
 * Examine the existing reserve map and determine how many
 * huge pages in the specified range [f, t) are NOT currently
 * represented.  This routine is called before a subsequent
 * call to region_add that will actually modify the reserve
 * map to add the specified range [f, t).  region_chg does
 * not change the number of huge pages represented by the
 * map.  However, if the existing regions in the map can not
 * be expanded to represent the new range, a new file_region
 * structure is added to the map as a placeholder.  This is
 * so that the subsequent region_add call will have all the
 * regions it needs and will not fail.
 *
344 345 346 347 348 349 350 351
 * Upon entry, region_chg will also examine the cache of region descriptors
 * associated with the map.  If there are not enough descriptors cached, one
 * will be allocated for the in progress add operation.
 *
 * Returns the number of huge pages that need to be added to the existing
 * reservation map for the range [f, t).  This number is greater or equal to
 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 * is needed and can not be allocated.
352
 */
353
static long region_chg(struct resv_map *resv, long f, long t)
354
{
355
	struct list_head *head = &resv->regions;
356
	struct file_region *rg, *nrg = NULL;
357 358
	long chg = 0;

359 360
retry:
	spin_lock(&resv->lock);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
retry_locked:
	resv->adds_in_progress++;

	/*
	 * Check for sufficient descriptors in the cache to accommodate
	 * the number of in progress add operations.
	 */
	if (resv->adds_in_progress > resv->region_cache_count) {
		struct file_region *trg;

		VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
		/* Must drop lock to allocate a new descriptor. */
		resv->adds_in_progress--;
		spin_unlock(&resv->lock);

		trg = kmalloc(sizeof(*trg), GFP_KERNEL);
377 378
		if (!trg) {
			kfree(nrg);
379
			return -ENOMEM;
380
		}
381 382 383 384 385 386 387

		spin_lock(&resv->lock);
		list_add(&trg->link, &resv->region_cache);
		resv->region_cache_count++;
		goto retry_locked;
	}

388 389 390 391 392 393 394 395 396
	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
397
		if (!nrg) {
398
			resv->adds_in_progress--;
399 400 401 402 403 404 405 406 407 408
			spin_unlock(&resv->lock);
			nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
			if (!nrg)
				return -ENOMEM;

			nrg->from = f;
			nrg->to   = f;
			INIT_LIST_HEAD(&nrg->link);
			goto retry;
		}
409

410 411 412
		list_add(&nrg->link, rg->link.prev);
		chg = t - f;
		goto out_nrg;
413 414 415 416 417 418 419 420 421 422 423 424
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
425
			goto out;
426

L
Lucas De Marchi 已提交
427
		/* We overlap with this area, if it extends further than
428 429 430 431 432 433 434 435
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
436 437 438 439 440 441 442 443

out:
	spin_unlock(&resv->lock);
	/*  We already know we raced and no longer need the new region */
	kfree(nrg);
	return chg;
out_nrg:
	spin_unlock(&resv->lock);
444 445 446
	return chg;
}

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Abort the in progress add operation.  The adds_in_progress field
 * of the resv_map keeps track of the operations in progress between
 * calls to region_chg and region_add.  Operations are sometimes
 * aborted after the call to region_chg.  In such cases, region_abort
 * is called to decrement the adds_in_progress counter.
 *
 * NOTE: The range arguments [f, t) are not needed or used in this
 * routine.  They are kept to make reading the calling code easier as
 * arguments will match the associated region_chg call.
 */
static void region_abort(struct resv_map *resv, long f, long t)
{
	spin_lock(&resv->lock);
	VM_BUG_ON(!resv->region_cache_count);
	resv->adds_in_progress--;
	spin_unlock(&resv->lock);
}

466
/*
467 468 469 470 471 472 473 474 475 476 477 478
 * Delete the specified range [f, t) from the reserve map.  If the
 * t parameter is LONG_MAX, this indicates that ALL regions after f
 * should be deleted.  Locate the regions which intersect [f, t)
 * and either trim, delete or split the existing regions.
 *
 * Returns the number of huge pages deleted from the reserve map.
 * In the normal case, the return value is zero or more.  In the
 * case where a region must be split, a new region descriptor must
 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 * NOTE: If the parameter t == LONG_MAX, then we will never split
 * a region and possibly return -ENOMEM.  Callers specifying
 * t == LONG_MAX do not need to check for -ENOMEM error.
479
 */
480
static long region_del(struct resv_map *resv, long f, long t)
481
{
482
	struct list_head *head = &resv->regions;
483
	struct file_region *rg, *trg;
484 485
	struct file_region *nrg = NULL;
	long del = 0;
486

487
retry:
488
	spin_lock(&resv->lock);
489
	list_for_each_entry_safe(rg, trg, head, link) {
490 491 492 493 494 495 496 497
		/*
		 * Skip regions before the range to be deleted.  file_region
		 * ranges are normally of the form [from, to).  However, there
		 * may be a "placeholder" entry in the map which is of the form
		 * (from, to) with from == to.  Check for placeholder entries
		 * at the beginning of the range to be deleted.
		 */
		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
498
			continue;
499

500
		if (rg->from >= t)
501 502
			break;

503 504 505 506 507 508 509 510 511 512 513 514 515
		if (f > rg->from && t < rg->to) { /* Must split region */
			/*
			 * Check for an entry in the cache before dropping
			 * lock and attempting allocation.
			 */
			if (!nrg &&
			    resv->region_cache_count > resv->adds_in_progress) {
				nrg = list_first_entry(&resv->region_cache,
							struct file_region,
							link);
				list_del(&nrg->link);
				resv->region_cache_count--;
			}
516

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
			if (!nrg) {
				spin_unlock(&resv->lock);
				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
				if (!nrg)
					return -ENOMEM;
				goto retry;
			}

			del += t - f;

			/* New entry for end of split region */
			nrg->from = t;
			nrg->to = rg->to;
			INIT_LIST_HEAD(&nrg->link);

			/* Original entry is trimmed */
			rg->to = f;

			list_add(&nrg->link, &rg->link);
			nrg = NULL;
537
			break;
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		}

		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
			del += rg->to - rg->from;
			list_del(&rg->link);
			kfree(rg);
			continue;
		}

		if (f <= rg->from) {	/* Trim beginning of region */
			del += t - rg->from;
			rg->from = t;
		} else {		/* Trim end of region */
			del += rg->to - f;
			rg->to = f;
		}
554
	}
555 556

	spin_unlock(&resv->lock);
557 558
	kfree(nrg);
	return del;
559 560
}

561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/*
 * A rare out of memory error was encountered which prevented removal of
 * the reserve map region for a page.  The huge page itself was free'ed
 * and removed from the page cache.  This routine will adjust the subpool
 * usage count, and the global reserve count if needed.  By incrementing
 * these counts, the reserve map entry which could not be deleted will
 * appear as a "reserved" entry instead of simply dangling with incorrect
 * counts.
 */
void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
{
	struct hugepage_subpool *spool = subpool_inode(inode);
	long rsv_adjust;

	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
	if (restore_reserve && rsv_adjust) {
		struct hstate *h = hstate_inode(inode);

		hugetlb_acct_memory(h, 1);
	}
}

583 584 585 586
/*
 * Count and return the number of huge pages in the reserve map
 * that intersect with the range [f, t).
 */
587
static long region_count(struct resv_map *resv, long f, long t)
588
{
589
	struct list_head *head = &resv->regions;
590 591 592
	struct file_region *rg;
	long chg = 0;

593
	spin_lock(&resv->lock);
594 595
	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
596 597
		long seg_from;
		long seg_to;
598 599 600 601 602 603 604 605 606 607 608

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}
609
	spin_unlock(&resv->lock);
610 611 612 613

	return chg;
}

614 615 616 617
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
618 619
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
620
{
621 622
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
623 624
}

625 626 627 628 629
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}
630
EXPORT_SYMBOL_GPL(linear_hugepage_index);
631

632 633 634 635 636 637 638 639 640 641 642 643 644
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

645
	return 1UL << huge_page_shift(hstate);
646
}
647
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
648

649 650 651 652 653 654 655 656 657 658 659 660 661
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

662 663 664 665 666 667 668
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
669
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
670

671 672 673 674 675 676 677 678 679
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
680 681 682 683 684 685 686 687 688
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
689
 */
690 691 692 693 694 695 696 697 698 699 700
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

701
struct resv_map *resv_map_alloc(void)
702 703
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
704 705 706 707 708
	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);

	if (!resv_map || !rg) {
		kfree(resv_map);
		kfree(rg);
709
		return NULL;
710
	}
711 712

	kref_init(&resv_map->refs);
713
	spin_lock_init(&resv_map->lock);
714 715
	INIT_LIST_HEAD(&resv_map->regions);

716 717 718 719 720 721
	resv_map->adds_in_progress = 0;

	INIT_LIST_HEAD(&resv_map->region_cache);
	list_add(&rg->link, &resv_map->region_cache);
	resv_map->region_cache_count = 1;

722 723 724
	return resv_map;
}

725
void resv_map_release(struct kref *ref)
726 727
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
728 729
	struct list_head *head = &resv_map->region_cache;
	struct file_region *rg, *trg;
730 731

	/* Clear out any active regions before we release the map. */
732
	region_del(resv_map, 0, LONG_MAX);
733 734 735 736 737 738 739 740 741

	/* ... and any entries left in the cache */
	list_for_each_entry_safe(rg, trg, head, link) {
		list_del(&rg->link);
		kfree(rg);
	}

	VM_BUG_ON(resv_map->adds_in_progress);

742 743 744
	kfree(resv_map);
}

745 746 747 748 749
static inline struct resv_map *inode_resv_map(struct inode *inode)
{
	return inode->i_mapping->private_data;
}

750
static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
751
{
752
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 754 755 756 757 758 759
	if (vma->vm_flags & VM_MAYSHARE) {
		struct address_space *mapping = vma->vm_file->f_mapping;
		struct inode *inode = mapping->host;

		return inode_resv_map(inode);

	} else {
760 761
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
762
	}
763 764
}

765
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
766
{
767 768
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
769

770 771
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
772 773 774 775
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
776 777
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
778 779

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
780 781 782 783
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
784
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
785 786

	return (get_vma_private_data(vma) & flag) != 0;
787 788
}

789
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
790 791
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
792
	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
793
	if (!(vma->vm_flags & VM_MAYSHARE))
794 795 796 797
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
798
static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
799
{
800 801 802 803 804 805 806 807 808 809 810
	if (vma->vm_flags & VM_NORESERVE) {
		/*
		 * This address is already reserved by other process(chg == 0),
		 * so, we should decrement reserved count. Without decrementing,
		 * reserve count remains after releasing inode, because this
		 * allocated page will go into page cache and is regarded as
		 * coming from reserved pool in releasing step.  Currently, we
		 * don't have any other solution to deal with this situation
		 * properly, so add work-around here.
		 */
		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
811
			return true;
812
		else
813
			return false;
814
	}
815 816

	/* Shared mappings always use reserves */
817 818 819 820 821 822 823 824 825 826 827 828 829
	if (vma->vm_flags & VM_MAYSHARE) {
		/*
		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
		 * be a region map for all pages.  The only situation where
		 * there is no region map is if a hole was punched via
		 * fallocate.  In this case, there really are no reverves to
		 * use.  This situation is indicated if chg != 0.
		 */
		if (chg)
			return false;
		else
			return true;
	}
830 831 832 833 834

	/*
	 * Only the process that called mmap() has reserves for
	 * private mappings.
	 */
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		/*
		 * Like the shared case above, a hole punch or truncate
		 * could have been performed on the private mapping.
		 * Examine the value of chg to determine if reserves
		 * actually exist or were previously consumed.
		 * Very Subtle - The value of chg comes from a previous
		 * call to vma_needs_reserves().  The reserve map for
		 * private mappings has different (opposite) semantics
		 * than that of shared mappings.  vma_needs_reserves()
		 * has already taken this difference in semantics into
		 * account.  Therefore, the meaning of chg is the same
		 * as in the shared case above.  Code could easily be
		 * combined, but keeping it separate draws attention to
		 * subtle differences.
		 */
		if (chg)
			return false;
		else
			return true;
	}
856

857
	return false;
858 859
}

860
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
861 862
{
	int nid = page_to_nid(page);
863
	list_move(&page->lru, &h->hugepage_freelists[nid]);
864 865
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
866 867
}

868 869 870 871
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

872 873 874 875 876 877 878 879
	list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
		if (!is_migrate_isolate_page(page))
			break;
	/*
	 * if 'non-isolated free hugepage' not found on the list,
	 * the allocation fails.
	 */
	if (&h->hugepage_freelists[nid] == &page->lru)
880
		return NULL;
881
	list_move(&page->lru, &h->hugepage_activelist);
882
	set_page_refcounted(page);
883 884 885 886 887
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

888 889 890
/* Movability of hugepages depends on migration support. */
static inline gfp_t htlb_alloc_mask(struct hstate *h)
{
891
	if (hugepages_treat_as_movable || hugepage_migration_supported(h))
892 893 894 895 896
		return GFP_HIGHUSER_MOVABLE;
	else
		return GFP_HIGHUSER;
}

897 898
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
899 900
				unsigned long address, int avoid_reserve,
				long chg)
L
Linus Torvalds 已提交
901
{
902
	struct page *page = NULL;
903
	struct mempolicy *mpol;
904
	nodemask_t *nodemask;
905
	struct zonelist *zonelist;
906 907
	struct zone *zone;
	struct zoneref *z;
908
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
909

910 911 912 913 914
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
915
	if (!vma_has_reserves(vma, chg) &&
916
			h->free_huge_pages - h->resv_huge_pages == 0)
917
		goto err;
918

919
	/* If reserves cannot be used, ensure enough pages are in the pool */
920
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
921
		goto err;
922

923
retry_cpuset:
924
	cpuset_mems_cookie = read_mems_allowed_begin();
925
	zonelist = huge_zonelist(vma, address,
926
					htlb_alloc_mask(h), &mpol, &nodemask);
927

928 929
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
930
		if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
931 932
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
933 934 935 936 937
				if (avoid_reserve)
					break;
				if (!vma_has_reserves(vma, chg))
					break;

938
				SetPagePrivate(page);
939
				h->resv_huge_pages--;
940 941
				break;
			}
A
Andrew Morton 已提交
942
		}
L
Linus Torvalds 已提交
943
	}
944

945
	mpol_cond_put(mpol);
946
	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
947
		goto retry_cpuset;
L
Linus Torvalds 已提交
948
	return page;
949 950 951

err:
	return NULL;
L
Linus Torvalds 已提交
952 953
}

954 955 956 957 958 959 960 961 962
/*
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
 */
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
{
963
	nid = next_node_in(nid, *nodes_allowed);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

/*
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
 */
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);

	return nid;
}

/*
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
 */
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
{
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);

	return nid;
}

#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
		nr_nodes--)

#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
	for (nr_nodes = nodes_weight(*mask);				\
		nr_nodes > 0 &&						\
		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
		nr_nodes--)

1025 1026 1027
#if (defined(CONFIG_X86_64) || defined(CONFIG_S390)) && \
	((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || \
	defined(CONFIG_CMA))
1028
static void destroy_compound_gigantic_page(struct page *page,
1029
					unsigned int order)
1030 1031 1032 1033 1034
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

1035
	atomic_set(compound_mapcount_ptr(page), 0);
1036
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1037
		clear_compound_head(p);
1038 1039 1040 1041 1042 1043 1044
		set_page_refcounted(p);
	}

	set_compound_order(page, 0);
	__ClearPageHead(page);
}

1045
static void free_gigantic_page(struct page *page, unsigned int order)
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
{
	free_contig_range(page_to_pfn(page), 1 << order);
}

static int __alloc_gigantic_page(unsigned long start_pfn,
				unsigned long nr_pages)
{
	unsigned long end_pfn = start_pfn + nr_pages;
	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
}

1057 1058
static bool pfn_range_valid_gigantic(struct zone *z,
			unsigned long start_pfn, unsigned long nr_pages)
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
{
	unsigned long i, end_pfn = start_pfn + nr_pages;
	struct page *page;

	for (i = start_pfn; i < end_pfn; i++) {
		if (!pfn_valid(i))
			return false;

		page = pfn_to_page(i);

1069 1070 1071
		if (page_zone(page) != z)
			return false;

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		if (PageReserved(page))
			return false;

		if (page_count(page) > 0)
			return false;

		if (PageHuge(page))
			return false;
	}

	return true;
}

static bool zone_spans_last_pfn(const struct zone *zone,
			unsigned long start_pfn, unsigned long nr_pages)
{
	unsigned long last_pfn = start_pfn + nr_pages - 1;
	return zone_spans_pfn(zone, last_pfn);
}

1092
static struct page *alloc_gigantic_page(int nid, unsigned int order)
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
{
	unsigned long nr_pages = 1 << order;
	unsigned long ret, pfn, flags;
	struct zone *z;

	z = NODE_DATA(nid)->node_zones;
	for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
		spin_lock_irqsave(&z->lock, flags);

		pfn = ALIGN(z->zone_start_pfn, nr_pages);
		while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1104
			if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
				/*
				 * We release the zone lock here because
				 * alloc_contig_range() will also lock the zone
				 * at some point. If there's an allocation
				 * spinning on this lock, it may win the race
				 * and cause alloc_contig_range() to fail...
				 */
				spin_unlock_irqrestore(&z->lock, flags);
				ret = __alloc_gigantic_page(pfn, nr_pages);
				if (!ret)
					return pfn_to_page(pfn);
				spin_lock_irqsave(&z->lock, flags);
			}
			pfn += nr_pages;
		}

		spin_unlock_irqrestore(&z->lock, flags);
	}

	return NULL;
}

static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1128
static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
{
	struct page *page;

	page = alloc_gigantic_page(nid, huge_page_order(h));
	if (page) {
		prep_compound_gigantic_page(page, huge_page_order(h));
		prep_new_huge_page(h, page, nid);
	}

	return page;
}

static int alloc_fresh_gigantic_page(struct hstate *h,
				nodemask_t *nodes_allowed)
{
	struct page *page = NULL;
	int nr_nodes, node;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_gigantic_page_node(h, node);
		if (page)
			return 1;
	}

	return 0;
}

static inline bool gigantic_page_supported(void) { return true; }
#else
static inline bool gigantic_page_supported(void) { return false; }
1161
static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1162
static inline void destroy_compound_gigantic_page(struct page *page,
1163
						unsigned int order) { }
1164 1165 1166 1167
static inline int alloc_fresh_gigantic_page(struct hstate *h,
					nodemask_t *nodes_allowed) { return 0; }
#endif

1168
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
1169 1170
{
	int i;
1171

1172 1173
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
		return;
1174

1175 1176 1177
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
1178 1179
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
1180 1181
				1 << PG_active | 1 << PG_private |
				1 << PG_writeback);
A
Adam Litke 已提交
1182
	}
1183
	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1184
	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
A
Adam Litke 已提交
1185
	set_page_refcounted(page);
1186 1187 1188 1189 1190 1191
	if (hstate_is_gigantic(h)) {
		destroy_compound_gigantic_page(page, huge_page_order(h));
		free_gigantic_page(page, huge_page_order(h));
	} else {
		__free_pages(page, huge_page_order(h));
	}
A
Adam Litke 已提交
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
 * to hstate->hugepage_activelist.)
 *
 * This function can be called for tail pages, but never returns true for them.
 */
bool page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHuge(page), page);
	return PageHead(page) && PagePrivate(&page[1]);
}

/* never called for tail page */
static void set_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	SetPagePrivate(&page[1]);
}

static void clear_page_huge_active(struct page *page)
{
	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
	ClearPagePrivate(&page[1]);
}

1230
void free_huge_page(struct page *page)
1231
{
1232 1233 1234 1235
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
1236
	struct hstate *h = page_hstate(page);
1237
	int nid = page_to_nid(page);
1238 1239
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
1240
	bool restore_reserve;
1241

1242
	set_page_private(page, 0);
1243
	page->mapping = NULL;
1244 1245
	VM_BUG_ON_PAGE(page_count(page), page);
	VM_BUG_ON_PAGE(page_mapcount(page), page);
1246
	restore_reserve = PagePrivate(page);
1247
	ClearPagePrivate(page);
1248

1249 1250 1251 1252 1253 1254 1255 1256
	/*
	 * A return code of zero implies that the subpool will be under its
	 * minimum size if the reservation is not restored after page is free.
	 * Therefore, force restore_reserve operation.
	 */
	if (hugepage_subpool_put_pages(spool, 1) == 0)
		restore_reserve = true;

1257
	spin_lock(&hugetlb_lock);
1258
	clear_page_huge_active(page);
1259 1260
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
1261 1262 1263
	if (restore_reserve)
		h->resv_huge_pages++;

1264
	if (h->surplus_huge_pages_node[nid]) {
1265 1266
		/* remove the page from active list */
		list_del(&page->lru);
1267 1268 1269
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
1270
	} else {
1271
		arch_clear_hugepage_flags(page);
1272
		enqueue_huge_page(h, page);
1273
	}
1274 1275 1276
	spin_unlock(&hugetlb_lock);
}

1277
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1278
{
1279
	INIT_LIST_HEAD(&page->lru);
1280
	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1281
	spin_lock(&hugetlb_lock);
1282
	set_hugetlb_cgroup(page, NULL);
1283 1284
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
1285 1286 1287 1288
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

1289
static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1290 1291 1292 1293 1294 1295 1296
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
1297
	__ClearPageReserved(page);
1298
	__SetPageHead(page);
1299
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
		/*
		 * For gigantic hugepages allocated through bootmem at
		 * boot, it's safer to be consistent with the not-gigantic
		 * hugepages and clear the PG_reserved bit from all tail pages
		 * too.  Otherwse drivers using get_user_pages() to access tail
		 * pages may get the reference counting wrong if they see
		 * PG_reserved set on a tail page (despite the head page not
		 * having PG_reserved set).  Enforcing this consistency between
		 * head and tail pages allows drivers to optimize away a check
		 * on the head page when they need know if put_page() is needed
		 * after get_user_pages().
		 */
		__ClearPageReserved(p);
1313
		set_page_count(p, 0);
1314
		set_compound_head(p, page);
1315
	}
1316
	atomic_set(compound_mapcount_ptr(page), -1);
1317 1318
}

A
Andrew Morton 已提交
1319 1320 1321 1322 1323
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
1324 1325 1326 1327 1328 1329
int PageHuge(struct page *page)
{
	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
1330
	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1331
}
1332 1333
EXPORT_SYMBOL_GPL(PageHuge);

1334 1335 1336 1337 1338 1339 1340 1341 1342
/*
 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
 * normal or transparent huge pages.
 */
int PageHeadHuge(struct page *page_head)
{
	if (!PageHead(page_head))
		return 0;

1343
	return get_compound_page_dtor(page_head) == free_huge_page;
1344 1345
}

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
pgoff_t __basepage_index(struct page *page)
{
	struct page *page_head = compound_head(page);
	pgoff_t index = page_index(page_head);
	unsigned long compound_idx;

	if (!PageHuge(page_head))
		return page_index(page);

	if (compound_order(page_head) >= MAX_ORDER)
		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
	else
		compound_idx = page - page_head;

	return (index << compound_order(page_head)) + compound_idx;
}

1363
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
1364 1365
{
	struct page *page;
1366

1367
	page = __alloc_pages_node(nid,
1368
		htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1369
						__GFP_REPEAT|__GFP_NOWARN,
1370
		huge_page_order(h));
L
Linus Torvalds 已提交
1371
	if (page) {
1372
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
1373
	}
1374 1375 1376 1377

	return page;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
{
	struct page *page;
	int nr_nodes, node;
	int ret = 0;

	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
		page = alloc_fresh_huge_page_node(h, node);
		if (page) {
			ret = 1;
			break;
		}
	}

	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

	return ret;
}

1400 1401 1402 1403 1404 1405
/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
1406 1407
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
1408
{
1409
	int nr_nodes, node;
1410 1411
	int ret = 0;

1412
	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1413 1414 1415 1416
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
1417 1418
		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
		    !list_empty(&h->hugepage_freelists[node])) {
1419
			struct page *page =
1420
				list_entry(h->hugepage_freelists[node].next,
1421 1422 1423
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
1424
			h->free_huge_pages_node[node]--;
1425 1426
			if (acct_surplus) {
				h->surplus_huge_pages--;
1427
				h->surplus_huge_pages_node[node]--;
1428
			}
1429 1430
			update_and_free_page(h, page);
			ret = 1;
1431
			break;
1432
		}
1433
	}
1434 1435 1436 1437

	return ret;
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
/*
 * Dissolve a given free hugepage into free buddy pages. This function does
 * nothing for in-use (including surplus) hugepages.
 */
static void dissolve_free_huge_page(struct page *page)
{
	spin_lock(&hugetlb_lock);
	if (PageHuge(page) && !page_count(page)) {
		struct hstate *h = page_hstate(page);
		int nid = page_to_nid(page);
		list_del(&page->lru);
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		update_and_free_page(h, page);
	}
	spin_unlock(&hugetlb_lock);
}

/*
 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
 * make specified memory blocks removable from the system.
 * Note that start_pfn should aligned with (minimum) hugepage size.
 */
void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	unsigned long pfn;

1465 1466 1467
	if (!hugepages_supported())
		return;

1468 1469
	VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1470 1471 1472
		dissolve_free_huge_page(pfn_to_page(pfn));
}

1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * There are 3 ways this can get called:
 * 1. With vma+addr: we use the VMA's memory policy
 * 2. With !vma, but nid=NUMA_NO_NODE:  We try to allocate a huge
 *    page from any node, and let the buddy allocator itself figure
 *    it out.
 * 3. With !vma, but nid!=NUMA_NO_NODE.  We allocate a huge page
 *    strictly from 'nid'
 */
static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
{
	int order = huge_page_order(h);
	gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
	unsigned int cpuset_mems_cookie;

	/*
	 * We need a VMA to get a memory policy.  If we do not
D
Dave Hansen 已提交
1491 1492 1493 1494 1495 1496
	 * have one, we use the 'nid' argument.
	 *
	 * The mempolicy stuff below has some non-inlined bits
	 * and calls ->vm_ops.  That makes it hard to optimize at
	 * compile-time, even when NUMA is off and it does
	 * nothing.  This helps the compiler optimize it out.
1497
	 */
D
Dave Hansen 已提交
1498
	if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
		/*
		 * If a specific node is requested, make sure to
		 * get memory from there, but only when a node
		 * is explicitly specified.
		 */
		if (nid != NUMA_NO_NODE)
			gfp |= __GFP_THISNODE;
		/*
		 * Make sure to call something that can handle
		 * nid=NUMA_NO_NODE
		 */
		return alloc_pages_node(nid, gfp, order);
	}

	/*
	 * OK, so we have a VMA.  Fetch the mempolicy and try to
D
Dave Hansen 已提交
1515 1516
	 * allocate a huge page with it.  We will only reach this
	 * when CONFIG_NUMA=y.
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	 */
	do {
		struct page *page;
		struct mempolicy *mpol;
		struct zonelist *zl;
		nodemask_t *nodemask;

		cpuset_mems_cookie = read_mems_allowed_begin();
		zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
		mpol_cond_put(mpol);
		page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
		if (page)
			return page;
	} while (read_mems_allowed_retry(cpuset_mems_cookie));

	return NULL;
}

/*
 * There are two ways to allocate a huge page:
 * 1. When you have a VMA and an address (like a fault)
 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
 *
 * 'vma' and 'addr' are only for (1).  'nid' is always NUMA_NO_NODE in
 * this case which signifies that the allocation should be done with
 * respect for the VMA's memory policy.
 *
 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
 * implies that memory policies will not be taken in to account.
 */
static struct page *__alloc_buddy_huge_page(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr, int nid)
1549 1550
{
	struct page *page;
1551
	unsigned int r_nid;
1552

1553
	if (hstate_is_gigantic(h))
1554 1555
		return NULL;

1556 1557 1558 1559 1560 1561
	/*
	 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
	 * This makes sure the caller is picking _one_ of the modes with which
	 * we can call this function, not both.
	 */
	if (vma || (addr != -1)) {
D
Dave Hansen 已提交
1562 1563
		VM_WARN_ON_ONCE(addr == -1);
		VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
1564
	}
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
1589
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1590 1591 1592
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
1593 1594
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
1595 1596 1597
	}
	spin_unlock(&hugetlb_lock);

1598
	page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
1599 1600

	spin_lock(&hugetlb_lock);
1601
	if (page) {
1602
		INIT_LIST_HEAD(&page->lru);
1603
		r_nid = page_to_nid(page);
1604
		set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1605
		set_hugetlb_cgroup(page, NULL);
1606 1607 1608
		/*
		 * We incremented the global counters already
		 */
1609 1610
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
1611
		__count_vm_event(HTLB_BUDDY_PGALLOC);
1612
	} else {
1613 1614
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
1615
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1616
	}
1617
	spin_unlock(&hugetlb_lock);
1618 1619 1620 1621

	return page;
}

1622 1623 1624 1625 1626
/*
 * Allocate a huge page from 'nid'.  Note, 'nid' may be
 * NUMA_NO_NODE, which means that it may be allocated
 * anywhere.
 */
D
Dave Hansen 已提交
1627
static
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
{
	unsigned long addr = -1;

	return __alloc_buddy_huge_page(h, NULL, addr, nid);
}

/*
 * Use the VMA's mpolicy to allocate a huge page from the buddy.
 */
D
Dave Hansen 已提交
1638
static
1639 1640 1641 1642 1643 1644
struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
		struct vm_area_struct *vma, unsigned long addr)
{
	return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
}

1645 1646 1647 1648 1649 1650 1651
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
1652
	struct page *page = NULL;
1653 1654

	spin_lock(&hugetlb_lock);
1655 1656
	if (h->free_huge_pages - h->resv_huge_pages > 0)
		page = dequeue_huge_page_node(h, nid);
1657 1658
	spin_unlock(&hugetlb_lock);

1659
	if (!page)
1660
		page = __alloc_buddy_huge_page_no_mpol(h, nid);
1661 1662 1663 1664

	return page;
}

1665
/*
L
Lucas De Marchi 已提交
1666
 * Increase the hugetlb pool such that it can accommodate a reservation
1667 1668
 * of size 'delta'.
 */
1669
static int gather_surplus_pages(struct hstate *h, int delta)
1670 1671 1672 1673 1674
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
1675
	bool alloc_ok = true;
1676

1677
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1678
	if (needed <= 0) {
1679
		h->resv_huge_pages += delta;
1680
		return 0;
1681
	}
1682 1683 1684 1685 1686 1687 1688 1689

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
1690
		page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
1691 1692 1693 1694
		if (!page) {
			alloc_ok = false;
			break;
		}
1695 1696
		list_add(&page->lru, &surplus_list);
	}
1697
	allocated += i;
1698 1699 1700 1701 1702 1703

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
1704 1705
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
1716 1717
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
1718
	 * needed to accommodate the reservation.  Add the appropriate number
1719
	 * of pages to the hugetlb pool and free the extras back to the buddy
1720 1721 1722
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1723 1724
	 */
	needed += allocated;
1725
	h->resv_huge_pages += delta;
1726
	ret = 0;
1727

1728
	/* Free the needed pages to the hugetlb pool */
1729
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1730 1731
		if ((--needed) < 0)
			break;
1732 1733 1734 1735 1736
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
1737
		VM_BUG_ON_PAGE(page_count(page), page);
1738
		enqueue_huge_page(h, page);
1739
	}
1740
free:
1741
	spin_unlock(&hugetlb_lock);
1742 1743

	/* Free unnecessary surplus pages to the buddy allocator */
1744 1745
	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
		put_page(page);
1746
	spin_lock(&hugetlb_lock);
1747 1748 1749 1750 1751 1752 1753 1754

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1755
 * Called with hugetlb_lock held.
1756
 */
1757 1758
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1759 1760 1761
{
	unsigned long nr_pages;

1762
	/* Uncommit the reservation */
1763
	h->resv_huge_pages -= unused_resv_pages;
1764

1765
	/* Cannot return gigantic pages currently */
1766
	if (hstate_is_gigantic(h))
1767 1768
		return;

1769
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1770

1771 1772
	/*
	 * We want to release as many surplus pages as possible, spread
1773 1774 1775 1776 1777
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1778 1779
	 */
	while (nr_pages--) {
1780
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1781
			break;
1782
		cond_resched_lock(&hugetlb_lock);
1783 1784 1785
	}
}

1786

1787
/*
1788
 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1789
 * are used by the huge page allocation routines to manage reservations.
1790 1791 1792 1793 1794 1795
 *
 * vma_needs_reservation is called to determine if the huge page at addr
 * within the vma has an associated reservation.  If a reservation is
 * needed, the value 1 is returned.  The caller is then responsible for
 * managing the global reservation and subpool usage counts.  After
 * the huge page has been allocated, vma_commit_reservation is called
1796 1797 1798
 * to add the page to the reservation map.  If the page allocation fails,
 * the reservation must be ended instead of committed.  vma_end_reservation
 * is called in such cases.
1799 1800 1801 1802 1803 1804
 *
 * In the normal case, vma_commit_reservation returns the same value
 * as the preceding vma_needs_reservation call.  The only time this
 * is not the case is if a reserve map was changed between calls.  It
 * is the responsibility of the caller to notice the difference and
 * take appropriate action.
1805
 */
1806 1807 1808
enum vma_resv_mode {
	VMA_NEEDS_RESV,
	VMA_COMMIT_RESV,
1809
	VMA_END_RESV,
1810
};
1811 1812
static long __vma_reservation_common(struct hstate *h,
				struct vm_area_struct *vma, unsigned long addr,
1813
				enum vma_resv_mode mode)
1814
{
1815 1816
	struct resv_map *resv;
	pgoff_t idx;
1817
	long ret;
1818

1819 1820
	resv = vma_resv_map(vma);
	if (!resv)
1821
		return 1;
1822

1823
	idx = vma_hugecache_offset(h, vma, addr);
1824 1825
	switch (mode) {
	case VMA_NEEDS_RESV:
1826
		ret = region_chg(resv, idx, idx + 1);
1827 1828 1829 1830
		break;
	case VMA_COMMIT_RESV:
		ret = region_add(resv, idx, idx + 1);
		break;
1831
	case VMA_END_RESV:
1832 1833 1834 1835 1836 1837
		region_abort(resv, idx, idx + 1);
		ret = 0;
		break;
	default:
		BUG();
	}
1838

1839
	if (vma->vm_flags & VM_MAYSHARE)
1840
		return ret;
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
		/*
		 * In most cases, reserves always exist for private mappings.
		 * However, a file associated with mapping could have been
		 * hole punched or truncated after reserves were consumed.
		 * As subsequent fault on such a range will not use reserves.
		 * Subtle - The reserve map for private mappings has the
		 * opposite meaning than that of shared mappings.  If NO
		 * entry is in the reserve map, it means a reservation exists.
		 * If an entry exists in the reserve map, it means the
		 * reservation has already been consumed.  As a result, the
		 * return value of this routine is the opposite of the
		 * value returned from reserve map manipulation routines above.
		 */
		if (ret)
			return 0;
		else
			return 1;
	}
1860
	else
1861
		return ret < 0 ? ret : 0;
1862
}
1863 1864

static long vma_needs_reservation(struct hstate *h,
1865
			struct vm_area_struct *vma, unsigned long addr)
1866
{
1867
	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1868
}
1869

1870 1871 1872
static long vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
{
1873 1874 1875
	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
}

1876
static void vma_end_reservation(struct hstate *h,
1877 1878
			struct vm_area_struct *vma, unsigned long addr)
{
1879
	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1880 1881
}

1882
struct page *alloc_huge_page(struct vm_area_struct *vma,
1883
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1884
{
1885
	struct hugepage_subpool *spool = subpool_vma(vma);
1886
	struct hstate *h = hstate_vma(vma);
1887
	struct page *page;
1888 1889
	long map_chg, map_commit;
	long gbl_chg;
1890 1891
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1892

1893
	idx = hstate_index(h);
1894
	/*
1895 1896 1897
	 * Examine the region/reserve map to determine if the process
	 * has a reservation for the page to be allocated.  A return
	 * code of zero indicates a reservation exists (no change).
1898
	 */
1899 1900
	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
	if (map_chg < 0)
1901
		return ERR_PTR(-ENOMEM);
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	/*
	 * Processes that did not create the mapping will have no
	 * reserves as indicated by the region/reserve map. Check
	 * that the allocation will not exceed the subpool limit.
	 * Allocations for MAP_NORESERVE mappings also need to be
	 * checked against any subpool limit.
	 */
	if (map_chg || avoid_reserve) {
		gbl_chg = hugepage_subpool_get_pages(spool, 1);
		if (gbl_chg < 0) {
1913
			vma_end_reservation(h, vma, addr);
1914
			return ERR_PTR(-ENOSPC);
1915
		}
L
Linus Torvalds 已提交
1916

1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/*
		 * Even though there was no reservation in the region/reserve
		 * map, there could be reservations associated with the
		 * subpool that can be used.  This would be indicated if the
		 * return value of hugepage_subpool_get_pages() is zero.
		 * However, if avoid_reserve is specified we still avoid even
		 * the subpool reservations.
		 */
		if (avoid_reserve)
			gbl_chg = 1;
	}

1929
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1930 1931 1932
	if (ret)
		goto out_subpool_put;

L
Linus Torvalds 已提交
1933
	spin_lock(&hugetlb_lock);
1934 1935 1936 1937 1938 1939
	/*
	 * glb_chg is passed to indicate whether or not a page must be taken
	 * from the global free pool (global change).  gbl_chg == 0 indicates
	 * a reservation exists for the allocation.
	 */
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1940
	if (!page) {
1941
		spin_unlock(&hugetlb_lock);
1942
		page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
1943 1944
		if (!page)
			goto out_uncharge_cgroup;
1945 1946 1947 1948
		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
			SetPagePrivate(page);
			h->resv_huge_pages--;
		}
1949 1950
		spin_lock(&hugetlb_lock);
		list_move(&page->lru, &h->hugepage_activelist);
1951
		/* Fall through */
K
Ken Chen 已提交
1952
	}
1953 1954
	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
	spin_unlock(&hugetlb_lock);
1955

1956
	set_page_private(page, (unsigned long)spool);
1957

1958 1959
	map_commit = vma_commit_reservation(h, vma, addr);
	if (unlikely(map_chg > map_commit)) {
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
		/*
		 * The page was added to the reservation map between
		 * vma_needs_reservation and vma_commit_reservation.
		 * This indicates a race with hugetlb_reserve_pages.
		 * Adjust for the subpool count incremented above AND
		 * in hugetlb_reserve_pages for the same page.  Also,
		 * the reservation count added in hugetlb_reserve_pages
		 * no longer applies.
		 */
		long rsv_adjust;

		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
		hugetlb_acct_memory(h, -rsv_adjust);
	}
1974
	return page;
1975 1976 1977 1978

out_uncharge_cgroup:
	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
out_subpool_put:
1979
	if (map_chg || avoid_reserve)
1980
		hugepage_subpool_put_pages(spool, 1);
1981
	vma_end_reservation(h, vma, addr);
1982
	return ERR_PTR(-ENOSPC);
1983 1984
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
/*
 * alloc_huge_page()'s wrapper which simply returns the page if allocation
 * succeeds, otherwise NULL. This function is called from new_vma_page(),
 * where no ERR_VALUE is expected to be returned.
 */
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
				unsigned long addr, int avoid_reserve)
{
	struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
	if (IS_ERR(page))
		page = NULL;
	return page;
}

1999
int __weak alloc_bootmem_huge_page(struct hstate *h)
2000 2001
{
	struct huge_bootmem_page *m;
2002
	int nr_nodes, node;
2003

2004
	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2005 2006
		void *addr;

2007 2008 2009
		addr = memblock_virt_alloc_try_nid_nopanic(
				huge_page_size(h), huge_page_size(h),
				0, BOOTMEM_ALLOC_ACCESSIBLE, node);
2010 2011 2012 2013 2014 2015 2016
		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
2017
			goto found;
2018 2019 2020 2021 2022
		}
	}
	return 0;

found:
2023
	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2024 2025 2026 2027 2028 2029
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

2030 2031
static void __init prep_compound_huge_page(struct page *page,
		unsigned int order)
2032 2033 2034 2035 2036 2037 2038
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

2039 2040 2041 2042 2043 2044 2045
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
2046 2047 2048 2049
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
2050 2051
		memblock_free_late(__pa(m),
				   sizeof(struct huge_bootmem_page));
2052 2053 2054
#else
		page = virt_to_page(m);
#endif
2055
		WARN_ON(page_count(page) != 1);
2056
		prep_compound_huge_page(page, h->order);
2057
		WARN_ON(PageReserved(page));
2058
		prep_new_huge_page(h, page, page_to_nid(page));
2059 2060 2061 2062 2063 2064
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
2065
		if (hstate_is_gigantic(h))
2066
			adjust_managed_page_count(page, 1 << h->order);
2067 2068 2069
	}
}

2070
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
2071 2072
{
	unsigned long i;
2073

2074
	for (i = 0; i < h->max_huge_pages; ++i) {
2075
		if (hstate_is_gigantic(h)) {
2076 2077
			if (!alloc_bootmem_huge_page(h))
				break;
2078
		} else if (!alloc_fresh_huge_page(h,
2079
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
2080 2081
			break;
	}
2082
	h->max_huge_pages = i;
2083 2084 2085 2086 2087 2088 2089
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
2090 2091 2092
		if (minimum_order > huge_page_order(h))
			minimum_order = huge_page_order(h);

2093
		/* oversize hugepages were init'ed in early boot */
2094
		if (!hstate_is_gigantic(h))
2095
			hugetlb_hstate_alloc_pages(h);
2096
	}
2097
	VM_BUG_ON(minimum_order == UINT_MAX);
2098 2099
}

A
Andi Kleen 已提交
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

2111 2112 2113 2114 2115
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
2116
		char buf[32];
2117
		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
A
Andi Kleen 已提交
2118 2119
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
2120 2121 2122
	}
}

L
Linus Torvalds 已提交
2123
#ifdef CONFIG_HIGHMEM
2124 2125
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2126
{
2127 2128
	int i;

2129
	if (hstate_is_gigantic(h))
2130 2131
		return;

2132
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
2133
		struct page *page, *next;
2134 2135 2136
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
2137
				return;
L
Linus Torvalds 已提交
2138 2139 2140
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
2141
			update_and_free_page(h, page);
2142 2143
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
2144 2145 2146 2147
		}
	}
}
#else
2148 2149
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2150 2151 2152 2153
{
}
#endif

2154 2155 2156 2157 2158
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
2159 2160
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
2161
{
2162
	int nr_nodes, node;
2163 2164 2165

	VM_BUG_ON(delta != -1 && delta != 1);

2166 2167 2168 2169
	if (delta < 0) {
		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node])
				goto found;
2170
		}
2171 2172 2173 2174 2175
	} else {
		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
			if (h->surplus_huge_pages_node[node] <
					h->nr_huge_pages_node[node])
				goto found;
2176
		}
2177 2178
	}
	return 0;
2179

2180 2181 2182 2183
found:
	h->surplus_huge_pages += delta;
	h->surplus_huge_pages_node[node] += delta;
	return 1;
2184 2185
}

2186
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2187 2188
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
2189
{
2190
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
2191

2192
	if (hstate_is_gigantic(h) && !gigantic_page_supported())
2193 2194
		return h->max_huge_pages;

2195 2196 2197 2198
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
2199
	 *
N
Naoya Horiguchi 已提交
2200
	 * We might race with __alloc_buddy_huge_page() here and be unable
2201 2202 2203 2204
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
2205
	 */
L
Linus Torvalds 已提交
2206
	spin_lock(&hugetlb_lock);
2207
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2208
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2209 2210 2211
			break;
	}

2212
	while (count > persistent_huge_pages(h)) {
2213 2214 2215 2216 2217 2218
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
2219 2220 2221 2222
		if (hstate_is_gigantic(h))
			ret = alloc_fresh_gigantic_page(h, nodes_allowed);
		else
			ret = alloc_fresh_huge_page(h, nodes_allowed);
2223 2224 2225 2226
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

2227 2228 2229
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
2230 2231 2232 2233 2234 2235 2236 2237
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
2238 2239 2240 2241
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
N
Naoya Horiguchi 已提交
2242
	 * __alloc_buddy_huge_page() is checking the global counter,
2243 2244 2245
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
2246
	 */
2247
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2248
	min_count = max(count, min_count);
2249
	try_to_free_low(h, min_count, nodes_allowed);
2250
	while (min_count < persistent_huge_pages(h)) {
2251
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
2252
			break;
2253
		cond_resched_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
2254
	}
2255
	while (count < persistent_huge_pages(h)) {
2256
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2257 2258 2259
			break;
	}
out:
2260
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
2261
	spin_unlock(&hugetlb_lock);
2262
	return ret;
L
Linus Torvalds 已提交
2263 2264
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

2275 2276 2277
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2278 2279
{
	int i;
2280

2281
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2282 2283 2284
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
2285
			return &hstates[i];
2286 2287 2288
		}

	return kobj_to_node_hstate(kobj, nidp);
2289 2290
}

2291
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2292 2293
					struct kobj_attribute *attr, char *buf)
{
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
2305
}
2306

2307 2308 2309
static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
					   struct hstate *h, int nid,
					   unsigned long count, size_t len)
2310 2311
{
	int err;
2312
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2313

2314
	if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2315 2316 2317 2318
		err = -EINVAL;
		goto out;
	}

2319 2320 2321 2322 2323 2324 2325
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2326
			nodes_allowed = &node_states[N_MEMORY];
2327 2328 2329 2330 2331 2332 2333 2334 2335
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
2336
		nodes_allowed = &node_states[N_MEMORY];
2337

2338
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2339

2340
	if (nodes_allowed != &node_states[N_MEMORY])
2341 2342 2343
		NODEMASK_FREE(nodes_allowed);

	return len;
2344 2345 2346
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
					 struct kobject *kobj, const char *buf,
					 size_t len)
{
	struct hstate *h;
	unsigned long count;
	int nid;
	int err;

	err = kstrtoul(buf, 10, &count);
	if (err)
		return err;

	h = kobj_to_hstate(kobj, &nid);
	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
}

2366 2367 2368 2369 2370 2371 2372 2373 2374
static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2375
	return nr_hugepages_store_common(false, kobj, buf, len);
2376 2377 2378
}
HSTATE_ATTR(nr_hugepages);

2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
2394
	return nr_hugepages_store_common(true, kobj, buf, len);
2395 2396 2397 2398 2399
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


2400 2401 2402
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2403
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2404 2405
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
2406

2407 2408 2409 2410 2411
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
2412
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2413

2414
	if (hstate_is_gigantic(h))
2415 2416
		return -EINVAL;

2417
	err = kstrtoul(buf, 10, &input);
2418
	if (err)
2419
		return err;
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
2443 2444 2445 2446 2447 2448
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2449
	struct hstate *h = kobj_to_hstate(kobj, NULL);
2450 2451 2452 2453 2454 2455 2456
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
2468 2469 2470 2471 2472 2473 2474 2475 2476
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
2477 2478 2479
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
2480 2481 2482 2483 2484 2485 2486
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
2487 2488 2489
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
2490 2491
{
	int retval;
2492
	int hi = hstate_index(h);
2493

2494 2495
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
2496 2497
		return -ENOMEM;

2498
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2499
	if (retval)
2500
		kobject_put(hstate_kobjs[hi]);
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
2515 2516
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
2517
		if (err)
2518
			pr_err("Hugetlb: Unable to add hstate %s", h->name);
2519 2520 2521
	}
}

2522 2523 2524 2525
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2526 2527 2528
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
2529 2530 2531 2532 2533 2534
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
2535
static struct node_hstate node_hstates[MAX_NUMNODES];
2536 2537

/*
2538
 * A subset of global hstate attributes for node devices
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
2552
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
2575
 * Unregister hstate attributes from a single node device.
2576 2577
 * No-op if no hstate attributes attached.
 */
2578
static void hugetlb_unregister_node(struct node *node)
2579 2580
{
	struct hstate *h;
2581
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2582 2583

	if (!nhs->hugepages_kobj)
2584
		return;		/* no hstate attributes */
2585

2586 2587 2588 2589 2590
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
2591
		}
2592
	}
2593 2594 2595 2596 2597 2598 2599

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}


/*
2600
 * Register hstate attributes for a single node device.
2601 2602
 * No-op if attributes already registered.
 */
2603
static void hugetlb_register_node(struct node *node)
2604 2605
{
	struct hstate *h;
2606
	struct node_hstate *nhs = &node_hstates[node->dev.id];
2607 2608 2609 2610 2611 2612
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2613
							&node->dev.kobj);
2614 2615 2616 2617 2618 2619 2620 2621
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
2622 2623
			pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
				h->name, node->dev.id);
2624 2625 2626 2627 2628 2629 2630
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
2631
 * hugetlb init time:  register hstate attributes for all registered node
2632 2633
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
2634
 */
2635
static void __init hugetlb_register_all_nodes(void)
2636 2637 2638
{
	int nid;

2639
	for_each_node_state(nid, N_MEMORY) {
2640
		struct node *node = node_devices[nid];
2641
		if (node->dev.id == nid)
2642 2643 2644 2645
			hugetlb_register_node(node);
	}

	/*
2646
	 * Let the node device driver know we're here so it can
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_register_all_nodes(void) { }

#endif

2666 2667
static int __init hugetlb_init(void)
{
2668 2669
	int i;

2670
	if (!hugepages_supported())
2671
		return 0;
2672

2673 2674 2675 2676
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2677
	}
2678
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2679 2680 2681 2682
	if (default_hstate_max_huge_pages) {
		if (!default_hstate.max_huge_pages)
			default_hstate.max_huge_pages = default_hstate_max_huge_pages;
	}
2683 2684

	hugetlb_init_hstates();
2685
	gather_bootmem_prealloc();
2686 2687 2688
	report_hugepages();

	hugetlb_sysfs_init();
2689
	hugetlb_register_all_nodes();
2690
	hugetlb_cgroup_file_init();
2691

2692 2693 2694 2695 2696
#ifdef CONFIG_SMP
	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
	num_fault_mutexes = 1;
#endif
2697
	hugetlb_fault_mutex_table =
2698
		kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2699
	BUG_ON(!hugetlb_fault_mutex_table);
2700 2701

	for (i = 0; i < num_fault_mutexes; i++)
2702
		mutex_init(&hugetlb_fault_mutex_table[i]);
2703 2704
	return 0;
}
2705
subsys_initcall(hugetlb_init);
2706 2707

/* Should be called on processing a hugepagesz=... option */
2708 2709 2710 2711 2712
void __init hugetlb_bad_size(void)
{
	parsed_valid_hugepagesz = false;
}

2713
void __init hugetlb_add_hstate(unsigned int order)
2714 2715
{
	struct hstate *h;
2716 2717
	unsigned long i;

2718
	if (size_to_hstate(PAGE_SIZE << order)) {
J
Joe Perches 已提交
2719
		pr_warn("hugepagesz= specified twice, ignoring\n");
2720 2721
		return;
	}
2722
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2723
	BUG_ON(order == 0);
2724
	h = &hstates[hugetlb_max_hstate++];
2725 2726
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2727 2728 2729 2730
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2731
	INIT_LIST_HEAD(&h->hugepage_activelist);
2732 2733
	h->next_nid_to_alloc = first_memory_node;
	h->next_nid_to_free = first_memory_node;
2734 2735
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
2736

2737 2738 2739
	parsed_hstate = h;
}

2740
static int __init hugetlb_nrpages_setup(char *s)
2741 2742
{
	unsigned long *mhp;
2743
	static unsigned long *last_mhp;
2744

2745 2746 2747 2748 2749 2750
	if (!parsed_valid_hugepagesz) {
		pr_warn("hugepages = %s preceded by "
			"an unsupported hugepagesz, ignoring\n", s);
		parsed_valid_hugepagesz = true;
		return 1;
	}
2751
	/*
2752
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2753 2754
	 * so this hugepages= parameter goes to the "default hstate".
	 */
2755
	else if (!hugetlb_max_hstate)
2756 2757 2758 2759
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

2760
	if (mhp == last_mhp) {
J
Joe Perches 已提交
2761
		pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2762 2763 2764
		return 1;
	}

2765 2766 2767
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

2768 2769 2770 2771 2772
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
2773
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2774 2775 2776 2777
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

2778 2779
	return 1;
}
2780 2781 2782 2783 2784 2785 2786 2787
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
2788

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2801 2802 2803
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2804
{
2805
	struct hstate *h = &default_hstate;
2806
	unsigned long tmp = h->max_huge_pages;
2807
	int ret;
2808

2809
	if (!hugepages_supported())
2810
		return -EOPNOTSUPP;
2811

2812 2813
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2814 2815 2816
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2817

2818 2819 2820
	if (write)
		ret = __nr_hugepages_store_common(obey_mempolicy, h,
						  NUMA_NO_NODE, tmp, *length);
2821 2822
out:
	return ret;
L
Linus Torvalds 已提交
2823
}
2824

2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2842
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2843
			void __user *buffer,
2844 2845
			size_t *length, loff_t *ppos)
{
2846
	struct hstate *h = &default_hstate;
2847
	unsigned long tmp;
2848
	int ret;
2849

2850
	if (!hugepages_supported())
2851
		return -EOPNOTSUPP;
2852

2853
	tmp = h->nr_overcommit_huge_pages;
2854

2855
	if (write && hstate_is_gigantic(h))
2856 2857
		return -EINVAL;

2858 2859
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2860 2861 2862
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2863 2864 2865 2866 2867 2868

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2869 2870
out:
	return ret;
2871 2872
}

L
Linus Torvalds 已提交
2873 2874
#endif /* CONFIG_SYSCTL */

2875
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2876
{
2877
	struct hstate *h = &default_hstate;
2878 2879
	if (!hugepages_supported())
		return;
2880
	seq_printf(m,
2881 2882 2883 2884 2885
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2886 2887 2888 2889 2890
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2891 2892 2893 2894
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2895
	struct hstate *h = &default_hstate;
2896 2897
	if (!hugepages_supported())
		return 0;
L
Linus Torvalds 已提交
2898 2899
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2900 2901
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2902 2903 2904
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2905 2906
}

2907 2908 2909 2910 2911
void hugetlb_show_meminfo(void)
{
	struct hstate *h;
	int nid;

2912 2913 2914
	if (!hugepages_supported())
		return;

2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	for_each_node_state(nid, N_MEMORY)
		for_each_hstate(h)
			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
				nid,
				h->nr_huge_pages_node[nid],
				h->free_huge_pages_node[nid],
				h->surplus_huge_pages_node[nid],
				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
}

2925 2926 2927 2928 2929 2930
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
{
	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
}

L
Linus Torvalds 已提交
2931 2932 2933
/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2934 2935 2936 2937 2938 2939
	struct hstate *h;
	unsigned long nr_total_pages = 0;

	for_each_hstate(h)
		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
	return nr_total_pages;
L
Linus Torvalds 已提交
2940 2941
}

2942
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2965
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2966 2967
			goto out;

2968 2969
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2970 2971 2972 2973 2974 2975
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2976
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2977 2978 2979 2980 2981 2982

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2983 2984
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
2985
	struct resv_map *resv = vma_resv_map(vma);
2986 2987 2988 2989 2990

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2991
	 * has a reference to the reservation map it cannot disappear until
2992 2993 2994
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
2995
	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2996
		kref_get(&resv->refs);
2997 2998
}

2999 3000
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
3001
	struct hstate *h = hstate_vma(vma);
3002
	struct resv_map *resv = vma_resv_map(vma);
3003
	struct hugepage_subpool *spool = subpool_vma(vma);
3004
	unsigned long reserve, start, end;
3005
	long gbl_reserve;
3006

3007 3008
	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return;
3009

3010 3011
	start = vma_hugecache_offset(h, vma, vma->vm_start);
	end = vma_hugecache_offset(h, vma, vma->vm_end);
3012

3013
	reserve = (end - start) - region_count(resv, start, end);
3014

3015 3016 3017
	kref_put(&resv->refs, resv_map_release);

	if (reserve) {
3018 3019 3020 3021 3022 3023
		/*
		 * Decrement reserve counts.  The global reserve count may be
		 * adjusted if the subpool has a minimum size.
		 */
		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
		hugetlb_acct_memory(h, -gbl_reserve);
3024
	}
3025 3026
}

L
Linus Torvalds 已提交
3027 3028 3029 3030 3031 3032
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
3033
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
3034 3035
{
	BUG();
N
Nick Piggin 已提交
3036
	return 0;
L
Linus Torvalds 已提交
3037 3038
}

3039
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
3040
	.fault = hugetlb_vm_op_fault,
3041
	.open = hugetlb_vm_op_open,
3042
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
3043 3044
};

3045 3046
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
3047 3048 3049
{
	pte_t entry;

3050
	if (writable) {
3051 3052
		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
					 vma->vm_page_prot)));
D
David Gibson 已提交
3053
	} else {
3054 3055
		entry = huge_pte_wrprotect(mk_huge_pte(page,
					   vma->vm_page_prot));
D
David Gibson 已提交
3056 3057 3058
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
3059
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
3060 3061 3062 3063

	return entry;
}

3064 3065 3066 3067 3068
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

3069
	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3070
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3071
		update_mmu_cache(vma, address, ptep);
3072 3073
}

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp))
		return 1;
	else
		return 0;
}

static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
		return 1;
	else
		return 0;
}
3099

D
David Gibson 已提交
3100 3101 3102 3103 3104
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
3105
	unsigned long addr;
3106
	int cow;
3107 3108
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3109 3110 3111
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	int ret = 0;
3112 3113

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
3114

3115 3116 3117 3118 3119
	mmun_start = vma->vm_start;
	mmun_end = vma->vm_end;
	if (cow)
		mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);

3120
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3121
		spinlock_t *src_ptl, *dst_ptl;
H
Hugh Dickins 已提交
3122 3123 3124
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
3125
		dst_pte = huge_pte_alloc(dst, addr, sz);
3126 3127 3128 3129
		if (!dst_pte) {
			ret = -ENOMEM;
			break;
		}
3130 3131 3132 3133 3134

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

3135 3136 3137
		dst_ptl = huge_pte_lock(h, dst, dst_pte);
		src_ptl = huge_pte_lockptr(h, src, src_pte);
		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
		entry = huge_ptep_get(src_pte);
		if (huge_pte_none(entry)) { /* skip none entry */
			;
		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
				    is_hugetlb_entry_hwpoisoned(entry))) {
			swp_entry_t swp_entry = pte_to_swp_entry(entry);

			if (is_write_migration_entry(swp_entry) && cow) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&swp_entry);
				entry = swp_entry_to_pte(swp_entry);
				set_huge_pte_at(src, addr, src_pte, entry);
			}
			set_huge_pte_at(dst, addr, dst_pte, entry);
		} else {
3156
			if (cow) {
3157
				huge_ptep_set_wrprotect(src, addr, src_pte);
3158 3159 3160
				mmu_notifier_invalidate_range(src, mmun_start,
								   mmun_end);
			}
3161
			entry = huge_ptep_get(src_pte);
3162 3163
			ptepage = pte_page(entry);
			get_page(ptepage);
3164
			page_dup_rmap(ptepage, true);
3165
			set_huge_pte_at(dst, addr, dst_pte, entry);
3166
			hugetlb_count_add(pages_per_huge_page(h), dst);
3167
		}
3168 3169
		spin_unlock(src_ptl);
		spin_unlock(dst_ptl);
D
David Gibson 已提交
3170 3171
	}

3172 3173 3174 3175
	if (cow)
		mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);

	return ret;
D
David Gibson 已提交
3176 3177
}

3178 3179 3180
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
3181 3182 3183
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
3184
	pte_t *ptep;
D
David Gibson 已提交
3185
	pte_t pte;
3186
	spinlock_t *ptl;
D
David Gibson 已提交
3187
	struct page *page;
3188 3189
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
3190 3191
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
3192

D
David Gibson 已提交
3193
	WARN_ON(!is_vm_hugetlb_page(vma));
3194 3195
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
3196

3197
	tlb_start_vma(tlb, vma);
3198
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3199 3200
	address = start;
	for (; address < end; address += sz) {
3201
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
3202
		if (!ptep)
3203 3204
			continue;

3205
		ptl = huge_pte_lock(h, mm, ptep);
3206 3207 3208 3209
		if (huge_pmd_unshare(mm, &address, ptep)) {
			spin_unlock(ptl);
			continue;
		}
3210

3211
		pte = huge_ptep_get(ptep);
3212 3213 3214 3215
		if (huge_pte_none(pte)) {
			spin_unlock(ptl);
			continue;
		}
3216 3217

		/*
3218 3219
		 * Migrating hugepage or HWPoisoned hugepage is already
		 * unmapped and its refcount is dropped, so just clear pte here.
3220
		 */
3221
		if (unlikely(!pte_present(pte))) {
3222
			huge_pte_clear(mm, address, ptep);
3223 3224
			spin_unlock(ptl);
			continue;
3225
		}
3226 3227

		page = pte_page(pte);
3228 3229 3230 3231 3232 3233
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
3234 3235 3236 3237
			if (page != ref_page) {
				spin_unlock(ptl);
				continue;
			}
3238 3239 3240 3241 3242 3243 3244 3245
			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

3246
		pte = huge_ptep_get_and_clear(mm, address, ptep);
3247
		tlb_remove_tlb_entry(tlb, ptep, address);
3248
		if (huge_pte_dirty(pte))
3249
			set_page_dirty(page);
3250

3251
		hugetlb_count_sub(pages_per_huge_page(h), mm);
3252
		page_remove_rmap(page, true);
3253

3254
		spin_unlock(ptl);
3255
		tlb_remove_page_size(tlb, page, huge_page_size(h));
3256 3257 3258 3259 3260
		/*
		 * Bail out after unmapping reference page if supplied
		 */
		if (ref_page)
			break;
3261
	}
3262
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3263
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
3264
}
D
David Gibson 已提交
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
3278
	 * is to clear it before releasing the i_mmap_rwsem. This works
3279
	 * because in the context this is called, the VMA is about to be
3280
	 * destroyed and the i_mmap_rwsem is held.
3281 3282 3283 3284
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

3285
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3286
			  unsigned long end, struct page *ref_page)
3287
{
3288 3289 3290 3291 3292
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

3293
	tlb_gather_mmu(&tlb, mm, start, end);
3294 3295
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
3296 3297
}

3298 3299 3300 3301 3302 3303
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
3304 3305
static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
			      struct page *page, unsigned long address)
3306
{
3307
	struct hstate *h = hstate_vma(vma);
3308 3309 3310 3311 3312 3313 3314 3315
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
3316
	address = address & huge_page_mask(h);
3317 3318
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
3319
	mapping = vma->vm_file->f_mapping;
3320

3321 3322 3323 3324 3325
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
3326
	i_mmap_lock_write(mapping);
3327
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3328 3329 3330 3331
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

3332 3333 3334 3335 3336 3337 3338 3339
		/*
		 * Shared VMAs have their own reserves and do not affect
		 * MAP_PRIVATE accounting but it is possible that a shared
		 * VMA is using the same page so check and skip such VMAs.
		 */
		if (iter_vma->vm_flags & VM_MAYSHARE)
			continue;

3340 3341 3342 3343 3344 3345 3346 3347
		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3348 3349
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
3350
	}
3351
	i_mmap_unlock_write(mapping);
3352 3353
}

3354 3355
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3356 3357 3358
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
3359
 */
3360
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3361
			unsigned long address, pte_t *ptep, pte_t pte,
3362
			struct page *pagecache_page, spinlock_t *ptl)
3363
{
3364
	struct hstate *h = hstate_vma(vma);
3365
	struct page *old_page, *new_page;
3366
	int ret = 0, outside_reserve = 0;
3367 3368
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
3369 3370 3371

	old_page = pte_page(pte);

3372
retry_avoidcopy:
3373 3374
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
3375
	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3376
		page_move_anon_rmap(old_page, vma);
3377
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
3378
		return 0;
3379 3380
	}

3381 3382 3383 3384 3385 3386 3387 3388 3389
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
3390
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3391 3392 3393
			old_page != pagecache_page)
		outside_reserve = 1;

3394
	get_page(old_page);
3395

3396 3397 3398 3399
	/*
	 * Drop page table lock as buddy allocator may be called. It will
	 * be acquired again before returning to the caller, as expected.
	 */
3400
	spin_unlock(ptl);
3401
	new_page = alloc_huge_page(vma, address, outside_reserve);
3402

3403
	if (IS_ERR(new_page)) {
3404 3405 3406 3407 3408 3409 3410 3411
		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
3412
			put_page(old_page);
3413
			BUG_ON(huge_pte_none(pte));
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
			unmap_ref_private(mm, vma, old_page, address);
			BUG_ON(huge_pte_none(pte));
			spin_lock(ptl);
			ptep = huge_pte_offset(mm, address & huge_page_mask(h));
			if (likely(ptep &&
				   pte_same(huge_ptep_get(ptep), pte)))
				goto retry_avoidcopy;
			/*
			 * race occurs while re-acquiring page table
			 * lock, and our job is done.
			 */
			return 0;
3426 3427
		}

3428 3429 3430
		ret = (PTR_ERR(new_page) == -ENOMEM) ?
			VM_FAULT_OOM : VM_FAULT_SIGBUS;
		goto out_release_old;
3431 3432
	}

3433 3434 3435 3436
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
3437
	if (unlikely(anon_vma_prepare(vma))) {
3438 3439
		ret = VM_FAULT_OOM;
		goto out_release_all;
3440
	}
3441

A
Andrea Arcangeli 已提交
3442 3443
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
3444
	__SetPageUptodate(new_page);
3445
	set_page_huge_active(new_page);
3446

3447 3448 3449
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3450

3451
	/*
3452
	 * Retake the page table lock to check for racing updates
3453 3454
	 * before the page tables are altered
	 */
3455
	spin_lock(ptl);
3456
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3457
	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3458 3459
		ClearPagePrivate(new_page);

3460
		/* Break COW */
3461
		huge_ptep_clear_flush(vma, address, ptep);
3462
		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3463 3464
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
3465
		page_remove_rmap(old_page, true);
3466
		hugepage_add_new_anon_rmap(new_page, vma, address);
3467 3468 3469
		/* Make the old page be freed below */
		new_page = old_page;
	}
3470
	spin_unlock(ptl);
3471
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3472
out_release_all:
3473
	put_page(new_page);
3474
out_release_old:
3475
	put_page(old_page);
3476

3477 3478
	spin_lock(ptl); /* Caller expects lock to be held */
	return ret;
3479 3480
}

3481
/* Return the pagecache page at a given address within a VMA */
3482 3483
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
3484 3485
{
	struct address_space *mapping;
3486
	pgoff_t idx;
3487 3488

	mapping = vma->vm_file->f_mapping;
3489
	idx = vma_hugecache_offset(h, vma, address);
3490 3491 3492 3493

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
3494 3495 3496 3497 3498
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
			   pgoff_t idx)
{
	struct inode *inode = mapping->host;
	struct hstate *h = hstate_inode(inode);
	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);

	if (err)
		return err;
	ClearPagePrivate(page);

	spin_lock(&inode->i_lock);
	inode->i_blocks += blocks_per_huge_page(h);
	spin_unlock(&inode->i_lock);
	return 0;
}

3531
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3532 3533
			   struct address_space *mapping, pgoff_t idx,
			   unsigned long address, pte_t *ptep, unsigned int flags)
3534
{
3535
	struct hstate *h = hstate_vma(vma);
3536
	int ret = VM_FAULT_SIGBUS;
3537
	int anon_rmap = 0;
A
Adam Litke 已提交
3538 3539
	unsigned long size;
	struct page *page;
3540
	pte_t new_pte;
3541
	spinlock_t *ptl;
A
Adam Litke 已提交
3542

3543 3544 3545
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
3546
	 * COW. Warn that such a situation has occurred as it may not be obvious
3547 3548
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3549
		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3550
			   current->pid);
3551 3552 3553
		return ret;
	}

A
Adam Litke 已提交
3554 3555 3556 3557
	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
3558 3559 3560
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
3561
		size = i_size_read(mapping->host) >> huge_page_shift(h);
3562 3563
		if (idx >= size)
			goto out;
3564
		page = alloc_huge_page(vma, address, 0);
3565
		if (IS_ERR(page)) {
3566 3567 3568 3569 3570
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
3571 3572
			goto out;
		}
A
Andrea Arcangeli 已提交
3573
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
3574
		__SetPageUptodate(page);
3575
		set_page_huge_active(page);
3576

3577
		if (vma->vm_flags & VM_MAYSHARE) {
3578
			int err = huge_add_to_page_cache(page, mapping, idx);
3579 3580 3581 3582 3583 3584
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
3585
		} else {
3586
			lock_page(page);
3587 3588 3589 3590
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
3591
			anon_rmap = 1;
3592
		}
3593
	} else {
3594 3595 3596 3597 3598 3599
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
3600
			ret = VM_FAULT_HWPOISON |
3601
				VM_FAULT_SET_HINDEX(hstate_index(h));
3602 3603
			goto backout_unlocked;
		}
3604
	}
3605

3606 3607 3608 3609 3610 3611
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
3612
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3613 3614 3615 3616
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
3617
		/* Just decrements count, does not deallocate */
3618
		vma_end_reservation(h, vma, address);
3619
	}
3620

3621 3622
	ptl = huge_pte_lockptr(h, mm, ptep);
	spin_lock(ptl);
3623
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
3624 3625 3626
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
3627
	ret = 0;
3628
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
3629 3630
		goto backout;

3631 3632
	if (anon_rmap) {
		ClearPagePrivate(page);
3633
		hugepage_add_new_anon_rmap(page, vma, address);
3634
	} else
3635
		page_dup_rmap(page, true);
3636 3637 3638 3639
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

3640
	hugetlb_count_add(pages_per_huge_page(h), mm);
3641
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3642
		/* Optimization, do the COW without a second fault */
3643
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3644 3645
	}

3646
	spin_unlock(ptl);
A
Adam Litke 已提交
3647 3648
	unlock_page(page);
out:
3649
	return ret;
A
Adam Litke 已提交
3650 3651

backout:
3652
	spin_unlock(ptl);
3653
backout_unlocked:
A
Adam Litke 已提交
3654 3655 3656
	unlock_page(page);
	put_page(page);
	goto out;
3657 3658
}

3659
#ifdef CONFIG_SMP
3660
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	unsigned long key[2];
	u32 hash;

	if (vma->vm_flags & VM_SHARED) {
		key[0] = (unsigned long) mapping;
		key[1] = idx;
	} else {
		key[0] = (unsigned long) mm;
		key[1] = address >> huge_page_shift(h);
	}

	hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);

	return hash & (num_fault_mutexes - 1);
}
#else
/*
 * For uniprocesor systems we always use a single mutex, so just
 * return 0 and avoid the hashing overhead.
 */
3685
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3686 3687 3688 3689 3690 3691 3692 3693
			    struct vm_area_struct *vma,
			    struct address_space *mapping,
			    pgoff_t idx, unsigned long address)
{
	return 0;
}
#endif

3694
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3695
			unsigned long address, unsigned int flags)
3696
{
3697
	pte_t *ptep, entry;
3698
	spinlock_t *ptl;
3699
	int ret;
3700 3701
	u32 hash;
	pgoff_t idx;
3702
	struct page *page = NULL;
3703
	struct page *pagecache_page = NULL;
3704
	struct hstate *h = hstate_vma(vma);
3705
	struct address_space *mapping;
3706
	int need_wait_lock = 0;
3707

3708 3709
	address &= huge_page_mask(h);

3710 3711 3712
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
3713
		if (unlikely(is_hugetlb_entry_migration(entry))) {
3714
			migration_entry_wait_huge(vma, mm, ptep);
N
Naoya Horiguchi 已提交
3715 3716
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3717
			return VM_FAULT_HWPOISON_LARGE |
3718
				VM_FAULT_SET_HINDEX(hstate_index(h));
3719 3720 3721 3722
	} else {
		ptep = huge_pte_alloc(mm, address, huge_page_size(h));
		if (!ptep)
			return VM_FAULT_OOM;
3723 3724
	}

3725 3726 3727
	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

3728 3729 3730 3731 3732
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
3733 3734
	hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
	mutex_lock(&hugetlb_fault_mutex_table[hash]);
3735

3736 3737
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
3738
		ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3739
		goto out_mutex;
3740
	}
3741

N
Nick Piggin 已提交
3742
	ret = 0;
3743

3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	/*
	 * entry could be a migration/hwpoison entry at this point, so this
	 * check prevents the kernel from going below assuming that we have
	 * a active hugepage in pagecache. This goto expects the 2nd page fault,
	 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
	 * handle it.
	 */
	if (!pte_present(entry))
		goto out_mutex;

3754 3755 3756 3757 3758 3759 3760 3761
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
3762
	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3763 3764
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
3765
			goto out_mutex;
3766
		}
3767
		/* Just decrements count, does not deallocate */
3768
		vma_end_reservation(h, vma, address);
3769

3770
		if (!(vma->vm_flags & VM_MAYSHARE))
3771 3772 3773 3774
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

3775 3776 3777 3778 3779 3780
	ptl = huge_pte_lock(h, mm, ptep);

	/* Check for a racing update before calling hugetlb_cow */
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_ptl;

3781 3782 3783 3784 3785 3786 3787
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
3788 3789 3790 3791
		if (!trylock_page(page)) {
			need_wait_lock = 1;
			goto out_ptl;
		}
3792

3793
	get_page(page);
3794

3795
	if (flags & FAULT_FLAG_WRITE) {
3796
		if (!huge_pte_write(entry)) {
3797
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
3798
					pagecache_page, ptl);
3799
			goto out_put_page;
3800
		}
3801
		entry = huge_pte_mkdirty(entry);
3802 3803
	}
	entry = pte_mkyoung(entry);
3804 3805
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
3806
		update_mmu_cache(vma, address, ptep);
3807 3808 3809 3810
out_put_page:
	if (page != pagecache_page)
		unlock_page(page);
	put_page(page);
3811 3812
out_ptl:
	spin_unlock(ptl);
3813 3814 3815 3816 3817

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
3818
out_mutex:
3819
	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3820 3821 3822 3823 3824 3825 3826 3827 3828
	/*
	 * Generally it's safe to hold refcount during waiting page lock. But
	 * here we just wait to defer the next page fault to avoid busy loop and
	 * the page is not used after unlocked before returning from the current
	 * page fault. So we are safe from accessing freed page, even if we wait
	 * here without taking refcount.
	 */
	if (need_wait_lock)
		wait_on_page_locked(page);
3829
	return ret;
3830 3831
}

3832 3833 3834 3835
long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			 struct page **pages, struct vm_area_struct **vmas,
			 unsigned long *position, unsigned long *nr_pages,
			 long i, unsigned int flags)
D
David Gibson 已提交
3836
{
3837 3838
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
3839
	unsigned long remainder = *nr_pages;
3840
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
3841 3842

	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
3843
		pte_t *pte;
3844
		spinlock_t *ptl = NULL;
H
Hugh Dickins 已提交
3845
		int absent;
A
Adam Litke 已提交
3846
		struct page *page;
D
David Gibson 已提交
3847

3848 3849 3850 3851 3852 3853 3854 3855 3856
		/*
		 * If we have a pending SIGKILL, don't keep faulting pages and
		 * potentially allocating memory.
		 */
		if (unlikely(fatal_signal_pending(current))) {
			remainder = 0;
			break;
		}

A
Adam Litke 已提交
3857 3858
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
3859
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
3860
		 * first, for the page indexing below to work.
3861 3862
		 *
		 * Note that page table lock is not held when pte is null.
A
Adam Litke 已提交
3863
		 */
3864
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3865 3866
		if (pte)
			ptl = huge_pte_lock(h, mm, pte);
H
Hugh Dickins 已提交
3867 3868 3869 3870
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
3871 3872 3873 3874
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
3875
		 */
H
Hugh Dickins 已提交
3876 3877
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3878 3879
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3880 3881 3882
			remainder = 0;
			break;
		}
D
David Gibson 已提交
3883

3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
		/*
		 * We need call hugetlb_fault for both hugepages under migration
		 * (in which case hugetlb_fault waits for the migration,) and
		 * hwpoisoned hugepages (in which case we need to prevent the
		 * caller from accessing to them.) In order to do this, we use
		 * here is_swap_pte instead of is_hugetlb_entry_migration and
		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
		 * both cases, and because we can't follow correct pages
		 * directly from any kind of swap entries.
		 */
		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3895 3896
		    ((flags & FOLL_WRITE) &&
		      !huge_pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
3897
			int ret;
D
David Gibson 已提交
3898

3899 3900
			if (pte)
				spin_unlock(ptl);
H
Hugh Dickins 已提交
3901 3902
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3903
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
3904
				continue;
D
David Gibson 已提交
3905

A
Adam Litke 已提交
3906 3907 3908 3909
			remainder = 0;
			break;
		}

3910
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3911
		page = pte_page(huge_ptep_get(pte));
3912
same_page:
3913
		if (pages) {
H
Hugh Dickins 已提交
3914
			pages[i] = mem_map_offset(page, pfn_offset);
3915
			get_page(pages[i]);
3916
		}
D
David Gibson 已提交
3917 3918 3919 3920 3921

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
3922
		++pfn_offset;
D
David Gibson 已提交
3923 3924
		--remainder;
		++i;
3925
		if (vaddr < vma->vm_end && remainder &&
3926
				pfn_offset < pages_per_huge_page(h)) {
3927 3928 3929 3930 3931 3932
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
3933
		spin_unlock(ptl);
D
David Gibson 已提交
3934
	}
3935
	*nr_pages = remainder;
D
David Gibson 已提交
3936 3937
	*position = vaddr;

H
Hugh Dickins 已提交
3938
	return i ? i : -EFAULT;
D
David Gibson 已提交
3939
}
3940

3941
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3942 3943 3944 3945 3946 3947
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3948
	struct hstate *h = hstate_vma(vma);
3949
	unsigned long pages = 0;
3950 3951 3952 3953

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3954
	mmu_notifier_invalidate_range_start(mm, start, end);
3955
	i_mmap_lock_write(vma->vm_file->f_mapping);
3956
	for (; address < end; address += huge_page_size(h)) {
3957
		spinlock_t *ptl;
3958 3959 3960
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3961
		ptl = huge_pte_lock(h, mm, ptep);
3962 3963
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3964
			spin_unlock(ptl);
3965
			continue;
3966
		}
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
		pte = huge_ptep_get(ptep);
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			spin_unlock(ptl);
			continue;
		}
		if (unlikely(is_hugetlb_entry_migration(pte))) {
			swp_entry_t entry = pte_to_swp_entry(pte);

			if (is_write_migration_entry(entry)) {
				pte_t newpte;

				make_migration_entry_read(&entry);
				newpte = swp_entry_to_pte(entry);
				set_huge_pte_at(mm, address, ptep, newpte);
				pages++;
			}
			spin_unlock(ptl);
			continue;
		}
		if (!huge_pte_none(pte)) {
3987
			pte = huge_ptep_get_and_clear(mm, address, ptep);
3988
			pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3989
			pte = arch_make_huge_pte(pte, vma, NULL, 0);
3990
			set_huge_pte_at(mm, address, ptep, pte);
3991
			pages++;
3992
		}
3993
		spin_unlock(ptl);
3994
	}
3995
	/*
3996
	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3997
	 * may have cleared our pud entry and done put_page on the page table:
3998
	 * once we release i_mmap_rwsem, another task can do the final put_page
3999 4000
	 * and that page table be reused and filled with junk.
	 */
4001
	flush_tlb_range(vma, start, end);
4002
	mmu_notifier_invalidate_range(mm, start, end);
4003
	i_mmap_unlock_write(vma->vm_file->f_mapping);
4004
	mmu_notifier_invalidate_range_end(mm, start, end);
4005 4006

	return pages << h->order;
4007 4008
}

4009 4010
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
4011
					struct vm_area_struct *vma,
4012
					vm_flags_t vm_flags)
4013
{
4014
	long ret, chg;
4015
	struct hstate *h = hstate_inode(inode);
4016
	struct hugepage_subpool *spool = subpool_inode(inode);
4017
	struct resv_map *resv_map;
4018
	long gbl_reserve;
4019

4020 4021 4022
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
4023
	 * without using reserves
4024
	 */
4025
	if (vm_flags & VM_NORESERVE)
4026 4027
		return 0;

4028 4029 4030 4031 4032 4033
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
4034
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
4035
		resv_map = inode_resv_map(inode);
4036

4037
		chg = region_chg(resv_map, from, to);
4038 4039 4040

	} else {
		resv_map = resv_map_alloc();
4041 4042 4043
		if (!resv_map)
			return -ENOMEM;

4044
		chg = to - from;
4045

4046 4047 4048 4049
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

4050 4051 4052 4053
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
4054

4055 4056 4057 4058 4059 4060 4061
	/*
	 * There must be enough pages in the subpool for the mapping. If
	 * the subpool has a minimum size, there may be some global
	 * reservations already in place (gbl_reserve).
	 */
	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
	if (gbl_reserve < 0) {
4062 4063 4064
		ret = -ENOSPC;
		goto out_err;
	}
4065 4066

	/*
4067
	 * Check enough hugepages are available for the reservation.
4068
	 * Hand the pages back to the subpool if there are not
4069
	 */
4070
	ret = hugetlb_acct_memory(h, gbl_reserve);
K
Ken Chen 已提交
4071
	if (ret < 0) {
4072 4073
		/* put back original number of pages, chg */
		(void)hugepage_subpool_put_pages(spool, chg);
4074
		goto out_err;
K
Ken Chen 已提交
4075
	}
4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
	if (!vma || vma->vm_flags & VM_MAYSHARE) {
		long add = region_add(resv_map, from, to);

		if (unlikely(chg > add)) {
			/*
			 * pages in this range were added to the reserve
			 * map between region_chg and region_add.  This
			 * indicates a race with alloc_huge_page.  Adjust
			 * the subpool and reserve counts modified above
			 * based on the difference.
			 */
			long rsv_adjust;

			rsv_adjust = hugepage_subpool_put_pages(spool,
								chg - add);
			hugetlb_acct_memory(h, -rsv_adjust);
		}
	}
4106
	return 0;
4107
out_err:
4108 4109
	if (!vma || vma->vm_flags & VM_MAYSHARE)
		region_abort(resv_map, from, to);
J
Joonsoo Kim 已提交
4110 4111
	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		kref_put(&resv_map->refs, resv_map_release);
4112
	return ret;
4113 4114
}

4115 4116
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
								long freed)
4117
{
4118
	struct hstate *h = hstate_inode(inode);
4119
	struct resv_map *resv_map = inode_resv_map(inode);
4120
	long chg = 0;
4121
	struct hugepage_subpool *spool = subpool_inode(inode);
4122
	long gbl_reserve;
K
Ken Chen 已提交
4123

4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	if (resv_map) {
		chg = region_del(resv_map, start, end);
		/*
		 * region_del() can fail in the rare case where a region
		 * must be split and another region descriptor can not be
		 * allocated.  If end == LONG_MAX, it will not fail.
		 */
		if (chg < 0)
			return chg;
	}

K
Ken Chen 已提交
4135
	spin_lock(&inode->i_lock);
4136
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
4137 4138
	spin_unlock(&inode->i_lock);

4139 4140 4141 4142 4143 4144
	/*
	 * If the subpool has a minimum size, the number of global
	 * reservations to be released may be adjusted.
	 */
	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
	hugetlb_acct_memory(h, -gbl_reserve);
4145 4146

	return 0;
4147
}
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
static unsigned long page_table_shareable(struct vm_area_struct *svma,
				struct vm_area_struct *vma,
				unsigned long addr, pgoff_t idx)
{
	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
				svma->vm_start;
	unsigned long sbase = saddr & PUD_MASK;
	unsigned long s_end = sbase + PUD_SIZE;

	/* Allow segments to share if only one is marked locked */
E
Eric B Munson 已提交
4160 4161
	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174

	/*
	 * match the virtual addresses, permission and the alignment of the
	 * page table page.
	 */
	if (pmd_index(addr) != pmd_index(saddr) ||
	    vm_flags != svm_flags ||
	    sbase < svma->vm_start || svma->vm_end < s_end)
		return 0;

	return saddr;
}

4175
static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4176 4177 4178 4179 4180 4181 4182 4183 4184
{
	unsigned long base = addr & PUD_MASK;
	unsigned long end = base + PUD_SIZE;

	/*
	 * check on proper vm_flags and page table alignment
	 */
	if (vma->vm_flags & VM_MAYSHARE &&
	    vma->vm_start <= base && end <= vma->vm_end)
4185 4186
		return true;
	return false;
4187 4188 4189 4190 4191 4192 4193
}

/*
 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
 * and returns the corresponding pte. While this is not necessary for the
 * !shared pmd case because we can allocate the pmd later as well, it makes the
 * code much cleaner. pmd allocation is essential for the shared case because
4194
 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
 * bad pmd for sharing.
 */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	struct vm_area_struct *vma = find_vma(mm, addr);
	struct address_space *mapping = vma->vm_file->f_mapping;
	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
	struct vm_area_struct *svma;
	unsigned long saddr;
	pte_t *spte = NULL;
	pte_t *pte;
4208
	spinlock_t *ptl;
4209 4210 4211 4212

	if (!vma_shareable(vma, addr))
		return (pte_t *)pmd_alloc(mm, pud, addr);

4213
	i_mmap_lock_write(mapping);
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
		if (svma == vma)
			continue;

		saddr = page_table_shareable(svma, vma, addr, idx);
		if (saddr) {
			spte = huge_pte_offset(svma->vm_mm, saddr);
			if (spte) {
				get_page(virt_to_page(spte));
				break;
			}
		}
	}

	if (!spte)
		goto out;

4231 4232
	ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
	spin_lock(ptl);
4233
	if (pud_none(*pud)) {
4234 4235
		pud_populate(mm, pud,
				(pmd_t *)((unsigned long)spte & PAGE_MASK));
4236
		mm_inc_nr_pmds(mm);
4237
	} else {
4238
		put_page(virt_to_page(spte));
4239
	}
4240
	spin_unlock(ptl);
4241 4242
out:
	pte = (pte_t *)pmd_alloc(mm, pud, addr);
4243
	i_mmap_unlock_write(mapping);
4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
	return pte;
}

/*
 * unmap huge page backed by shared pte.
 *
 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
 * indicated by page_count > 1, unmap is achieved by clearing pud and
 * decrementing the ref count. If count == 1, the pte page is not shared.
 *
4254
 * called with page table lock held.
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269
 *
 * returns: 1 successfully unmapped a shared pte page
 *	    0 the underlying pte page is not shared, or it is the last user
 */
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	pgd_t *pgd = pgd_offset(mm, *addr);
	pud_t *pud = pud_offset(pgd, *addr);

	BUG_ON(page_count(virt_to_page(ptep)) == 0);
	if (page_count(virt_to_page(ptep)) == 1)
		return 0;

	pud_clear(pud);
	put_page(virt_to_page(ptep));
4270
	mm_dec_nr_pmds(mm);
4271 4272 4273
	*addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
	return 1;
}
4274 4275 4276 4277 4278 4279
#define want_pmd_share()	(1)
#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
{
	return NULL;
}
4280 4281 4282 4283 4284

int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
{
	return 0;
}
4285
#define want_pmd_share()	(0)
4286 4287
#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */

4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
pte_t *huge_pte_alloc(struct mm_struct *mm,
			unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;
	pte_t *pte = NULL;

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);
	if (pud) {
		if (sz == PUD_SIZE) {
			pte = (pte_t *)pud;
		} else {
			BUG_ON(sz != PMD_SIZE);
			if (want_pmd_share() && pud_none(*pud))
				pte = huge_pmd_share(mm, addr, pud);
			else
				pte = (pte_t *)pmd_alloc(mm, pud, addr);
		}
	}
	BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));

	return pte;
}

pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd = NULL;

	pgd = pgd_offset(mm, addr);
	if (pgd_present(*pgd)) {
		pud = pud_offset(pgd, addr);
		if (pud_present(*pud)) {
			if (pud_huge(*pud))
				return (pte_t *)pud;
			pmd = pmd_offset(pud, addr);
		}
	}
	return (pte_t *) pmd;
}

4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345
#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */

/*
 * These functions are overwritable if your architecture needs its own
 * behavior.
 */
struct page * __weak
follow_huge_addr(struct mm_struct *mm, unsigned long address,
			      int write)
{
	return ERR_PTR(-EINVAL);
}

struct page * __weak
4346
follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4347
		pmd_t *pmd, int flags)
4348
{
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
	struct page *page = NULL;
	spinlock_t *ptl;
retry:
	ptl = pmd_lockptr(mm, pmd);
	spin_lock(ptl);
	/*
	 * make sure that the address range covered by this pmd is not
	 * unmapped from other threads.
	 */
	if (!pmd_huge(*pmd))
		goto out;
	if (pmd_present(*pmd)) {
4361
		page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
		if (flags & FOLL_GET)
			get_page(page);
	} else {
		if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
			spin_unlock(ptl);
			__migration_entry_wait(mm, (pte_t *)pmd, ptl);
			goto retry;
		}
		/*
		 * hwpoisoned entry is treated as no_page_table in
		 * follow_page_mask().
		 */
	}
out:
	spin_unlock(ptl);
4377 4378 4379
	return page;
}

4380
struct page * __weak
4381
follow_huge_pud(struct mm_struct *mm, unsigned long address,
4382
		pud_t *pud, int flags)
4383
{
4384 4385
	if (flags & FOLL_GET)
		return NULL;
4386

4387
	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4388 4389
}

4390 4391
#ifdef CONFIG_MEMORY_FAILURE

4392 4393 4394
/*
 * This function is called from memory failure code.
 */
4395
int dequeue_hwpoisoned_huge_page(struct page *hpage)
4396 4397 4398
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
4399
	int ret = -EBUSY;
4400 4401

	spin_lock(&hugetlb_lock);
4402 4403 4404 4405 4406
	/*
	 * Just checking !page_huge_active is not enough, because that could be
	 * an isolated/hwpoisoned hugepage (which have >0 refcount).
	 */
	if (!page_huge_active(hpage) && !page_count(hpage)) {
4407 4408 4409 4410 4411 4412 4413
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
4414
		set_page_refcounted(hpage);
4415 4416 4417 4418
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
4419
	spin_unlock(&hugetlb_lock);
4420
	return ret;
4421
}
4422
#endif
4423 4424 4425

bool isolate_huge_page(struct page *page, struct list_head *list)
{
4426 4427
	bool ret = true;

4428
	VM_BUG_ON_PAGE(!PageHead(page), page);
4429
	spin_lock(&hugetlb_lock);
4430 4431 4432 4433 4434
	if (!page_huge_active(page) || !get_page_unless_zero(page)) {
		ret = false;
		goto unlock;
	}
	clear_page_huge_active(page);
4435
	list_move_tail(&page->lru, list);
4436
unlock:
4437
	spin_unlock(&hugetlb_lock);
4438
	return ret;
4439 4440 4441 4442
}

void putback_active_hugepage(struct page *page)
{
4443
	VM_BUG_ON_PAGE(!PageHead(page), page);
4444
	spin_lock(&hugetlb_lock);
4445
	set_page_huge_active(page);
4446 4447 4448 4449
	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
	spin_unlock(&hugetlb_lock);
	put_page(page);
}