hugetlb.c 76.3 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/io.h>
D
David Gibson 已提交
28 29

#include <linux/hugetlb.h>
30
#include <linux/node.h>
31
#include "internal.h"
L
Linus Torvalds 已提交
32 33

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36

37 38 39 40
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

41 42
__initdata LIST_HEAD(huge_boot_pages);

43 44 45
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
46
static unsigned long __initdata default_hstate_size;
47 48 49

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50

51 52 53 54
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
55

56 57 58
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
59 60 61 62 63 64 65 66 67 68
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
149
		/* We overlap with this area, if it extends further than
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

215 216 217 218
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
219 220
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
221
{
222 223
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
224 225
}

226 227 228 229 230 231
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
247
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248

249 250 251 252 253 254 255 256 257 258 259 260 261
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

262 263 264 265 266 267 268
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
269
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270

271 272 273 274 275 276 277 278 279
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
280 281 282 283 284 285 286 287 288
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
289
 */
290 291 292 293 294 295 296 297 298 299 300
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

301 302 303 304 305
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

306
static struct resv_map *resv_map_alloc(void)
307 308 309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

318
static void resv_map_release(struct kref *ref)
319 320 321 322 323 324 325 326 327
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 329
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
330
	if (!(vma->vm_flags & VM_MAYSHARE))
331 332
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
333
	return NULL;
334 335
}

336
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 338
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
339
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340

341 342
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
343 344 345 346 347
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
348
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349 350

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 352 353 354 355
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
356 357

	return (get_vma_private_data(vma) & flag) != 0;
358 359 360
}

/* Decrement the reserved pages in the hugepage pool by one */
361 362
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
363
{
364 365 366
	if (vma->vm_flags & VM_NORESERVE)
		return;

367
	if (vma->vm_flags & VM_MAYSHARE) {
368
		/* Shared mappings always use reserves */
369
		h->resv_huge_pages--;
370
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 372 373 374
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
375
		h->resv_huge_pages--;
376 377 378
	}
}

379
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 381 382
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
383
	if (!(vma->vm_flags & VM_MAYSHARE))
384 385 386 387
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
388
static int vma_has_reserves(struct vm_area_struct *vma)
389
{
390
	if (vma->vm_flags & VM_MAYSHARE)
391 392 393 394
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
395 396
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

431
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
432 433
{
	int nid = page_to_nid(page);
434 435 436
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
437 438
}

439 440 441 442 443 444 445 446
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
	list_del(&page->lru);
447
	set_page_refcounted(page);
448 449 450 451 452
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

453 454
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
455
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
456 457
{
	struct page *page = NULL;
458
	struct mempolicy *mpol;
459
	nodemask_t *nodemask;
460
	struct zonelist *zonelist;
461 462
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
463

464 465 466
	get_mems_allowed();
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
467 468 469 470 471
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
472
	if (!vma_has_reserves(vma) &&
473
			h->free_huge_pages - h->resv_huge_pages == 0)
474
		goto err;
475

476
	/* If reserves cannot be used, ensure enough pages are in the pool */
477
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478
		goto err;
479

480 481
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
482 483 484 485 486 487 488
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
489
		}
L
Linus Torvalds 已提交
490
	}
491
err:
492
	mpol_cond_put(mpol);
493
	put_mems_allowed();
L
Linus Torvalds 已提交
494 495 496
	return page;
}

497
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
498 499
{
	int i;
500

501 502
	VM_BUG_ON(h->order >= MAX_ORDER);

503 504 505
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
506 507 508 509 510 511
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
512
	arch_release_hugepage(page);
513
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
514 515
}

516 517 518 519 520 521 522 523 524 525 526
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

527 528
static void free_huge_page(struct page *page)
{
529 530 531 532
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
533
	struct hstate *h = page_hstate(page);
534
	int nid = page_to_nid(page);
535
	struct address_space *mapping;
536

537
	mapping = (struct address_space *) page_private(page);
538
	set_page_private(page, 0);
539
	page->mapping = NULL;
540
	BUG_ON(page_count(page));
541
	BUG_ON(page_mapcount(page));
542 543 544
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
545
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
546 547 548
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
549
	} else {
550
		enqueue_huge_page(h, page);
551
	}
552
	spin_unlock(&hugetlb_lock);
553
	if (mapping)
554
		hugetlb_put_quota(mapping, 1);
555 556
}

557
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
558 559 560
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
561 562
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
563 564 565 566
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

595 596
EXPORT_SYMBOL_GPL(PageHuge);

597
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
598 599
{
	struct page *page;
600

601 602 603
	if (h->order >= MAX_ORDER)
		return NULL;

604
	page = alloc_pages_exact_node(nid,
605 606
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
607
		huge_page_order(h));
L
Linus Torvalds 已提交
608
	if (page) {
609
		if (arch_prepare_hugepage(page)) {
610
			__free_pages(page, huge_page_order(h));
611
			return NULL;
612
		}
613
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
614
	}
615 616 617 618

	return page;
}

619
/*
620 621 622 623 624
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
625
 */
626
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
627
{
628
	nid = next_node(nid, *nodes_allowed);
629
	if (nid == MAX_NUMNODES)
630
		nid = first_node(*nodes_allowed);
631 632 633 634 635
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

636 637 638 639 640 641 642
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

643
/*
644 645 646 647
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
648
 */
649 650
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
651
{
652 653 654 655 656 657
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
658 659

	return nid;
660 661
}

662
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
663 664 665 666 667 668
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

669
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
670
	next_nid = start_nid;
671 672

	do {
673
		page = alloc_fresh_huge_page_node(h, next_nid);
674
		if (page) {
675
			ret = 1;
676 677
			break;
		}
678
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
679
	} while (next_nid != start_nid);
680

681 682 683 684 685
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

686
	return ret;
L
Linus Torvalds 已提交
687 688
}

689
/*
690 691 692 693
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
694
 */
695
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
696
{
697 698 699 700 701 702
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
703 704

	return nid;
705 706 707 708 709 710 711 712
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
713 714
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
715 716 717 718 719
{
	int start_nid;
	int next_nid;
	int ret = 0;

720
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
721 722 723
	next_nid = start_nid;

	do {
724 725 726 727 728 729
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
730 731 732 733 734 735
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
736 737 738 739
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
740 741
			update_and_free_page(h, page);
			ret = 1;
742
			break;
743
		}
744
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
745
	} while (next_nid != start_nid);
746 747 748 749

	return ret;
}

750
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
751 752
{
	struct page *page;
753
	unsigned int r_nid;
754

755 756 757
	if (h->order >= MAX_ORDER)
		return NULL;

758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
782
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
783 784 785
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
786 787
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
788 789 790
	}
	spin_unlock(&hugetlb_lock);

791 792 793 794 795 796 797 798
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
799

800 801 802 803 804
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

805
	spin_lock(&hugetlb_lock);
806
	if (page) {
807
		r_nid = page_to_nid(page);
808
		set_compound_page_dtor(page, free_huge_page);
809 810 811
		/*
		 * We incremented the global counters already
		 */
812 813
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
814
		__count_vm_event(HTLB_BUDDY_PGALLOC);
815
	} else {
816 817
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
818
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
819
	}
820
	spin_unlock(&hugetlb_lock);
821 822 823 824

	return page;
}

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

	if (!page)
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

844
/*
L
Lucas De Marchi 已提交
845
 * Increase the hugetlb pool such that it can accommodate a reservation
846 847
 * of size 'delta'.
 */
848
static int gather_surplus_pages(struct hstate *h, int delta)
849 850 851 852 853 854
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

855
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
856
	if (needed <= 0) {
857
		h->resv_huge_pages += delta;
858
		return 0;
859
	}
860 861 862 863 864 865 866 867

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
868
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
869
		if (!page)
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			goto free;

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
886 887
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
888 889 890 891 892
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
893
	 * needed to accommodate the reservation.  Add the appropriate number
894
	 * of pages to the hugetlb pool and free the extras back to the buddy
895 896 897
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
898 899
	 */
	needed += allocated;
900
	h->resv_huge_pages += delta;
901
	ret = 0;
902 903

	spin_unlock(&hugetlb_lock);
904
	/* Free the needed pages to the hugetlb pool */
905
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
906 907
		if ((--needed) < 0)
			break;
908
		list_del(&page->lru);
909 910 911 912 913 914
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
915
		enqueue_huge_page(h, page);
916 917 918
	}

	/* Free unnecessary surplus pages to the buddy allocator */
919
free:
920 921 922
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
923
			put_page(page);
924
		}
925
	}
926
	spin_lock(&hugetlb_lock);
927 928 929 930 931 932 933 934

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
935
 * Called with hugetlb_lock held.
936
 */
937 938
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
939 940 941
{
	unsigned long nr_pages;

942
	/* Uncommit the reservation */
943
	h->resv_huge_pages -= unused_resv_pages;
944

945 946 947 948
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

949
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
950

951 952
	/*
	 * We want to release as many surplus pages as possible, spread
953 954 955 956 957
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
958 959
	 */
	while (nr_pages--) {
960
		if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
961
			break;
962 963 964
	}
}

965 966 967 968 969 970 971 972 973
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
974
static long vma_needs_reservation(struct hstate *h,
975
			struct vm_area_struct *vma, unsigned long addr)
976 977 978 979
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

980
	if (vma->vm_flags & VM_MAYSHARE) {
981
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
982 983 984
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

985 986
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
987

988
	} else  {
989
		long err;
990
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
991 992 993 994 995 996 997
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
998
}
999 1000
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1001 1002 1003 1004
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1005
	if (vma->vm_flags & VM_MAYSHARE) {
1006
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1007
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1008 1009

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1011 1012 1013 1014
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1015 1016 1017
	}
}

1018
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1019
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1020
{
1021
	struct hstate *h = hstate_vma(vma);
1022
	struct page *page;
1023 1024
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
1025
	long chg;
1026 1027 1028 1029 1030

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1031 1032
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1033
	 */
1034
	chg = vma_needs_reservation(h, vma, addr);
1035
	if (chg < 0)
1036
		return ERR_PTR(-VM_FAULT_OOM);
1037
	if (chg)
1038
		if (hugetlb_get_quota(inode->i_mapping, chg))
1039
			return ERR_PTR(-VM_FAULT_SIGBUS);
L
Linus Torvalds 已提交
1040 1041

	spin_lock(&hugetlb_lock);
1042
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1043
	spin_unlock(&hugetlb_lock);
1044

K
Ken Chen 已提交
1045
	if (!page) {
1046
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1047
		if (!page) {
1048
			hugetlb_put_quota(inode->i_mapping, chg);
1049
			return ERR_PTR(-VM_FAULT_SIGBUS);
K
Ken Chen 已提交
1050 1051
		}
	}
1052

1053
	set_page_private(page, (unsigned long) mapping);
1054

1055
	vma_commit_reservation(h, vma, addr);
1056

1057
	return page;
1058 1059
}

1060
int __weak alloc_bootmem_huge_page(struct hstate *h)
1061 1062
{
	struct huge_bootmem_page *m;
1063
	int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1064 1065 1066 1067 1068

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1069
				NODE_DATA(hstate_next_node_to_alloc(h,
1070
						&node_states[N_HIGH_MEMORY])),
1071 1072 1073 1074 1075 1076 1077 1078 1079
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1080
			goto found;
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1094 1095 1096 1097 1098 1099 1100 1101
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1102 1103 1104 1105 1106 1107 1108
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1109 1110 1111 1112 1113 1114 1115 1116 1117
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1118 1119
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1120
		prep_compound_huge_page(page, h->order);
1121
		prep_new_huge_page(h, page, page_to_nid(page));
1122 1123 1124 1125 1126 1127 1128 1129
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1130 1131 1132
	}
}

1133
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1134 1135
{
	unsigned long i;
1136

1137
	for (i = 0; i < h->max_huge_pages; ++i) {
1138 1139 1140
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1141 1142
		} else if (!alloc_fresh_huge_page(h,
					 &node_states[N_HIGH_MEMORY]))
L
Linus Torvalds 已提交
1143 1144
			break;
	}
1145
	h->max_huge_pages = i;
1146 1147 1148 1149 1150 1151 1152
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1153 1154 1155
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1156 1157 1158
	}
}

A
Andi Kleen 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1170 1171 1172 1173 1174
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1175 1176 1177 1178 1179
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1180 1181 1182
	}
}

L
Linus Torvalds 已提交
1183
#ifdef CONFIG_HIGHMEM
1184 1185
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1186
{
1187 1188
	int i;

1189 1190 1191
	if (h->order >= MAX_ORDER)
		return;

1192
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1193
		struct page *page, *next;
1194 1195 1196
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1197
				return;
L
Linus Torvalds 已提交
1198 1199 1200
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1201
			update_and_free_page(h, page);
1202 1203
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1204 1205 1206 1207
		}
	}
}
#else
1208 1209
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1210 1211 1212 1213
{
}
#endif

1214 1215 1216 1217 1218
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1219 1220
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1221
{
1222
	int start_nid, next_nid;
1223 1224 1225 1226
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1227
	if (delta < 0)
1228
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1229
	else
1230
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1231 1232 1233 1234 1235 1236 1237 1238
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1239
			if (!h->surplus_huge_pages_node[nid]) {
1240 1241
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1242
				continue;
1243
			}
1244 1245 1246 1247 1248 1249
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1250
						h->nr_huge_pages_node[nid]) {
1251 1252
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1253
				continue;
1254
			}
1255
		}
1256 1257 1258 1259 1260

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1261
	} while (next_nid != start_nid);
1262 1263 1264 1265

	return ret;
}

1266
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1267 1268
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1269
{
1270
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1271

1272 1273 1274
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1275 1276 1277 1278
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1279 1280 1281 1282 1283 1284
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1285
	 */
L
Linus Torvalds 已提交
1286
	spin_lock(&hugetlb_lock);
1287
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1288
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1289 1290 1291
			break;
	}

1292
	while (count > persistent_huge_pages(h)) {
1293 1294 1295 1296 1297 1298
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1299
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1300 1301 1302 1303
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1304 1305 1306
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1307 1308 1309 1310 1311 1312 1313 1314
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1315 1316 1317 1318 1319 1320 1321 1322
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1323
	 */
1324
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1325
	min_count = max(count, min_count);
1326
	try_to_free_low(h, min_count, nodes_allowed);
1327
	while (min_count < persistent_huge_pages(h)) {
1328
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1329 1330
			break;
	}
1331
	while (count < persistent_huge_pages(h)) {
1332
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1333 1334 1335
			break;
	}
out:
1336
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1337
	spin_unlock(&hugetlb_lock);
1338
	return ret;
L
Linus Torvalds 已提交
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1351 1352 1353
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1354 1355
{
	int i;
1356

1357
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1358 1359 1360
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1361
			return &hstates[i];
1362 1363 1364
		}

	return kobj_to_node_hstate(kobj, nidp);
1365 1366
}

1367
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1368 1369
					struct kobj_attribute *attr, char *buf)
{
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1381
}
1382

1383 1384 1385
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1386 1387
{
	int err;
1388
	int nid;
1389
	unsigned long count;
1390
	struct hstate *h;
1391
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1392

1393
	err = strict_strtoul(buf, 10, &count);
1394
	if (err)
1395
		goto out;
1396

1397
	h = kobj_to_hstate(kobj, &nid);
1398 1399 1400 1401 1402
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
		nodes_allowed = &node_states[N_HIGH_MEMORY];

1422
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1423

1424
	if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1425 1426 1427
		NODEMASK_FREE(nodes_allowed);

	return len;
1428 1429 1430
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1443 1444 1445
}
HSTATE_ATTR(nr_hugepages);

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1467 1468 1469
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1470
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1471 1472
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1473

1474 1475 1476 1477 1478
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1479
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1480

1481 1482 1483
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1484 1485
	err = strict_strtoul(buf, 10, &input);
	if (err)
1486
		return err;
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1510 1511 1512 1513 1514 1515
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1516
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1517 1518 1519 1520 1521 1522 1523
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1535 1536 1537 1538 1539 1540 1541 1542 1543
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1544 1545 1546
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1547 1548 1549 1550 1551 1552 1553
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1554 1555 1556
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1557 1558
{
	int retval;
1559
	int hi = h - hstates;
1560

1561 1562
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1563 1564
		return -ENOMEM;

1565
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1566
	if (retval)
1567
		kobject_put(hstate_kobjs[hi]);
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1582 1583
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1584 1585 1586 1587 1588 1589
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
 * with node sysdevs in node_devices[] using a parallel array.  The array
 * index of a node sysdev or _hstate == node id.
 * This is here to avoid any static dependency of the node sysdev driver, in
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
 * A subset of global hstate attributes for node sysdevs
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
 * Unregister hstate attributes from a single node sysdev.
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];

	if (!nhs->hugepages_kobj)
1652
		return;		/* no hstate attributes */
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716

	for_each_hstate(h)
		if (nhs->hstate_kobjs[h - hstates]) {
			kobject_put(nhs->hstate_kobjs[h - hstates]);
			nhs->hstate_kobjs[h - hstates] = NULL;
		}

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
 * hugetlb module exit:  unregister hstate attributes from node sysdevs
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
	 * disable node sysdev registrations.
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
		hugetlb_unregister_node(&node_devices[nid]);
}

/*
 * Register hstate attributes for a single node sysdev.
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
	struct node_hstate *nhs = &node_hstates[node->sysdev.id];
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
							&node->sysdev.kobj);
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
						h->name, node->sysdev.id);
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1717 1718 1719
 * hugetlb init time:  register hstate attributes for all registered node
 * sysdevs of nodes that have memory.  All on-line nodes should have
 * registered their associated sysdev by this time.
1720 1721 1722 1723 1724
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1725
	for_each_node_state(nid, N_HIGH_MEMORY) {
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		struct node *node = &node_devices[nid];
		if (node->sysdev.id == nid)
			hugetlb_register_node(node);
	}

	/*
	 * Let the node sysdev driver know we're here so it can
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1754 1755 1756 1757
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1758 1759
	hugetlb_unregister_all_nodes();

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1770 1771 1772 1773 1774 1775
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1776

1777 1778 1779 1780
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1781
	}
1782 1783 1784
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1785 1786 1787

	hugetlb_init_hstates();

1788 1789
	gather_bootmem_prealloc();

1790 1791 1792 1793
	report_hugepages();

	hugetlb_sysfs_init();

1794 1795
	hugetlb_register_all_nodes();

1796 1797 1798 1799 1800 1801 1802 1803
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1804 1805
	unsigned long i;

1806 1807 1808 1809 1810 1811 1812 1813 1814
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1815 1816 1817 1818
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1819 1820
	h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1821 1822
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1823

1824 1825 1826
	parsed_hstate = h;
}

1827
static int __init hugetlb_nrpages_setup(char *s)
1828 1829
{
	unsigned long *mhp;
1830
	static unsigned long *last_mhp;
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1841 1842 1843 1844 1845 1846
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1847 1848 1849
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1860 1861
	return 1;
}
1862 1863 1864 1865 1866 1867 1868 1869
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1870

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
1883 1884 1885
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
1886
{
1887 1888
	struct hstate *h = &default_hstate;
	unsigned long tmp;
1889
	int ret;
1890

1891
	tmp = h->max_huge_pages;
1892

1893 1894 1895
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1896 1897
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1898 1899 1900
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1901

1902
	if (write) {
1903 1904
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
			nodes_allowed = &node_states[N_HIGH_MEMORY];
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

		if (nodes_allowed != &node_states[N_HIGH_MEMORY])
			NODEMASK_FREE(nodes_allowed);
	}
1915 1916
out:
	return ret;
L
Linus Torvalds 已提交
1917
}
1918

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

1936
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1937
			void __user *buffer,
1938 1939
			size_t *length, loff_t *ppos)
{
1940
	proc_dointvec(table, write, buffer, length, ppos);
1941 1942 1943 1944 1945 1946 1947
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1948
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1949
			void __user *buffer,
1950 1951
			size_t *length, loff_t *ppos)
{
1952
	struct hstate *h = &default_hstate;
1953
	unsigned long tmp;
1954
	int ret;
1955

1956
	tmp = h->nr_overcommit_huge_pages;
1957

1958 1959 1960
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

1961 1962
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1963 1964 1965
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
1966 1967 1968 1969 1970 1971

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
1972 1973
out:
	return ret;
1974 1975
}

L
Linus Torvalds 已提交
1976 1977
#endif /* CONFIG_SYSCTL */

1978
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1979
{
1980
	struct hstate *h = &default_hstate;
1981
	seq_printf(m,
1982 1983 1984 1985 1986
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1987 1988 1989 1990 1991
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1992 1993 1994 1995
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1996
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1997 1998
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1999 2000
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2001 2002 2003
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2004 2005 2006 2007 2008
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2009 2010
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2011 2012
}

2013
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2036
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2037 2038
			goto out;

2039 2040
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2041 2042 2043 2044 2045 2046
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2047
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2048 2049 2050 2051 2052 2053

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2054 2055 2056 2057 2058 2059 2060 2061
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2062
	 * has a reference to the reservation map it cannot disappear until
2063 2064 2065 2066 2067 2068 2069
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2070 2071
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2072
	struct hstate *h = hstate_vma(vma);
2073 2074 2075 2076 2077 2078
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2079 2080
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2081 2082 2083 2084 2085 2086

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

2087
		if (reserve) {
2088
			hugetlb_acct_memory(h, -reserve);
2089 2090
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
2091
	}
2092 2093
}

L
Linus Torvalds 已提交
2094 2095 2096 2097 2098 2099
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2100
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2101 2102
{
	BUG();
N
Nick Piggin 已提交
2103
	return 0;
L
Linus Torvalds 已提交
2104 2105
}

2106
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2107
	.fault = hugetlb_vm_op_fault,
2108
	.open = hugetlb_vm_op_open,
2109
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2110 2111
};

2112 2113
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2114 2115 2116
{
	pte_t entry;

2117
	if (writable) {
D
David Gibson 已提交
2118 2119 2120
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2121
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2122 2123 2124 2125 2126 2127 2128
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

2129 2130 2131 2132 2133
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2134 2135
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2136
		update_mmu_cache(vma, address, ptep);
2137
	}
2138 2139 2140
}


D
David Gibson 已提交
2141 2142 2143 2144 2145
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2146
	unsigned long addr;
2147
	int cow;
2148 2149
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2150 2151

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2152

2153
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2154 2155 2156
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2157
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2158 2159
		if (!dst_pte)
			goto nomem;
2160 2161 2162 2163 2164

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2165
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2166
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2167
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2168
			if (cow)
2169 2170
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2171 2172
			ptepage = pte_page(entry);
			get_page(ptepage);
2173
			page_dup_rmap(ptepage);
2174 2175 2176
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2177
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2178 2179 2180 2181 2182 2183 2184
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_migration_entry(swp)) {
		return 1;
	} else
		return 0;
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
	if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
		return 1;
	} else
		return 0;
}

2211
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
2213 2214 2215
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2216
	pte_t *ptep;
D
David Gibson 已提交
2217 2218
	pte_t pte;
	struct page *page;
2219
	struct page *tmp;
2220 2221 2222
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

2223
	/*
2224
	 * A page gathering list, protected by per file i_mmap_mutex. The
2225 2226 2227
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
2228
	LIST_HEAD(page_list);
D
David Gibson 已提交
2229 2230

	WARN_ON(!is_vm_hugetlb_page(vma));
2231 2232
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2233

A
Andrea Arcangeli 已提交
2234
	mmu_notifier_invalidate_range_start(mm, start, end);
2235
	spin_lock(&mm->page_table_lock);
2236
	for (address = start; address < end; address += sz) {
2237
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2238
		if (!ptep)
2239 2240
			continue;

2241 2242 2243
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2265
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2266
		if (huge_pte_none(pte))
D
David Gibson 已提交
2267
			continue;
2268

2269 2270 2271 2272 2273 2274
		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
			continue;

D
David Gibson 已提交
2275
		page = pte_page(pte);
2276 2277
		if (pte_dirty(pte))
			set_page_dirty(page);
2278
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
2279
	}
L
Linus Torvalds 已提交
2280
	spin_unlock(&mm->page_table_lock);
2281
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
2282
	mmu_notifier_invalidate_range_end(mm, start, end);
2283
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
2284
		page_remove_rmap(page);
2285 2286 2287
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
2288
}
D
David Gibson 已提交
2289

2290
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2291
			  unsigned long end, struct page *ref_page)
2292
{
2293
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2294
	__unmap_hugepage_range(vma, start, end, ref_page);
2295
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2296 2297
}

2298 2299 2300 2301 2302 2303
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2304 2305
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2306
{
2307
	struct hstate *h = hstate_vma(vma);
2308 2309 2310 2311 2312 2313 2314 2315 2316
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2317
	address = address & huge_page_mask(h);
2318 2319 2320 2321
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

2322 2323 2324 2325 2326
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2327
	mutex_lock(&mapping->i_mmap_mutex);
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2341
			__unmap_hugepage_range(iter_vma,
2342
				address, address + huge_page_size(h),
2343 2344
				page);
	}
2345
	mutex_unlock(&mapping->i_mmap_mutex);
2346 2347 2348 2349

	return 1;
}

2350 2351 2352
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
 */
2353
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2354 2355
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2356
{
2357
	struct hstate *h = hstate_vma(vma);
2358
	struct page *old_page, *new_page;
2359
	int avoidcopy;
2360
	int outside_reserve = 0;
2361 2362 2363

	old_page = pte_page(pte);

2364
retry_avoidcopy:
2365 2366
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2367
	avoidcopy = (page_mapcount(old_page) == 1);
2368
	if (avoidcopy) {
2369 2370
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2371
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2372
		return 0;
2373 2374
	}

2375 2376 2377 2378 2379 2380 2381 2382 2383
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2384
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2385 2386 2387 2388
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2389
	page_cache_get(old_page);
2390 2391 2392

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2393
	new_page = alloc_huge_page(vma, address, outside_reserve);
2394

2395
	if (IS_ERR(new_page)) {
2396
		page_cache_release(old_page);
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
2410
				spin_lock(&mm->page_table_lock);
2411 2412 2413 2414 2415
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

2416 2417
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2418
		return -PTR_ERR(new_page);
2419 2420
	}

2421 2422 2423 2424
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2425 2426 2427
	if (unlikely(anon_vma_prepare(vma))) {
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2428
		return VM_FAULT_OOM;
2429
	}
2430

A
Andrea Arcangeli 已提交
2431 2432
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2433
	__SetPageUptodate(new_page);
2434

2435 2436 2437 2438 2439
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2440
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2441
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2442
		/* Break COW */
2443 2444 2445
		mmu_notifier_invalidate_range_start(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2446
		huge_ptep_clear_flush(vma, address, ptep);
2447 2448
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2449
		page_remove_rmap(old_page);
2450
		hugepage_add_new_anon_rmap(new_page, vma, address);
2451 2452
		/* Make the old page be freed below */
		new_page = old_page;
2453 2454 2455
		mmu_notifier_invalidate_range_end(mm,
			address & huge_page_mask(h),
			(address & huge_page_mask(h)) + huge_page_size(h));
2456 2457 2458
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2459
	return 0;
2460 2461
}

2462
/* Return the pagecache page at a given address within a VMA */
2463 2464
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2465 2466
{
	struct address_space *mapping;
2467
	pgoff_t idx;
2468 2469

	mapping = vma->vm_file->f_mapping;
2470
	idx = vma_hugecache_offset(h, vma, address);
2471 2472 2473 2474

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2475 2476 2477 2478 2479
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2495
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2496
			unsigned long address, pte_t *ptep, unsigned int flags)
2497
{
2498
	struct hstate *h = hstate_vma(vma);
2499
	int ret = VM_FAULT_SIGBUS;
2500
	pgoff_t idx;
A
Adam Litke 已提交
2501 2502 2503
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2504
	pte_t new_pte;
A
Adam Litke 已提交
2505

2506 2507 2508
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2509
	 * COW. Warn that such a situation has occurred as it may not be obvious
2510 2511 2512 2513 2514 2515 2516 2517
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2518
	mapping = vma->vm_file->f_mapping;
2519
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2520 2521 2522 2523 2524

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2525 2526 2527
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2528
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2529 2530
		if (idx >= size)
			goto out;
2531
		page = alloc_huge_page(vma, address, 0);
2532 2533
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2534 2535
			goto out;
		}
A
Andrea Arcangeli 已提交
2536
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2537
		__SetPageUptodate(page);
2538

2539
		if (vma->vm_flags & VM_MAYSHARE) {
2540
			int err;
K
Ken Chen 已提交
2541
			struct inode *inode = mapping->host;
2542 2543 2544 2545 2546 2547 2548 2549

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2550 2551

			spin_lock(&inode->i_lock);
2552
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2553
			spin_unlock(&inode->i_lock);
2554
			page_dup_rmap(page);
2555
		} else {
2556
			lock_page(page);
2557 2558 2559 2560 2561
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
			hugepage_add_new_anon_rmap(page, vma, address);
2562
		}
2563
	} else {
2564 2565 2566 2567 2568 2569
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2570 2571
			ret = VM_FAULT_HWPOISON | 
			      VM_FAULT_SET_HINDEX(h - hstates);
2572 2573
			goto backout_unlocked;
		}
2574
		page_dup_rmap(page);
2575
	}
2576

2577 2578 2579 2580 2581 2582
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2583
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2584 2585 2586 2587
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2588

2589
	spin_lock(&mm->page_table_lock);
2590
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2591 2592 2593
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2594
	ret = 0;
2595
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2596 2597
		goto backout;

2598 2599 2600 2601
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2602
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2603
		/* Optimization, do the COW without a second fault */
2604
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2605 2606
	}

2607
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2608 2609
	unlock_page(page);
out:
2610
	return ret;
A
Adam Litke 已提交
2611 2612 2613

backout:
	spin_unlock(&mm->page_table_lock);
2614
backout_unlocked:
A
Adam Litke 已提交
2615 2616 2617
	unlock_page(page);
	put_page(page);
	goto out;
2618 2619
}

2620
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2621
			unsigned long address, unsigned int flags)
2622 2623 2624
{
	pte_t *ptep;
	pte_t entry;
2625
	int ret;
2626
	struct page *page = NULL;
2627
	struct page *pagecache_page = NULL;
2628
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2629
	struct hstate *h = hstate_vma(vma);
2630

2631 2632 2633
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2634 2635 2636 2637
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2638 2639
			return VM_FAULT_HWPOISON_LARGE | 
			       VM_FAULT_SET_HINDEX(h - hstates);
2640 2641
	}

2642
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2643 2644 2645
	if (!ptep)
		return VM_FAULT_OOM;

2646 2647 2648 2649 2650 2651
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2652 2653
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2654
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2655
		goto out_mutex;
2656
	}
2657

N
Nick Piggin 已提交
2658
	ret = 0;
2659

2660 2661 2662 2663 2664 2665 2666 2667
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2668
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2669 2670
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2671
			goto out_mutex;
2672
		}
2673

2674
		if (!(vma->vm_flags & VM_MAYSHARE))
2675 2676 2677 2678
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2679 2680 2681 2682 2683 2684 2685 2686 2687
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
	if (page != pagecache_page)
2688 2689
		lock_page(page);

2690 2691
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2692 2693 2694 2695
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2696
	if (flags & FAULT_FLAG_WRITE) {
2697
		if (!pte_write(entry)) {
2698 2699
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2700 2701 2702 2703 2704
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2705 2706
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2707
		update_mmu_cache(vma, address, ptep);
2708 2709

out_page_table_lock:
2710
	spin_unlock(&mm->page_table_lock);
2711 2712 2713 2714 2715

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2716 2717
	if (page != pagecache_page)
		unlock_page(page);
2718

2719
out_mutex:
2720
	mutex_unlock(&hugetlb_instantiation_mutex);
2721 2722

	return ret;
2723 2724
}

A
Andi Kleen 已提交
2725 2726 2727 2728 2729 2730 2731 2732 2733
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2734 2735
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2736
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2737
			unsigned int flags)
D
David Gibson 已提交
2738
{
2739 2740
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2741
	int remainder = *length;
2742
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2743

2744
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2745
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2746
		pte_t *pte;
H
Hugh Dickins 已提交
2747
		int absent;
A
Adam Litke 已提交
2748
		struct page *page;
D
David Gibson 已提交
2749

A
Adam Litke 已提交
2750 2751
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2752
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2753 2754
		 * first, for the page indexing below to work.
		 */
2755
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2756 2757 2758 2759
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2760 2761 2762 2763
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2764
		 */
H
Hugh Dickins 已提交
2765 2766
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2767 2768 2769
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2770

H
Hugh Dickins 已提交
2771 2772
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2773
			int ret;
D
David Gibson 已提交
2774

A
Adam Litke 已提交
2775
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2776 2777
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2778
			spin_lock(&mm->page_table_lock);
2779
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2780
				continue;
D
David Gibson 已提交
2781

A
Adam Litke 已提交
2782 2783 2784 2785
			remainder = 0;
			break;
		}

2786
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2787
		page = pte_page(huge_ptep_get(pte));
2788
same_page:
2789
		if (pages) {
H
Hugh Dickins 已提交
2790
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2791
			get_page(pages[i]);
2792
		}
D
David Gibson 已提交
2793 2794 2795 2796 2797

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2798
		++pfn_offset;
D
David Gibson 已提交
2799 2800
		--remainder;
		++i;
2801
		if (vaddr < vma->vm_end && remainder &&
2802
				pfn_offset < pages_per_huge_page(h)) {
2803 2804 2805 2806 2807 2808
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2809
	}
2810
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2811 2812 2813
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
2814
	return i ? i : -EFAULT;
D
David Gibson 已提交
2815
}
2816 2817 2818 2819 2820 2821 2822 2823

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2824
	struct hstate *h = hstate_vma(vma);
2825 2826 2827 2828

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2829
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2830
	spin_lock(&mm->page_table_lock);
2831
	for (; address < end; address += huge_page_size(h)) {
2832 2833 2834
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2835 2836
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2837
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2838 2839 2840 2841 2842 2843
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2844
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2845 2846 2847 2848

	flush_tlb_range(vma, start, end);
}

2849 2850
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2851
					struct vm_area_struct *vma,
2852
					vm_flags_t vm_flags)
2853
{
2854
	long ret, chg;
2855
	struct hstate *h = hstate_inode(inode);
2856

2857 2858 2859 2860 2861
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
2862
	if (vm_flags & VM_NORESERVE)
2863 2864
		return 0;

2865 2866 2867 2868 2869 2870
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2871
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2872
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2873 2874 2875 2876 2877
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2878
		chg = to - from;
2879

2880 2881 2882 2883
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2884 2885
	if (chg < 0)
		return chg;
2886

2887
	/* There must be enough filesystem quota for the mapping */
2888 2889
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2890 2891

	/*
2892 2893
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2894
	 */
2895
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2896 2897
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2898
		return ret;
K
Ken Chen 已提交
2899
	}
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2912
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2913
		region_add(&inode->i_mapping->private_list, from, to);
2914 2915 2916 2917 2918
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2919
	struct hstate *h = hstate_inode(inode);
2920
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2921 2922

	spin_lock(&inode->i_lock);
2923
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2924 2925
	spin_unlock(&inode->i_lock);

2926
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2927
	hugetlb_acct_memory(h, -(chg - freed));
2928
}
2929

2930 2931
#ifdef CONFIG_MEMORY_FAILURE

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

2946 2947 2948 2949
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
2950
int dequeue_hwpoisoned_huge_page(struct page *hpage)
2951 2952 2953
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
2954
	int ret = -EBUSY;
2955 2956

	spin_lock(&hugetlb_lock);
2957 2958
	if (is_hugepage_on_freelist(hpage)) {
		list_del(&hpage->lru);
2959
		set_page_refcounted(hpage);
2960 2961 2962 2963
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
2964
	spin_unlock(&hugetlb_lock);
2965
	return ret;
2966
}
2967
#endif