hugetlb.c 59.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
229
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
230

231 232 233 234 235 236 237 238 239
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
240 241 242 243 244 245 246 247 248
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
249
 */
250 251 252 253 254 255 256 257 258 259 260
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

261 262 263 264 265
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

266
static struct resv_map *resv_map_alloc(void)
267 268 269 270 271 272 273 274 275 276 277
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

278
static void resv_map_release(struct kref *ref)
279 280 281 282 283 284 285 286 287
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
288 289 290
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
291 292
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
293
	return NULL;
294 295
}

296
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
297 298 299 300
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

301 302
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
303 304 305 306 307
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
308 309 310
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
311 312 313 314 315
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
316 317

	return (get_vma_private_data(vma) & flag) != 0;
318 319 320
}

/* Decrement the reserved pages in the hugepage pool by one */
321 322
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
323
{
324 325 326
	if (vma->vm_flags & VM_NORESERVE)
		return;

327 328
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
329
		h->resv_huge_pages--;
330
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
331 332 333 334
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
335
		h->resv_huge_pages--;
336 337 338
	}
}

339
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
340 341 342 343 344 345 346 347
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
348
static int vma_has_reserves(struct vm_area_struct *vma)
349 350
{
	if (vma->vm_flags & VM_SHARED)
351 352 353 354
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
369 370
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
371 372 373
{
	int i;

374 375 376
	if (unlikely(sz > MAX_ORDER_NR_PAGES))
		return clear_gigantic_page(page, addr, sz);

377
	might_sleep();
378
	for (i = 0; i < sz/PAGE_SIZE; i++) {
379
		cond_resched();
380
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
381 382 383
	}
}

384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
401
static void copy_huge_page(struct page *dst, struct page *src,
402
			   unsigned long addr, struct vm_area_struct *vma)
403 404
{
	int i;
405
	struct hstate *h = hstate_vma(vma);
406

407 408 409
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES))
		return copy_gigantic_page(dst, src, addr, vma);

410
	might_sleep();
411
	for (i = 0; i < pages_per_huge_page(h); i++) {
412
		cond_resched();
413
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
414 415 416
	}
}

417
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
418 419
{
	int nid = page_to_nid(page);
420 421 422
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
423 424
}

425
static struct page *dequeue_huge_page(struct hstate *h)
426 427 428 429 430
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
431 432
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
433 434
					  struct page, lru);
			list_del(&page->lru);
435 436
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
437 438 439 440 441 442
			break;
		}
	}
	return page;
}

443 444
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
445
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
446
{
447
	int nid;
L
Linus Torvalds 已提交
448
	struct page *page = NULL;
449
	struct mempolicy *mpol;
450
	nodemask_t *nodemask;
451
	struct zonelist *zonelist = huge_zonelist(vma, address,
452
					htlb_alloc_mask, &mpol, &nodemask);
453 454
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
455

456 457 458 459 460
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
461
	if (!vma_has_reserves(vma) &&
462
			h->free_huge_pages - h->resv_huge_pages == 0)
463 464
		return NULL;

465
	/* If reserves cannot be used, ensure enough pages are in the pool */
466
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
467 468
		return NULL;

469 470
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
471 472
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
473 474
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
475 476
					  struct page, lru);
			list_del(&page->lru);
477 478
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
479 480

			if (!avoid_reserve)
481
				decrement_hugepage_resv_vma(h, vma);
482

K
Ken Chen 已提交
483
			break;
A
Andrew Morton 已提交
484
		}
L
Linus Torvalds 已提交
485
	}
486
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
487 488 489
	return page;
}

490
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
491 492
{
	int i;
493 494 495 496

	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
497 498 499 500 501 502
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
503
	arch_release_hugepage(page);
504
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
505 506
}

507 508 509 510 511 512 513 514 515 516 517
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

518 519
static void free_huge_page(struct page *page)
{
520 521 522 523
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
524
	struct hstate *h = page_hstate(page);
525
	int nid = page_to_nid(page);
526
	struct address_space *mapping;
527

528
	mapping = (struct address_space *) page_private(page);
529
	set_page_private(page, 0);
530
	BUG_ON(page_count(page));
531 532 533
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
534
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
535 536 537
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
538
	} else {
539
		enqueue_huge_page(h, page);
540
	}
541
	spin_unlock(&hugetlb_lock);
542
	if (mapping)
543
		hugetlb_put_quota(mapping, 1);
544 545
}

546 547 548 549 550
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
551
static int adjust_pool_surplus(struct hstate *h, int delta)
552 553 554 555 556 557 558 559 560 561 562 563
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
564
		if (delta < 0 && !h->surplus_huge_pages_node[nid])
565 566
			continue;
		/* Surplus cannot exceed the total number of pages */
567 568
		if (delta > 0 && h->surplus_huge_pages_node[nid] >=
						h->nr_huge_pages_node[nid])
569 570
			continue;

571 572
		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
573 574 575 576 577 578 579 580
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

581
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
582 583 584
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
585 586
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
587 588 589 590
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

591
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
592 593
{
	struct page *page;
594

595 596 597
	if (h->order >= MAX_ORDER)
		return NULL;

598
	page = alloc_pages_node(nid,
599 600
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
601
		huge_page_order(h));
L
Linus Torvalds 已提交
602
	if (page) {
603
		if (arch_prepare_hugepage(page)) {
604
			__free_pages(page, huge_page_order(h));
605
			return NULL;
606
		}
607
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
608
	}
609 610 611 612

	return page;
}

613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
/*
 * Use a helper variable to find the next node and then
 * copy it back to hugetlb_next_nid afterwards:
 * otherwise there's a window in which a racer might
 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
static int hstate_next_node(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->hugetlb_next_nid, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->hugetlb_next_nid = next_nid;
	return next_nid;
}

634
static int alloc_fresh_huge_page(struct hstate *h)
635 636 637 638 639 640
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

641
	start_nid = h->hugetlb_next_nid;
642 643

	do {
644
		page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid);
645 646
		if (page)
			ret = 1;
647
		next_nid = hstate_next_node(h);
648
	} while (!page && h->hugetlb_next_nid != start_nid);
649

650 651 652 653 654
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

655
	return ret;
L
Linus Torvalds 已提交
656 657
}

658 659
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
660 661
{
	struct page *page;
662
	unsigned int nid;
663

664 665 666
	if (h->order >= MAX_ORDER)
		return NULL;

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
691
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
692 693 694
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
695 696
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
697 698 699
	}
	spin_unlock(&hugetlb_lock);

700 701
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
702
					huge_page_order(h));
703

704 705 706 707 708
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

709
	spin_lock(&hugetlb_lock);
710
	if (page) {
711 712 713 714 715 716
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
717
		nid = page_to_nid(page);
718
		set_compound_page_dtor(page, free_huge_page);
719 720 721
		/*
		 * We incremented the global counters already
		 */
722 723
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
724
		__count_vm_event(HTLB_BUDDY_PGALLOC);
725
	} else {
726 727
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
728
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
729
	}
730
	spin_unlock(&hugetlb_lock);
731 732 733 734

	return page;
}

735 736 737 738
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
739
static int gather_surplus_pages(struct hstate *h, int delta)
740 741 742 743 744 745
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

746
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
747
	if (needed <= 0) {
748
		h->resv_huge_pages += delta;
749
		return 0;
750
	}
751 752 753 754 755 756 757 758

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
759
		page = alloc_buddy_huge_page(h, NULL, 0);
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
780 781
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
782 783 784 785 786 787 788
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
789 790 791
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
792 793
	 */
	needed += allocated;
794
	h->resv_huge_pages += delta;
795 796
	ret = 0;
free:
797
	/* Free the needed pages to the hugetlb pool */
798
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
799 800
		if ((--needed) < 0)
			break;
801
		list_del(&page->lru);
802
		enqueue_huge_page(h, page);
803 804 805 806 807 808 809
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
810
			/*
811 812 813
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
814 815 816
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
817
			free_huge_page(page);
818
		}
819
		spin_lock(&hugetlb_lock);
820 821 822 823 824 825 826 827 828 829
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
830 831
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
832 833 834 835 836
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

837 838 839 840 841 842 843 844
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

845
	/* Uncommit the reservation */
846
	h->resv_huge_pages -= unused_resv_pages;
847

848 849 850 851
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

852
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
853

854
	while (remaining_iterations-- && nr_pages) {
855 856 857 858
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

859
		if (!h->surplus_huge_pages_node[nid])
860 861
			continue;

862 863
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
864 865
					  struct page, lru);
			list_del(&page->lru);
866 867 868 869 870
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
871
			nr_pages--;
872
			remaining_iterations = num_online_nodes();
873 874 875 876
		}
	}
}

877 878 879 880 881 882 883 884 885
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
886 887
static int vma_needs_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
888 889 890 891 892
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
893
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
894 895 896
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

897 898
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
899

900 901
	} else  {
		int err;
902
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
903 904 905 906 907 908 909
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
910
}
911 912
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
913 914 915 916 917
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

	if (vma->vm_flags & VM_SHARED) {
918
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
919
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
920 921

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
922
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
923 924 925 926
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
927 928 929
	}
}

930
static struct page *alloc_huge_page(struct vm_area_struct *vma,
931
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
932
{
933
	struct hstate *h = hstate_vma(vma);
934
	struct page *page;
935 936
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
937
	unsigned int chg;
938 939 940 941 942

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
943 944
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
945
	 */
946
	chg = vma_needs_reservation(h, vma, addr);
947 948 949
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
950 951
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
952 953

	spin_lock(&hugetlb_lock);
954
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
955
	spin_unlock(&hugetlb_lock);
956

K
Ken Chen 已提交
957
	if (!page) {
958
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
959
		if (!page) {
960
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
961 962 963
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
964

965 966
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
967

968
	vma_commit_reservation(h, vma, addr);
969

970
	return page;
971 972
}

973
__attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h)
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
				NODE_DATA(h->hugetlb_next_nid),
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
			if (m)
				goto found;
		}
		hstate_next_node(h);
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
		prep_compound_page(page, h->order);
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1023
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1024 1025
{
	unsigned long i;
1026

1027
	for (i = 0; i < h->max_huge_pages; ++i) {
1028 1029 1030 1031
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1032 1033
			break;
	}
1034
	h->max_huge_pages = i;
1035 1036 1037 1038 1039 1040 1041
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1042 1043 1044
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1045 1046 1047
	}
}

A
Andi Kleen 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1059 1060 1061 1062 1063
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1064 1065 1066 1067 1068
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1069 1070 1071
	}
}

L
Linus Torvalds 已提交
1072
#ifdef CONFIG_HIGHMEM
1073
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1074
{
1075 1076
	int i;

1077 1078 1079
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1080 1081
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1082 1083 1084
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1085
				return;
L
Linus Torvalds 已提交
1086 1087 1088
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1089
			update_and_free_page(h, page);
1090 1091
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1092 1093 1094 1095
		}
	}
}
#else
1096
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1097 1098 1099 1100
{
}
#endif

1101
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1102
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1103
{
1104
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1105

1106 1107 1108
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1109 1110 1111 1112
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1113 1114 1115 1116 1117 1118
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1119
	 */
L
Linus Torvalds 已提交
1120
	spin_lock(&hugetlb_lock);
1121 1122
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1123 1124 1125
			break;
	}

1126
	while (count > persistent_huge_pages(h)) {
1127 1128 1129 1130 1131 1132
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1133
		ret = alloc_fresh_huge_page(h);
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1146 1147 1148 1149 1150 1151 1152 1153
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1154
	 */
1155
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1156
	min_count = max(count, min_count);
1157 1158 1159
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
		struct page *page = dequeue_huge_page(h);
L
Linus Torvalds 已提交
1160 1161
		if (!page)
			break;
1162
		update_and_free_page(h, page);
L
Linus Torvalds 已提交
1163
	}
1164 1165
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1166 1167 1168
			break;
	}
out:
1169
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1170
	spin_unlock(&hugetlb_lock);
1171
	return ret;
L
Linus Torvalds 已提交
1172 1173
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1327 1328 1329 1330 1331 1332
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1333

1334 1335 1336 1337
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1338
	}
1339 1340 1341
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1342 1343 1344

	hugetlb_init_hstates();

1345 1346
	gather_bootmem_prealloc();

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1359 1360
	unsigned long i;

1361 1362 1363 1364 1365 1366 1367 1368 1369
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1370 1371 1372 1373 1374
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
	h->hugetlb_next_nid = first_node(node_online_map);
1375 1376
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1377

1378 1379 1380
	parsed_hstate = h;
}

1381
static int __init hugetlb_nrpages_setup(char *s)
1382 1383
{
	unsigned long *mhp;
1384
	static unsigned long *last_mhp;
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1395 1396 1397 1398 1399 1400
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1401 1402 1403
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1414 1415
	return 1;
}
1416 1417 1418 1419 1420 1421 1422 1423
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1424

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1437 1438 1439 1440
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1441 1442 1443 1444 1445 1446 1447 1448
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1449
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1450 1451 1452 1453

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1454 1455
	return 0;
}
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1469 1470 1471 1472
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1473
	struct hstate *h = &default_hstate;
1474 1475 1476 1477 1478 1479 1480
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1481
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1482 1483 1484 1485 1486 1487 1488

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1489 1490 1491
	return 0;
}

L
Linus Torvalds 已提交
1492 1493
#endif /* CONFIG_SYSCTL */

1494
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1495
{
1496
	struct hstate *h = &default_hstate;
1497
	seq_printf(m,
1498 1499 1500 1501 1502
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1503 1504 1505 1506 1507
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1508 1509 1510 1511
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1512
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1513 1514
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1515 1516
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1517 1518 1519
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1525 1526
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1527 1528
}

1529
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1552
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1553 1554
			goto out;

1555 1556
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1557 1558 1559 1560 1561 1562
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1563
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1564 1565 1566 1567 1568 1569

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1586 1587
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1588
	struct hstate *h = hstate_vma(vma);
1589 1590 1591 1592 1593 1594
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1595 1596
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1597 1598 1599 1600 1601 1602

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1603
		if (reserve) {
1604
			hugetlb_acct_memory(h, -reserve);
1605 1606
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1607
	}
1608 1609
}

L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1616
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1617 1618
{
	BUG();
N
Nick Piggin 已提交
1619
	return 0;
L
Linus Torvalds 已提交
1620 1621 1622
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1623
	.fault = hugetlb_vm_op_fault,
1624
	.open = hugetlb_vm_op_open,
1625
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1626 1627
};

1628 1629
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1630 1631 1632
{
	pte_t entry;

1633
	if (writable) {
D
David Gibson 已提交
1634 1635 1636
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1637
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1638 1639 1640 1641 1642 1643 1644
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1645 1646 1647 1648 1649
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1650 1651
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1652 1653
		update_mmu_cache(vma, address, entry);
	}
1654 1655 1656
}


D
David Gibson 已提交
1657 1658 1659 1660 1661
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1662
	unsigned long addr;
1663
	int cow;
1664 1665
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1666 1667

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1668

1669
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1670 1671 1672
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1673
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1674 1675
		if (!dst_pte)
			goto nomem;
1676 1677 1678 1679 1680

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1681
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1682
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1683
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1684
			if (cow)
1685 1686
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1687 1688 1689 1690 1691
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1692
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1693 1694 1695 1696 1697 1698 1699
	}
	return 0;

nomem:
	return -ENOMEM;
}

1700
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1701
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1702 1703 1704
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1705
	pte_t *ptep;
D
David Gibson 已提交
1706 1707
	pte_t pte;
	struct page *page;
1708
	struct page *tmp;
1709 1710 1711
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1712 1713 1714 1715 1716
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1717
	LIST_HEAD(page_list);
D
David Gibson 已提交
1718 1719

	WARN_ON(!is_vm_hugetlb_page(vma));
1720 1721
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1722

A
Andrea Arcangeli 已提交
1723
	mmu_notifier_invalidate_range_start(mm, start, end);
1724
	spin_lock(&mm->page_table_lock);
1725
	for (address = start; address < end; address += sz) {
1726
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1727
		if (!ptep)
1728 1729
			continue;

1730 1731 1732
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1754
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1755
		if (huge_pte_none(pte))
D
David Gibson 已提交
1756
			continue;
1757

D
David Gibson 已提交
1758
		page = pte_page(pte);
1759 1760
		if (pte_dirty(pte))
			set_page_dirty(page);
1761
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1762
	}
L
Linus Torvalds 已提交
1763
	spin_unlock(&mm->page_table_lock);
1764
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1765
	mmu_notifier_invalidate_range_end(mm, start, end);
1766 1767 1768 1769
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1770
}
D
David Gibson 已提交
1771

1772
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1773
			  unsigned long end, struct page *ref_page)
1774
{
1775 1776 1777
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1778 1779
}

1780 1781 1782 1783 1784 1785
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1786 1787
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1824
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1825 1826
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1827
{
1828
	struct hstate *h = hstate_vma(vma);
1829
	struct page *old_page, *new_page;
1830
	int avoidcopy;
1831
	int outside_reserve = 0;
1832 1833 1834

	old_page = pte_page(pte);

1835
retry_avoidcopy:
1836 1837 1838 1839 1840
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1841
		return 0;
1842 1843
	}

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1858
	page_cache_get(old_page);
1859
	new_page = alloc_huge_page(vma, address, outside_reserve);
1860

1861
	if (IS_ERR(new_page)) {
1862
		page_cache_release(old_page);
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1881
		return -PTR_ERR(new_page);
1882 1883 1884
	}

	spin_unlock(&mm->page_table_lock);
1885
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1886
	__SetPageUptodate(new_page);
1887 1888
	spin_lock(&mm->page_table_lock);

1889
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
1890
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1891
		/* Break COW */
1892
		huge_ptep_clear_flush(vma, address, ptep);
1893 1894 1895 1896 1897 1898 1899
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1900
	return 0;
1901 1902
}

1903
/* Return the pagecache page at a given address within a VMA */
1904 1905
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
1906 1907
{
	struct address_space *mapping;
1908
	pgoff_t idx;
1909 1910

	mapping = vma->vm_file->f_mapping;
1911
	idx = vma_hugecache_offset(h, vma, address);
1912 1913 1914 1915

	return find_lock_page(mapping, idx);
}

1916
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1917
			unsigned long address, pte_t *ptep, int write_access)
1918
{
1919
	struct hstate *h = hstate_vma(vma);
1920
	int ret = VM_FAULT_SIGBUS;
1921
	pgoff_t idx;
A
Adam Litke 已提交
1922 1923 1924
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1925
	pte_t new_pte;
A
Adam Litke 已提交
1926

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1939
	mapping = vma->vm_file->f_mapping;
1940
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
1941 1942 1943 1944 1945

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1946 1947 1948
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1949
		size = i_size_read(mapping->host) >> huge_page_shift(h);
1950 1951
		if (idx >= size)
			goto out;
1952
		page = alloc_huge_page(vma, address, 0);
1953 1954
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1955 1956
			goto out;
		}
1957
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
1958
		__SetPageUptodate(page);
1959

1960 1961
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1962
			struct inode *inode = mapping->host;
1963 1964 1965 1966 1967 1968 1969 1970

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1971 1972

			spin_lock(&inode->i_lock);
1973
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
1974
			spin_unlock(&inode->i_lock);
1975 1976 1977
		} else
			lock_page(page);
	}
1978

1979 1980 1981 1982 1983 1984 1985
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
	if (write_access && !(vma->vm_flags & VM_SHARED))
1986 1987 1988 1989
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
1990

1991
	spin_lock(&mm->page_table_lock);
1992
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
1993 1994 1995
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1996
	ret = 0;
1997
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1998 1999
		goto backout;

2000 2001 2002 2003 2004 2005
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
2006
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2007 2008
	}

2009
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2010 2011
	unlock_page(page);
out:
2012
	return ret;
A
Adam Litke 已提交
2013 2014 2015

backout:
	spin_unlock(&mm->page_table_lock);
2016
backout_unlocked:
A
Adam Litke 已提交
2017 2018 2019
	unlock_page(page);
	put_page(page);
	goto out;
2020 2021
}

2022 2023 2024 2025 2026
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
2027
	int ret;
2028
	struct page *pagecache_page = NULL;
2029
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2030
	struct hstate *h = hstate_vma(vma);
2031

2032
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2033 2034 2035
	if (!ptep)
		return VM_FAULT_OOM;

2036 2037 2038 2039 2040 2041
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2042 2043
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2044
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
2045
		goto out_mutex;
2046
	}
2047

N
Nick Piggin 已提交
2048
	ret = 0;
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
	if (write_access && !pte_write(entry)) {
2059 2060
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2061
			goto out_mutex;
2062
		}
2063 2064 2065 2066 2067 2068

		if (!(vma->vm_flags & VM_SHARED))
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2069 2070
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2071 2072 2073 2074 2075 2076
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


	if (write_access) {
		if (!pte_write(entry)) {
2077 2078
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2079 2080 2081 2082 2083 2084 2085 2086 2087
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access))
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2088
	spin_unlock(&mm->page_table_lock);
2089 2090 2091 2092 2093 2094

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2095
out_mutex:
2096
	mutex_unlock(&hugetlb_instantiation_mutex);
2097 2098

	return ret;
2099 2100
}

A
Andi Kleen 已提交
2101 2102 2103 2104 2105 2106 2107 2108 2109
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2110 2111 2112 2113 2114 2115 2116 2117
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2118 2119
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2120 2121
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2122
{
2123 2124
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2125
	int remainder = *length;
2126
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2127 2128
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2129

2130
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2131
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2132 2133
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2134

A
Adam Litke 已提交
2135 2136 2137 2138 2139
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2140
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2141 2142
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2143

K
KOSAKI Motohiro 已提交
2144 2145
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2146
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2147
			int ret;
D
David Gibson 已提交
2148

A
Adam Litke 已提交
2149
			spin_unlock(&mm->page_table_lock);
2150
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2151
			spin_lock(&mm->page_table_lock);
2152
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2153
				continue;
D
David Gibson 已提交
2154

A
Adam Litke 已提交
2155 2156 2157 2158 2159 2160
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2161
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2162
		page = pte_page(huge_ptep_get(pte));
2163
same_page:
2164
		if (pages) {
K
KOSAKI Motohiro 已提交
2165 2166 2167
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2168
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2169
			get_page(pages[i]);
2170
		}
D
David Gibson 已提交
2171 2172 2173 2174 2175

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2176
		++pfn_offset;
D
David Gibson 已提交
2177 2178
		--remainder;
		++i;
2179
		if (vaddr < vma->vm_end && remainder &&
2180
				pfn_offset < pages_per_huge_page(h)) {
2181 2182 2183 2184 2185 2186
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2187
	}
2188
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2189 2190 2191 2192 2193
	*length = remainder;
	*position = vaddr;

	return i;
}
2194 2195 2196 2197 2198 2199 2200 2201

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2202
	struct hstate *h = hstate_vma(vma);
2203 2204 2205 2206

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2207
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2208
	spin_lock(&mm->page_table_lock);
2209
	for (; address < end; address += huge_page_size(h)) {
2210 2211 2212
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2213 2214
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2215
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2216 2217 2218 2219 2220 2221
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2222
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2223 2224 2225 2226

	flush_tlb_range(vma, start, end);
}

2227 2228 2229
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
2230 2231
{
	long ret, chg;
2232
	struct hstate *h = hstate_inode(inode);
2233

2234 2235 2236
	if (vma && vma->vm_flags & VM_NORESERVE)
		return 0;

2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
2246 2247 2248 2249
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2250
		chg = to - from;
2251 2252

		set_vma_resv_map(vma, resv_map);
2253
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2254 2255
	}

2256 2257
	if (chg < 0)
		return chg;
2258

2259 2260
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2261
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2262 2263
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2264
		return ret;
K
Ken Chen 已提交
2265
	}
2266 2267
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
2268 2269 2270 2271 2272
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2273
	struct hstate *h = hstate_inode(inode);
2274
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2275 2276

	spin_lock(&inode->i_lock);
2277
	inode->i_blocks -= blocks_per_huge_page(h);
K
Ken Chen 已提交
2278 2279
	spin_unlock(&inode->i_lock);

2280
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2281
	hugetlb_acct_memory(h, -(chg - freed));
2282
}