hugetlb.c 41.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/nodemask.h>
D
David Gibson 已提交
13
#include <linux/pagemap.h>
14
#include <linux/mempolicy.h>
15
#include <linux/cpuset.h>
16
#include <linux/mutex.h>
17

D
David Gibson 已提交
18 19 20 21
#include <asm/page.h>
#include <asm/pgtable.h>

#include <linux/hugetlb.h>
22
#include "internal.h"
L
Linus Torvalds 已提交
23 24

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25
static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26
static unsigned long surplus_huge_pages;
27
static unsigned long nr_overcommit_huge_pages;
L
Linus Torvalds 已提交
28
unsigned long max_huge_pages;
29
unsigned long sysctl_overcommit_huge_pages;
L
Linus Torvalds 已提交
30 31 32
static struct list_head hugepage_freelists[MAX_NUMNODES];
static unsigned int nr_huge_pages_node[MAX_NUMNODES];
static unsigned int free_huge_pages_node[MAX_NUMNODES];
33
static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
34 35
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
36
static int hugetlb_next_nid;
37

38 39 40 41
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
42

43 44 45
#define HPAGE_RESV_OWNER    (1UL << (BITS_PER_LONG - 1))
#define HPAGE_RESV_UNMAPPED (1UL << (BITS_PER_LONG - 2))
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
 */
static unsigned long vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
60
		return (unsigned long)vma->vm_private_data & ~HPAGE_RESV_MASK;
61 62 63 64 65 66
	return 0;
}

static void set_vma_resv_huge_pages(struct vm_area_struct *vma,
							unsigned long reserve)
{
67
	unsigned long flags;
68 69 70
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	VM_BUG_ON(vma->vm_flags & VM_SHARED);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
	flags = (unsigned long)vma->vm_private_data & HPAGE_RESV_MASK;
	vma->vm_private_data = (void *)(reserve | flags);
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	unsigned long reserveflags = (unsigned long)vma->vm_private_data;
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	vma->vm_private_data = (void *)(reserveflags | flags);
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	return ((unsigned long)vma->vm_private_data & flag) != 0;
86 87 88 89 90 91 92 93 94 95 96 97 98
}

/* Decrement the reserved pages in the hugepage pool by one */
static void decrement_hugepage_resv_vma(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED) {
		/* Shared mappings always use reserves */
		resv_huge_pages--;
	} else {
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
99 100
		if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
			unsigned long flags, reserve;
101
			resv_huge_pages--;
102 103
			flags = (unsigned long)vma->vm_private_data &
							HPAGE_RESV_MASK;
104
			reserve = (unsigned long)vma->vm_private_data - 1;
105
			vma->vm_private_data = (void *)(reserve | flags);
106 107 108 109
		}
	}
}

110
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
	if (!(vma->vm_flags & VM_SHARED))
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
static int vma_has_private_reserves(struct vm_area_struct *vma)
{
	if (vma->vm_flags & VM_SHARED)
		return 0;
	if (!vma_resv_huge_pages(vma))
		return 0;
	return 1;
}

128 129 130 131 132 133 134
static void clear_huge_page(struct page *page, unsigned long addr)
{
	int i;

	might_sleep();
	for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
		cond_resched();
135
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
136 137 138 139
	}
}

static void copy_huge_page(struct page *dst, struct page *src,
140
			   unsigned long addr, struct vm_area_struct *vma)
141 142 143 144 145 146
{
	int i;

	might_sleep();
	for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
		cond_resched();
147
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
148 149 150
	}
}

L
Linus Torvalds 已提交
151 152 153 154 155 156 157 158
static void enqueue_huge_page(struct page *page)
{
	int nid = page_to_nid(page);
	list_add(&page->lru, &hugepage_freelists[nid]);
	free_huge_pages++;
	free_huge_pages_node[nid]++;
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
static struct page *dequeue_huge_page(void)
{
	int nid;
	struct page *page = NULL;

	for (nid = 0; nid < MAX_NUMNODES; ++nid) {
		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			break;
		}
	}
	return page;
}

static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
178
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
179
{
180
	int nid;
L
Linus Torvalds 已提交
181
	struct page *page = NULL;
182
	struct mempolicy *mpol;
183
	nodemask_t *nodemask;
184
	struct zonelist *zonelist = huge_zonelist(vma, address,
185
					htlb_alloc_mask, &mpol, &nodemask);
186 187
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
188

189 190 191 192 193 194 195 196 197
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
	if (!vma_has_private_reserves(vma) &&
			free_huge_pages - resv_huge_pages == 0)
		return NULL;

198 199 200 201
	/* If reserves cannot be used, ensure enough pages are in the pool */
	if (avoid_reserve && free_huge_pages - resv_huge_pages == 0)
		return NULL;

202 203
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
204 205
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
A
Andrew Morton 已提交
206 207 208 209 210 211
		    !list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
212 213 214

			if (!avoid_reserve)
				decrement_hugepage_resv_vma(vma);
215

K
Ken Chen 已提交
216
			break;
A
Andrew Morton 已提交
217
		}
L
Linus Torvalds 已提交
218
	}
219
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
220 221 222
	return page;
}

A
Adam Litke 已提交
223 224 225 226 227 228 229 230 231 232 233 234
static void update_and_free_page(struct page *page)
{
	int i;
	nr_huge_pages--;
	nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
235
	arch_release_hugepage(page);
A
Adam Litke 已提交
236 237 238
	__free_pages(page, HUGETLB_PAGE_ORDER);
}

239 240
static void free_huge_page(struct page *page)
{
241
	int nid = page_to_nid(page);
242
	struct address_space *mapping;
243

244
	mapping = (struct address_space *) page_private(page);
245
	set_page_private(page, 0);
246
	BUG_ON(page_count(page));
247 248 249
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
250 251 252 253 254 255 256
	if (surplus_huge_pages_node[nid]) {
		update_and_free_page(page);
		surplus_huge_pages--;
		surplus_huge_pages_node[nid]--;
	} else {
		enqueue_huge_page(page);
	}
257
	spin_unlock(&hugetlb_lock);
258
	if (mapping)
259
		hugetlb_put_quota(mapping, 1);
260 261
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(int delta)
{
	static int prev_nid;
	int nid = prev_nid;
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);
	do {
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		/* To shrink on this node, there must be a surplus page */
		if (delta < 0 && !surplus_huge_pages_node[nid])
			continue;
		/* Surplus cannot exceed the total number of pages */
		if (delta > 0 && surplus_huge_pages_node[nid] >=
						nr_huge_pages_node[nid])
			continue;

		surplus_huge_pages += delta;
		surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
	} while (nid != prev_nid);

	prev_nid = nid;
	return ret;
}

297
static struct page *alloc_fresh_huge_page_node(int nid)
L
Linus Torvalds 已提交
298 299
{
	struct page *page;
300

301
	page = alloc_pages_node(nid,
302 303
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
304
		HUGETLB_PAGE_ORDER);
L
Linus Torvalds 已提交
305
	if (page) {
306 307
		if (arch_prepare_hugepage(page)) {
			__free_pages(page, HUGETLB_PAGE_ORDER);
308
			return NULL;
309
		}
310
		set_compound_page_dtor(page, free_huge_page);
311
		spin_lock(&hugetlb_lock);
L
Linus Torvalds 已提交
312
		nr_huge_pages++;
313
		nr_huge_pages_node[nid]++;
314
		spin_unlock(&hugetlb_lock);
N
Nick Piggin 已提交
315
		put_page(page); /* free it into the hugepage allocator */
L
Linus Torvalds 已提交
316
	}
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	return page;
}

static int alloc_fresh_huge_page(void)
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = hugetlb_next_nid;

	do {
		page = alloc_fresh_huge_page_node(hugetlb_next_nid);
		if (page)
			ret = 1;
		/*
		 * Use a helper variable to find the next node and then
		 * copy it back to hugetlb_next_nid afterwards:
		 * otherwise there's a window in which a racer might
		 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
		 * But we don't need to use a spin_lock here: it really
		 * doesn't matter if occasionally a racer chooses the
		 * same nid as we do.  Move nid forward in the mask even
		 * if we just successfully allocated a hugepage so that
		 * the next caller gets hugepages on the next node.
		 */
		next_nid = next_node(hugetlb_next_nid, node_online_map);
		if (next_nid == MAX_NUMNODES)
			next_nid = first_node(node_online_map);
		hugetlb_next_nid = next_nid;
	} while (!page && hugetlb_next_nid != start_nid);

351 352 353 354 355
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

356
	return ret;
L
Linus Torvalds 已提交
357 358
}

359 360 361 362
static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
						unsigned long address)
{
	struct page *page;
363
	unsigned int nid;
364

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
	if (surplus_huge_pages >= nr_overcommit_huge_pages) {
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
		nr_huge_pages++;
		surplus_huge_pages++;
	}
	spin_unlock(&hugetlb_lock);

398 399
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
400
					HUGETLB_PAGE_ORDER);
401 402

	spin_lock(&hugetlb_lock);
403
	if (page) {
404 405 406 407 408 409
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
410
		nid = page_to_nid(page);
411
		set_compound_page_dtor(page, free_huge_page);
412 413 414 415 416
		/*
		 * We incremented the global counters already
		 */
		nr_huge_pages_node[nid]++;
		surplus_huge_pages_node[nid]++;
417
		__count_vm_event(HTLB_BUDDY_PGALLOC);
418 419 420
	} else {
		nr_huge_pages--;
		surplus_huge_pages--;
421
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
422
	}
423
	spin_unlock(&hugetlb_lock);
424 425 426 427

	return page;
}

428 429 430 431 432 433 434 435 436 437 438 439
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
static int gather_surplus_pages(int delta)
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

	needed = (resv_huge_pages + delta) - free_huge_pages;
440 441
	if (needed <= 0) {
		resv_huge_pages += delta;
442
		return 0;
443
	}
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
		page = alloc_buddy_huge_page(NULL, 0);
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
	needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
481 482 483
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
484 485
	 */
	needed += allocated;
486
	resv_huge_pages += delta;
487 488
	ret = 0;
free:
489
	/* Free the needed pages to the hugetlb pool */
490
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
491 492
		if ((--needed) < 0)
			break;
493
		list_del(&page->lru);
494 495 496 497 498 499 500 501
		enqueue_huge_page(page);
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
502
			/*
503 504 505
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
506 507 508
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
509
			free_huge_page(page);
510
		}
511
		spin_lock(&hugetlb_lock);
512 513 514 515 516 517 518 519 520 521
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
A
Adrian Bunk 已提交
522
static void return_unused_surplus_pages(unsigned long unused_resv_pages)
523 524 525 526 527
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

528 529 530 531 532 533 534 535
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
	unsigned long remaining_iterations = num_online_nodes();

536 537 538
	/* Uncommit the reservation */
	resv_huge_pages -= unused_resv_pages;

539 540
	nr_pages = min(unused_resv_pages, surplus_huge_pages);

541
	while (remaining_iterations-- && nr_pages) {
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

		if (!surplus_huge_pages_node[nid])
			continue;

		if (!list_empty(&hugepage_freelists[nid])) {
			page = list_entry(hugepage_freelists[nid].next,
					  struct page, lru);
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
			free_huge_pages_node[nid]--;
			surplus_huge_pages--;
			surplus_huge_pages_node[nid]--;
			nr_pages--;
559
			remaining_iterations = num_online_nodes();
560 561 562 563
		}
	}
}

564
static struct page *alloc_huge_page(struct vm_area_struct *vma,
565
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
566
{
567
	struct page *page;
568 569 570 571 572 573 574 575 576
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
	unsigned int chg = 0;

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
	 */
577 578
	if (!(vma->vm_flags & VM_SHARED) &&
			!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
579 580 581 582
		chg = 1;
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
583 584

	spin_lock(&hugetlb_lock);
585
	page = dequeue_huge_page_vma(vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
586
	spin_unlock(&hugetlb_lock);
587

K
Ken Chen 已提交
588
	if (!page) {
589
		page = alloc_buddy_huge_page(vma, addr);
K
Ken Chen 已提交
590
		if (!page) {
591
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
592 593 594
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
595

596 597
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
598 599

	return page;
600 601
}

L
Linus Torvalds 已提交
602 603 604 605
static int __init hugetlb_init(void)
{
	unsigned long i;

606 607 608
	if (HPAGE_SHIFT == 0)
		return 0;

L
Linus Torvalds 已提交
609 610 611
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&hugepage_freelists[i]);

612 613
	hugetlb_next_nid = first_node(node_online_map);

L
Linus Torvalds 已提交
614
	for (i = 0; i < max_huge_pages; ++i) {
N
Nick Piggin 已提交
615
		if (!alloc_fresh_huge_page())
L
Linus Torvalds 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
			break;
	}
	max_huge_pages = free_huge_pages = nr_huge_pages = i;
	printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
	return 0;
}
module_init(hugetlb_init);

static int __init hugetlb_setup(char *s)
{
	if (sscanf(s, "%lu", &max_huge_pages) <= 0)
		max_huge_pages = 0;
	return 1;
}
__setup("hugepages=", hugetlb_setup);

632 633 634 635 636 637 638 639 640 641 642
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

L
Linus Torvalds 已提交
643 644 645 646
#ifdef CONFIG_SYSCTL
#ifdef CONFIG_HIGHMEM
static void try_to_free_low(unsigned long count)
{
647 648
	int i;

L
Linus Torvalds 已提交
649 650 651
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
		list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
652 653
			if (count >= nr_huge_pages)
				return;
L
Linus Torvalds 已提交
654 655 656 657 658
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
			update_and_free_page(page);
			free_huge_pages--;
659
			free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
660 661 662 663 664 665 666 667 668
		}
	}
}
#else
static inline void try_to_free_low(unsigned long count)
{
}
#endif

669
#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
L
Linus Torvalds 已提交
670 671
static unsigned long set_max_huge_pages(unsigned long count)
{
672
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
673

674 675 676 677
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
678 679 680 681 682 683
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
684
	 */
L
Linus Torvalds 已提交
685
	spin_lock(&hugetlb_lock);
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	while (surplus_huge_pages && count > persistent_huge_pages) {
		if (!adjust_pool_surplus(-1))
			break;
	}

	while (count > persistent_huge_pages) {
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
		ret = alloc_fresh_huge_page();
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
711 712 713 714 715 716 717 718
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
719
	 */
720 721
	min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
	min_count = max(count, min_count);
722 723
	try_to_free_low(min_count);
	while (min_count < persistent_huge_pages) {
724
		struct page *page = dequeue_huge_page();
L
Linus Torvalds 已提交
725 726 727 728
		if (!page)
			break;
		update_and_free_page(page);
	}
729 730 731 732 733 734
	while (count < persistent_huge_pages) {
		if (!adjust_pool_surplus(1))
			break;
	}
out:
	ret = persistent_huge_pages;
L
Linus Torvalds 已提交
735
	spin_unlock(&hugetlb_lock);
736
	return ret;
L
Linus Torvalds 已提交
737 738 739 740 741 742 743 744 745 746
}

int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
	max_huge_pages = set_max_huge_pages(max_huge_pages);
	return 0;
}
747 748 749 750 751 752 753 754 755 756 757 758 759

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

760 761 762 763 764
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
765 766
	spin_lock(&hugetlb_lock);
	nr_overcommit_huge_pages = sysctl_overcommit_huge_pages;
767 768 769 770
	spin_unlock(&hugetlb_lock);
	return 0;
}

L
Linus Torvalds 已提交
771 772 773 774 775 776 777
#endif /* CONFIG_SYSCTL */

int hugetlb_report_meminfo(char *buf)
{
	return sprintf(buf,
			"HugePages_Total: %5lu\n"
			"HugePages_Free:  %5lu\n"
778
			"HugePages_Rsvd:  %5lu\n"
779
			"HugePages_Surp:  %5lu\n"
L
Linus Torvalds 已提交
780 781 782
			"Hugepagesize:    %5lu kB\n",
			nr_huge_pages,
			free_huge_pages,
783
			resv_huge_pages,
784
			surplus_huge_pages,
L
Linus Torvalds 已提交
785 786 787 788 789 790 791
			HPAGE_SIZE/1024);
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
792 793
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
L
Linus Torvalds 已提交
794
		nid, nr_huge_pages_node[nid],
795 796
		nid, free_huge_pages_node[nid],
		nid, surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
797 798 799 800 801 802 803 804
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
	return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
}

M
Mel Gorman 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
static int hugetlb_acct_memory(long delta)
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
		if (gather_surplus_pages(delta) < 0)
			goto out;

		if (delta > cpuset_mems_nr(free_huge_pages_node)) {
			return_unused_surplus_pages(delta);
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
		return_unused_surplus_pages((unsigned long) -delta);

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

846 847 848 849 850 851 852
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
	unsigned long reserve = vma_resv_huge_pages(vma);
	if (reserve)
		hugetlb_acct_memory(-reserve);
}

L
Linus Torvalds 已提交
853 854 855 856 857 858
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
859
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
860 861
{
	BUG();
N
Nick Piggin 已提交
862
	return 0;
L
Linus Torvalds 已提交
863 864 865
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
866
	.fault = hugetlb_vm_op_fault,
867
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
868 869
};

870 871
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
872 873 874
{
	pte_t entry;

875
	if (writable) {
D
David Gibson 已提交
876 877 878
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
879
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
880 881 882 883 884 885 886
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

887 888 889 890 891
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

892 893
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
894 895
		update_mmu_cache(vma, address, entry);
	}
896 897 898
}


D
David Gibson 已提交
899 900 901 902 903
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
904
	unsigned long addr;
905 906 907
	int cow;

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
908

909
	for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
H
Hugh Dickins 已提交
910 911 912
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
D
David Gibson 已提交
913 914 915
		dst_pte = huge_pte_alloc(dst, addr);
		if (!dst_pte)
			goto nomem;
916 917 918 919 920

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
921
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
922
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
923
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
924
			if (cow)
925 926
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
927 928 929 930 931
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
932
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
933 934 935 936 937 938 939
	}
	return 0;

nomem:
	return -ENOMEM;
}

940
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
941
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
942 943 944
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
945
	pte_t *ptep;
D
David Gibson 已提交
946 947
	pte_t pte;
	struct page *page;
948
	struct page *tmp;
949 950 951 952 953
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
954
	LIST_HEAD(page_list);
D
David Gibson 已提交
955 956 957 958 959

	WARN_ON(!is_vm_hugetlb_page(vma));
	BUG_ON(start & ~HPAGE_MASK);
	BUG_ON(end & ~HPAGE_MASK);

960
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
961
	for (address = start; address < end; address += HPAGE_SIZE) {
962
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
963
		if (!ptep)
964 965
			continue;

966 967 968
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

990
		pte = huge_ptep_get_and_clear(mm, address, ptep);
991
		if (huge_pte_none(pte))
D
David Gibson 已提交
992
			continue;
993

D
David Gibson 已提交
994
		page = pte_page(pte);
995 996
		if (pte_dirty(pte))
			set_page_dirty(page);
997
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
998
	}
L
Linus Torvalds 已提交
999
	spin_unlock(&mm->page_table_lock);
1000
	flush_tlb_range(vma, start, end);
1001 1002 1003 1004
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1005
}
D
David Gibson 已提交
1006

1007
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1008
			  unsigned long end, struct page *ref_page)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	/*
	 * It is undesirable to test vma->vm_file as it should be non-null
	 * for valid hugetlb area. However, vm_file will be NULL in the error
	 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
	 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
	 * to clean up. Since no pte has actually been setup, it is safe to
	 * do nothing in this case.
	 */
	if (vma->vm_file) {
		spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1020
		__unmap_hugepage_range(vma, start, end, ref_page);
1021 1022 1023 1024
		spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
	}
}

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
int unmap_ref_private(struct mm_struct *mm,
					struct vm_area_struct *vma,
					struct page *page,
					unsigned long address)
{
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
	address = address & huge_page_mask(hstate_vma(vma));
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
				address, address + HPAGE_SIZE,
				page);
	}

	return 1;
}

1071
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1072 1073
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1074 1075
{
	struct page *old_page, *new_page;
1076
	int avoidcopy;
1077
	int outside_reserve = 0;
1078 1079 1080

	old_page = pte_page(pte);

1081
retry_avoidcopy:
1082 1083 1084 1085 1086
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1087
		return 0;
1088 1089
	}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
	if (!(vma->vm_flags & VM_SHARED) &&
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1104
	page_cache_get(old_page);
1105
	new_page = alloc_huge_page(vma, address, outside_reserve);
1106

1107
	if (IS_ERR(new_page)) {
1108
		page_cache_release(old_page);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1127
		return -PTR_ERR(new_page);
1128 1129 1130
	}

	spin_unlock(&mm->page_table_lock);
1131
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1132
	__SetPageUptodate(new_page);
1133 1134 1135
	spin_lock(&mm->page_table_lock);

	ptep = huge_pte_offset(mm, address & HPAGE_MASK);
1136
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
1137
		/* Break COW */
1138
		huge_ptep_clear_flush(vma, address, ptep);
1139 1140 1141 1142 1143 1144 1145
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
1146
	return 0;
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
/* Return the pagecache page at a given address within a VMA */
static struct page *hugetlbfs_pagecache_page(struct vm_area_struct *vma,
			unsigned long address)
{
	struct address_space *mapping;
	unsigned long idx;

	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	return find_lock_page(mapping, idx);
}

1163
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1164
			unsigned long address, pte_t *ptep, int write_access)
1165 1166
{
	int ret = VM_FAULT_SIGBUS;
A
Adam Litke 已提交
1167 1168 1169 1170
	unsigned long idx;
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
1171
	pte_t new_pte;
A
Adam Litke 已提交
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
1185 1186 1187 1188 1189 1190 1191 1192
	mapping = vma->vm_file->f_mapping;
	idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
		+ (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
1193 1194 1195
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
1196 1197 1198
		size = i_size_read(mapping->host) >> HPAGE_SHIFT;
		if (idx >= size)
			goto out;
1199
		page = alloc_huge_page(vma, address, 0);
1200 1201
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
1202 1203
			goto out;
		}
1204
		clear_huge_page(page, address);
N
Nick Piggin 已提交
1205
		__SetPageUptodate(page);
1206

1207 1208
		if (vma->vm_flags & VM_SHARED) {
			int err;
K
Ken Chen 已提交
1209
			struct inode *inode = mapping->host;
1210 1211 1212 1213 1214 1215 1216 1217

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
1218 1219 1220 1221

			spin_lock(&inode->i_lock);
			inode->i_blocks += BLOCKS_PER_HUGEPAGE;
			spin_unlock(&inode->i_lock);
1222 1223 1224
		} else
			lock_page(page);
	}
1225

1226
	spin_lock(&mm->page_table_lock);
A
Adam Litke 已提交
1227 1228 1229 1230
	size = i_size_read(mapping->host) >> HPAGE_SHIFT;
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
1231
	ret = 0;
1232
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
1233 1234
		goto backout;

1235 1236 1237 1238 1239 1240
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

	if (write_access && !(vma->vm_flags & VM_SHARED)) {
		/* Optimization, do the COW without a second fault */
1241
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
1242 1243
	}

1244
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
1245 1246
	unlock_page(page);
out:
1247
	return ret;
A
Adam Litke 已提交
1248 1249 1250 1251 1252 1253

backout:
	spin_unlock(&mm->page_table_lock);
	unlock_page(page);
	put_page(page);
	goto out;
1254 1255
}

1256 1257 1258 1259 1260
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, int write_access)
{
	pte_t *ptep;
	pte_t entry;
1261
	int ret;
1262
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
1263 1264 1265 1266 1267

	ptep = huge_pte_alloc(mm, address);
	if (!ptep)
		return VM_FAULT_OOM;

1268 1269 1270 1271 1272 1273
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
1274 1275
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
1276 1277 1278 1279
		ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
		mutex_unlock(&hugetlb_instantiation_mutex);
		return ret;
	}
1280

N
Nick Piggin 已提交
1281
	ret = 0;
1282 1283 1284

	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
1285
	if (likely(pte_same(entry, huge_ptep_get(ptep))))
1286 1287 1288 1289 1290 1291 1292 1293 1294
		if (write_access && !pte_write(entry)) {
			struct page *page;
			page = hugetlbfs_pagecache_page(vma, address);
			ret = hugetlb_cow(mm, vma, address, ptep, entry, page);
			if (page) {
				unlock_page(page);
				put_page(page);
			}
		}
1295
	spin_unlock(&mm->page_table_lock);
1296
	mutex_unlock(&hugetlb_instantiation_mutex);
1297 1298

	return ret;
1299 1300
}

D
David Gibson 已提交
1301 1302
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
1303 1304
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
1305
{
1306 1307
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
1308 1309
	int remainder = *length;

1310
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
1311
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
1312 1313
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
1314

A
Adam Litke 已提交
1315 1316 1317 1318 1319 1320
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
		pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
D
David Gibson 已提交
1321

1322 1323
		if (!pte || huge_pte_none(huge_ptep_get(pte)) ||
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
1324
			int ret;
D
David Gibson 已提交
1325

A
Adam Litke 已提交
1326
			spin_unlock(&mm->page_table_lock);
1327
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
1328
			spin_lock(&mm->page_table_lock);
1329
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
1330
				continue;
D
David Gibson 已提交
1331

A
Adam Litke 已提交
1332 1333 1334 1335 1336 1337
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

1338
		pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
1339
		page = pte_page(huge_ptep_get(pte));
1340
same_page:
1341 1342
		if (pages) {
			get_page(page);
1343
			pages[i] = page + pfn_offset;
1344
		}
D
David Gibson 已提交
1345 1346 1347 1348 1349

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
1350
		++pfn_offset;
D
David Gibson 已提交
1351 1352
		--remainder;
		++i;
1353 1354 1355 1356 1357 1358 1359 1360
		if (vaddr < vma->vm_end && remainder &&
				pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
1361
	}
1362
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
1363 1364 1365 1366 1367
	*length = remainder;
	*position = vaddr;

	return i;
}
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

1380
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1381 1382 1383 1384 1385
	spin_lock(&mm->page_table_lock);
	for (; address < end; address += HPAGE_SIZE) {
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
1386 1387
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
1388
		if (!huge_pte_none(huge_ptep_get(ptep))) {
1389 1390 1391 1392 1393 1394
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
1395
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1396 1397 1398 1399

	flush_tlb_range(vma, start, end);
}

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
S
Simon Arlott 已提交
1454
	 * size such that we can guarantee to record the reservation. */
1455 1456
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1457
		if (!nrg)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

1521 1522 1523
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
					struct vm_area_struct *vma)
1524 1525 1526
{
	long ret, chg;

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
	if (!vma || vma->vm_flags & VM_SHARED)
		chg = region_chg(&inode->i_mapping->private_list, from, to);
	else {
		chg = to - from;
		set_vma_resv_huge_pages(vma, chg);
1538
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
1539 1540
	}

1541 1542
	if (chg < 0)
		return chg;
1543

1544 1545
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
1546
	ret = hugetlb_acct_memory(chg);
K
Ken Chen 已提交
1547 1548
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
1549
		return ret;
K
Ken Chen 已提交
1550
	}
1551 1552
	if (!vma || vma->vm_flags & VM_SHARED)
		region_add(&inode->i_mapping->private_list, from, to);
1553 1554 1555 1556 1557 1558
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
1559 1560 1561 1562 1563

	spin_lock(&inode->i_lock);
	inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
	spin_unlock(&inode->i_lock);

1564 1565
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
	hugetlb_acct_memory(-(chg - freed));
1566
}