hugetlb.c 82.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2
/*
 * Generic hugetlb support.
3
 * (C) Nadia Yvette Chambers, April 2004
L
Linus Torvalds 已提交
4 5 6 7 8
 */
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
9
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
10 11
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
12
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
13
#include <linux/nodemask.h>
D
David Gibson 已提交
14
#include <linux/pagemap.h>
15
#include <linux/mempolicy.h>
16
#include <linux/cpuset.h>
17
#include <linux/mutex.h>
18
#include <linux/bootmem.h>
19
#include <linux/sysfs.h>
20
#include <linux/slab.h>
21
#include <linux/rmap.h>
22 23
#include <linux/swap.h>
#include <linux/swapops.h>
24

D
David Gibson 已提交
25 26
#include <asm/page.h>
#include <asm/pgtable.h>
27
#include <asm/tlb.h>
D
David Gibson 已提交
28

29
#include <linux/io.h>
D
David Gibson 已提交
30
#include <linux/hugetlb.h>
31
#include <linux/hugetlb_cgroup.h>
32
#include <linux/node.h>
33
#include "internal.h"
L
Linus Torvalds 已提交
34 35

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
36 37
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
38

39
int hugetlb_max_hstate __read_mostly;
40 41 42
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

43 44
__initdata LIST_HEAD(huge_boot_pages);

45 46 47
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
48
static unsigned long __initdata default_hstate_size;
49

50 51 52
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
53
DEFINE_SPINLOCK(hugetlb_lock);
54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
{
	bool free = (spool->count == 0) && (spool->used_hpages == 0);

	spin_unlock(&spool->lock);

	/* If no pages are used, and no other handles to the subpool
	 * remain, free the subpool the subpool remain */
	if (free)
		kfree(spool);
}

struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
{
	struct hugepage_subpool *spool;

	spool = kmalloc(sizeof(*spool), GFP_KERNEL);
	if (!spool)
		return NULL;

	spin_lock_init(&spool->lock);
	spool->count = 1;
	spool->max_hpages = nr_blocks;
	spool->used_hpages = 0;

	return spool;
}

void hugepage_put_subpool(struct hugepage_subpool *spool)
{
	spin_lock(&spool->lock);
	BUG_ON(!spool->count);
	spool->count--;
	unlock_or_release_subpool(spool);
}

static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
				      long delta)
{
	int ret = 0;

	if (!spool)
		return 0;

	spin_lock(&spool->lock);
	if ((spool->used_hpages + delta) <= spool->max_hpages) {
		spool->used_hpages += delta;
	} else {
		ret = -ENOMEM;
	}
	spin_unlock(&spool->lock);

	return ret;
}

static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
				       long delta)
{
	if (!spool)
		return;

	spin_lock(&spool->lock);
	spool->used_hpages -= delta;
	/* If hugetlbfs_put_super couldn't free spool due to
	* an outstanding quota reference, free it now. */
	unlock_or_release_subpool(spool);
}

static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
{
	return HUGETLBFS_SB(inode->i_sb)->spool;
}

static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
{
	return subpool_inode(vma->vm_file->f_dentry->d_inode);
}

133 134 135
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
136 137 138 139 140 141
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
142
 *	down_write(&mm->mmap_sem);
143
 * or
144 145
 *	down_read(&mm->mmap_sem);
 *	mutex_lock(&hugetlb_instantiation_mutex);
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

L
Lucas De Marchi 已提交
226
		/* We overlap with this area, if it extends further than
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

268 269 270 271 272 273 274
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
275 276
		long seg_from;
		long seg_to;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

292 293 294 295
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
296 297
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
298
{
299 300
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
301 302
}

303 304 305 306 307 308
pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
				     unsigned long address)
{
	return vma_hugecache_offset(hstate_vma(vma), vma, address);
}

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
324
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
325

326 327 328 329 330 331 332 333 334 335 336 337 338
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

339 340 341 342 343 344 345
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
346
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
347

348 349 350 351 352 353 354 355 356
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
357 358 359 360 361 362 363 364 365
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
366
 */
367 368 369 370 371 372 373 374 375 376 377
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

378 379 380 381 382
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

383
static struct resv_map *resv_map_alloc(void)
384 385 386 387 388 389 390 391 392 393 394
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

395
static void resv_map_release(struct kref *ref)
396 397 398 399 400 401 402 403 404
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
405 406
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
407
	if (!(vma->vm_flags & VM_MAYSHARE))
408 409
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
410
	return NULL;
411 412
}

413
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
414 415
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
416
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
417

418 419
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
420 421 422 423 424
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
425
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
426 427

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
428 429 430 431 432
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
433 434

	return (get_vma_private_data(vma) & flag) != 0;
435 436 437
}

/* Decrement the reserved pages in the hugepage pool by one */
438 439
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
440
{
441 442 443
	if (vma->vm_flags & VM_NORESERVE)
		return;

444
	if (vma->vm_flags & VM_MAYSHARE) {
445
		/* Shared mappings always use reserves */
446
		h->resv_huge_pages--;
447
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
448 449 450 451
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
452
		h->resv_huge_pages--;
453 454 455
	}
}

456
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
457 458 459
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
460
	if (!(vma->vm_flags & VM_MAYSHARE))
461 462 463 464
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
465
static int vma_has_reserves(struct vm_area_struct *vma)
466
{
467
	if (vma->vm_flags & VM_MAYSHARE)
468 469 470 471
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
472 473
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void copy_gigantic_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	struct hstate *h = page_hstate(src);

	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

508
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
509 510
{
	int nid = page_to_nid(page);
511
	list_move(&page->lru, &h->hugepage_freelists[nid]);
512 513
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
514 515
}

516 517 518 519 520 521 522
static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	if (list_empty(&h->hugepage_freelists[nid]))
		return NULL;
	page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
523
	list_move(&page->lru, &h->hugepage_activelist);
524
	set_page_refcounted(page);
525 526 527 528 529
	h->free_huge_pages--;
	h->free_huge_pages_node[nid]--;
	return page;
}

530 531
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
532
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
533
{
534
	struct page *page = NULL;
535
	struct mempolicy *mpol;
536
	nodemask_t *nodemask;
537
	struct zonelist *zonelist;
538 539
	struct zone *zone;
	struct zoneref *z;
540
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
541

542 543
retry_cpuset:
	cpuset_mems_cookie = get_mems_allowed();
544 545
	zonelist = huge_zonelist(vma, address,
					htlb_alloc_mask, &mpol, &nodemask);
546 547 548 549 550
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
551
	if (!vma_has_reserves(vma) &&
552
			h->free_huge_pages - h->resv_huge_pages == 0)
553
		goto err;
554

555
	/* If reserves cannot be used, ensure enough pages are in the pool */
556
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
557
		goto err;
558

559 560
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
561 562 563 564 565 566 567
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
			page = dequeue_huge_page_node(h, zone_to_nid(zone));
			if (page) {
				if (!avoid_reserve)
					decrement_hugepage_resv_vma(h, vma);
				break;
			}
A
Andrew Morton 已提交
568
		}
L
Linus Torvalds 已提交
569
	}
570

571
	mpol_cond_put(mpol);
572 573
	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
		goto retry_cpuset;
L
Linus Torvalds 已提交
574
	return page;
575 576 577 578

err:
	mpol_cond_put(mpol);
	return NULL;
L
Linus Torvalds 已提交
579 580
}

581
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
582 583
{
	int i;
584

585 586
	VM_BUG_ON(h->order >= MAX_ORDER);

587 588 589
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
590 591 592 593
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
				1 << PG_referenced | 1 << PG_dirty |
				1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1 << PG_writeback);
A
Adam Litke 已提交
594
	}
595
	VM_BUG_ON(hugetlb_cgroup_from_page(page));
A
Adam Litke 已提交
596 597
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
598
	arch_release_hugepage(page);
599
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
600 601
}

602 603 604 605 606 607 608 609 610 611 612
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

613 614
static void free_huge_page(struct page *page)
{
615 616 617 618
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
619
	struct hstate *h = page_hstate(page);
620
	int nid = page_to_nid(page);
621 622
	struct hugepage_subpool *spool =
		(struct hugepage_subpool *)page_private(page);
623

624
	set_page_private(page, 0);
625
	page->mapping = NULL;
626
	BUG_ON(page_count(page));
627
	BUG_ON(page_mapcount(page));
628 629

	spin_lock(&hugetlb_lock);
630 631
	hugetlb_cgroup_uncharge_page(hstate_index(h),
				     pages_per_huge_page(h), page);
632
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
633 634
		/* remove the page from active list */
		list_del(&page->lru);
635 636 637
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
638
	} else {
639
		arch_clear_hugepage_flags(page);
640
		enqueue_huge_page(h, page);
641
	}
642
	spin_unlock(&hugetlb_lock);
643
	hugepage_subpool_put_pages(spool, 1);
644 645
}

646
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
647
{
648
	INIT_LIST_HEAD(&page->lru);
649 650
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
651
	set_hugetlb_cgroup(page, NULL);
652 653
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
654 655 656 657
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

658 659 660 661 662 663 664 665 666 667 668
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
669
		set_page_count(p, 0);
670 671 672 673
		p->first_page = page;
	}
}

A
Andrew Morton 已提交
674 675 676 677 678
/*
 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
 * transparent huge pages.  See the PageTransHuge() documentation for more
 * details.
 */
679 680 681 682 683 684 685 686 687 688 689 690
int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}
691 692
EXPORT_SYMBOL_GPL(PageHuge);

693
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
694 695
{
	struct page *page;
696

697 698 699
	if (h->order >= MAX_ORDER)
		return NULL;

700
	page = alloc_pages_exact_node(nid,
701 702
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
703
		huge_page_order(h));
L
Linus Torvalds 已提交
704
	if (page) {
705
		if (arch_prepare_hugepage(page)) {
706
			__free_pages(page, huge_page_order(h));
707
			return NULL;
708
		}
709
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
710
	}
711 712 713 714

	return page;
}

715
/*
716 717 718 719 720
 * common helper functions for hstate_next_node_to_{alloc|free}.
 * We may have allocated or freed a huge page based on a different
 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
 * be outside of *nodes_allowed.  Ensure that we use an allowed
 * node for alloc or free.
721
 */
722
static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
723
{
724
	nid = next_node(nid, *nodes_allowed);
725
	if (nid == MAX_NUMNODES)
726
		nid = first_node(*nodes_allowed);
727 728 729 730 731
	VM_BUG_ON(nid >= MAX_NUMNODES);

	return nid;
}

732 733 734 735 736 737 738
static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
{
	if (!node_isset(nid, *nodes_allowed))
		nid = next_node_allowed(nid, nodes_allowed);
	return nid;
}

739
/*
740 741 742 743
 * returns the previously saved node ["this node"] from which to
 * allocate a persistent huge page for the pool and advance the
 * next node from which to allocate, handling wrap at end of node
 * mask.
744
 */
745 746
static int hstate_next_node_to_alloc(struct hstate *h,
					nodemask_t *nodes_allowed)
747
{
748 749 750 751 752 753
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
754 755

	return nid;
756 757
}

758
static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
759 760 761 762 763 764
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

765
	start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
766
	next_nid = start_nid;
767 768

	do {
769
		page = alloc_fresh_huge_page_node(h, next_nid);
770
		if (page) {
771
			ret = 1;
772 773
			break;
		}
774
		next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
775
	} while (next_nid != start_nid);
776

777 778 779 780 781
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

782
	return ret;
L
Linus Torvalds 已提交
783 784
}

785
/*
786 787 788 789
 * helper for free_pool_huge_page() - return the previously saved
 * node ["this node"] from which to free a huge page.  Advance the
 * next node id whether or not we find a free huge page to free so
 * that the next attempt to free addresses the next node.
790
 */
791
static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
792
{
793 794 795 796 797 798
	int nid;

	VM_BUG_ON(!nodes_allowed);

	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
799 800

	return nid;
801 802 803 804 805 806 807 808
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
809 810
static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
							 bool acct_surplus)
811 812 813 814 815
{
	int start_nid;
	int next_nid;
	int ret = 0;

816
	start_nid = hstate_next_node_to_free(h, nodes_allowed);
817 818 819
	next_nid = start_nid;

	do {
820 821 822 823 824 825
		/*
		 * If we're returning unused surplus pages, only examine
		 * nodes with surplus pages.
		 */
		if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
		    !list_empty(&h->hugepage_freelists[next_nid])) {
826 827 828 829 830 831
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
832 833 834 835
			if (acct_surplus) {
				h->surplus_huge_pages--;
				h->surplus_huge_pages_node[next_nid]--;
			}
836 837
			update_and_free_page(h, page);
			ret = 1;
838
			break;
839
		}
840
		next_nid = hstate_next_node_to_free(h, nodes_allowed);
841
	} while (next_nid != start_nid);
842 843 844 845

	return ret;
}

846
static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
847 848
{
	struct page *page;
849
	unsigned int r_nid;
850

851 852 853
	if (h->order >= MAX_ORDER)
		return NULL;

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
878
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
879 880 881
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
882 883
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
884 885 886
	}
	spin_unlock(&hugetlb_lock);

887 888 889 890 891 892 893 894
	if (nid == NUMA_NO_NODE)
		page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
				   __GFP_REPEAT|__GFP_NOWARN,
				   huge_page_order(h));
	else
		page = alloc_pages_exact_node(nid,
			htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
			__GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
895

896 897
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
898
		page = NULL;
899 900
	}

901
	spin_lock(&hugetlb_lock);
902
	if (page) {
903
		INIT_LIST_HEAD(&page->lru);
904
		r_nid = page_to_nid(page);
905
		set_compound_page_dtor(page, free_huge_page);
906
		set_hugetlb_cgroup(page, NULL);
907 908 909
		/*
		 * We incremented the global counters already
		 */
910 911
		h->nr_huge_pages_node[r_nid]++;
		h->surplus_huge_pages_node[r_nid]++;
912
		__count_vm_event(HTLB_BUDDY_PGALLOC);
913
	} else {
914 915
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
916
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
917
	}
918
	spin_unlock(&hugetlb_lock);
919 920 921 922

	return page;
}

923 924 925 926 927 928 929 930 931 932 933 934 935
/*
 * This allocation function is useful in the context where vma is irrelevant.
 * E.g. soft-offlining uses this function because it only cares physical
 * address of error page.
 */
struct page *alloc_huge_page_node(struct hstate *h, int nid)
{
	struct page *page;

	spin_lock(&hugetlb_lock);
	page = dequeue_huge_page_node(h, nid);
	spin_unlock(&hugetlb_lock);

936
	if (!page)
937 938 939 940 941
		page = alloc_buddy_huge_page(h, nid);

	return page;
}

942
/*
L
Lucas De Marchi 已提交
943
 * Increase the hugetlb pool such that it can accommodate a reservation
944 945
 * of size 'delta'.
 */
946
static int gather_surplus_pages(struct hstate *h, int delta)
947 948 949 950 951
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;
952
	bool alloc_ok = true;
953

954
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
955
	if (needed <= 0) {
956
		h->resv_huge_pages += delta;
957
		return 0;
958
	}
959 960 961 962 963 964 965 966

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
967
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
968 969 970 971
		if (!page) {
			alloc_ok = false;
			break;
		}
972 973
		list_add(&page->lru, &surplus_list);
	}
974
	allocated += i;
975 976 977 978 979 980

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
981 982
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
983 984 985 986 987 988 989 990 991 992
	if (needed > 0) {
		if (alloc_ok)
			goto retry;
		/*
		 * We were not able to allocate enough pages to
		 * satisfy the entire reservation so we free what
		 * we've allocated so far.
		 */
		goto free;
	}
993 994
	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
L
Lucas De Marchi 已提交
995
	 * needed to accommodate the reservation.  Add the appropriate number
996
	 * of pages to the hugetlb pool and free the extras back to the buddy
997 998 999
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
1000 1001
	 */
	needed += allocated;
1002
	h->resv_huge_pages += delta;
1003
	ret = 0;
1004

1005
	/* Free the needed pages to the hugetlb pool */
1006
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1007 1008
		if ((--needed) < 0)
			break;
1009 1010 1011 1012 1013 1014
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
1015
		enqueue_huge_page(h, page);
1016
	}
1017
free:
1018
	spin_unlock(&hugetlb_lock);
1019 1020 1021 1022

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1023
			put_page(page);
1024
		}
1025
	}
1026
	spin_lock(&hugetlb_lock);
1027 1028 1029 1030 1031 1032 1033 1034

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
1035
 * Called with hugetlb_lock held.
1036
 */
1037 1038
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
1039 1040 1041
{
	unsigned long nr_pages;

1042
	/* Uncommit the reservation */
1043
	h->resv_huge_pages -= unused_resv_pages;
1044

1045 1046 1047 1048
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

1049
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1050

1051 1052
	/*
	 * We want to release as many surplus pages as possible, spread
1053 1054 1055 1056 1057
	 * evenly across all nodes with memory. Iterate across these nodes
	 * until we can no longer free unreserved surplus pages. This occurs
	 * when the nodes with surplus pages have no free pages.
	 * free_pool_huge_page() will balance the the freed pages across the
	 * on-line nodes with memory and will handle the hstate accounting.
1058 1059
	 */
	while (nr_pages--) {
1060
		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1061
			break;
1062 1063 1064
	}
}

1065 1066 1067
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
1068 1069 1070 1071 1072 1073
 * reservation and actually increase subpool usage before an allocation
 * can occur.  Where any new reservation would be required the
 * reservation change is prepared, but not committed.  Once the page
 * has been allocated from the subpool and instantiated the change should
 * be committed via vma_commit_reservation.  No action is required on
 * failure.
1074
 */
1075
static long vma_needs_reservation(struct hstate *h,
1076
			struct vm_area_struct *vma, unsigned long addr)
1077 1078 1079 1080
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1081
	if (vma->vm_flags & VM_MAYSHARE) {
1082
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1083 1084 1085
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

1086 1087
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
1088

1089
	} else  {
1090
		long err;
1091
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1092 1093 1094 1095 1096 1097 1098
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
1099
}
1100 1101
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
1102 1103 1104 1105
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

1106
	if (vma->vm_flags & VM_MAYSHARE) {
1107
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1108
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
1109 1110

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1111
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1112 1113 1114 1115
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
1116 1117 1118
	}
}

1119
static struct page *alloc_huge_page(struct vm_area_struct *vma,
1120
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
1121
{
1122
	struct hugepage_subpool *spool = subpool_vma(vma);
1123
	struct hstate *h = hstate_vma(vma);
1124
	struct page *page;
1125
	long chg;
1126 1127
	int ret, idx;
	struct hugetlb_cgroup *h_cg;
1128

1129
	idx = hstate_index(h);
1130
	/*
1131 1132 1133 1134 1135 1136
	 * Processes that did not create the mapping will have no
	 * reserves and will not have accounted against subpool
	 * limit. Check that the subpool limit can be made before
	 * satisfying the allocation MAP_NORESERVE mappings may also
	 * need pages and subpool limit allocated allocated if no reserve
	 * mapping overlaps.
1137
	 */
1138
	chg = vma_needs_reservation(h, vma, addr);
1139
	if (chg < 0)
1140
		return ERR_PTR(-ENOMEM);
1141
	if (chg)
1142
		if (hugepage_subpool_get_pages(spool, chg))
1143
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1144

1145 1146 1147 1148 1149
	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
	if (ret) {
		hugepage_subpool_put_pages(spool, chg);
		return ERR_PTR(-ENOSPC);
	}
L
Linus Torvalds 已提交
1150
	spin_lock(&hugetlb_lock);
1151
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1152 1153 1154 1155 1156 1157 1158
	if (page) {
		/* update page cgroup details */
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
		spin_unlock(&hugetlb_lock);
	} else {
		spin_unlock(&hugetlb_lock);
1159
		page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
K
Ken Chen 已提交
1160
		if (!page) {
1161 1162 1163
			hugetlb_cgroup_uncharge_cgroup(idx,
						       pages_per_huge_page(h),
						       h_cg);
1164
			hugepage_subpool_put_pages(spool, chg);
1165
			return ERR_PTR(-ENOSPC);
K
Ken Chen 已提交
1166
		}
1167
		spin_lock(&hugetlb_lock);
1168 1169
		hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h),
					     h_cg, page);
1170 1171
		list_move(&page->lru, &h->hugepage_activelist);
		spin_unlock(&hugetlb_lock);
K
Ken Chen 已提交
1172
	}
1173

1174
	set_page_private(page, (unsigned long)spool);
1175

1176
	vma_commit_reservation(h, vma, addr);
1177
	return page;
1178 1179
}

1180
int __weak alloc_bootmem_huge_page(struct hstate *h)
1181 1182
{
	struct huge_bootmem_page *m;
1183
	int nr_nodes = nodes_weight(node_states[N_MEMORY]);
1184 1185 1186 1187 1188

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1189
				NODE_DATA(hstate_next_node_to_alloc(h,
1190
						&node_states[N_MEMORY])),
1191 1192 1193 1194 1195 1196 1197 1198 1199
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1200
			goto found;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
		}
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1214 1215 1216 1217 1218 1219 1220 1221
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1222 1223 1224 1225 1226 1227 1228
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct hstate *h = m->hstate;
1229 1230 1231 1232 1233 1234 1235 1236 1237
		struct page *page;

#ifdef CONFIG_HIGHMEM
		page = pfn_to_page(m->phys >> PAGE_SHIFT);
		free_bootmem_late((unsigned long)m,
				  sizeof(struct huge_bootmem_page));
#else
		page = virt_to_page(m);
#endif
1238 1239
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1240
		prep_compound_huge_page(page, h->order);
1241
		prep_new_huge_page(h, page, page_to_nid(page));
1242 1243 1244 1245 1246 1247 1248 1249
		/*
		 * If we had gigantic hugepages allocated at boot time, we need
		 * to restore the 'stolen' pages to totalram_pages in order to
		 * fix confusing memory reports from free(1) and another
		 * side-effects, like CommitLimit going negative.
		 */
		if (h->order > (MAX_ORDER - 1))
			totalram_pages += 1 << h->order;
1250 1251 1252
	}
}

1253
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1254 1255
{
	unsigned long i;
1256

1257
	for (i = 0; i < h->max_huge_pages; ++i) {
1258 1259 1260
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
1261
		} else if (!alloc_fresh_huge_page(h,
1262
					 &node_states[N_MEMORY]))
L
Linus Torvalds 已提交
1263 1264
			break;
	}
1265
	h->max_huge_pages = i;
1266 1267 1268 1269 1270 1271 1272
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1273 1274 1275
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1276 1277 1278
	}
}

A
Andi Kleen 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1290 1291 1292 1293 1294
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1295 1296 1297 1298 1299
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1300 1301 1302
	}
}

L
Linus Torvalds 已提交
1303
#ifdef CONFIG_HIGHMEM
1304 1305
static void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1306
{
1307 1308
	int i;

1309 1310 1311
	if (h->order >= MAX_ORDER)
		return;

1312
	for_each_node_mask(i, *nodes_allowed) {
L
Linus Torvalds 已提交
1313
		struct page *page, *next;
1314 1315 1316
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1317
				return;
L
Linus Torvalds 已提交
1318 1319 1320
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1321
			update_and_free_page(h, page);
1322 1323
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1324 1325 1326 1327
		}
	}
}
#else
1328 1329
static inline void try_to_free_low(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1330 1331 1332 1333
{
}
#endif

1334 1335 1336 1337 1338
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
1339 1340
static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
				int delta)
1341
{
1342
	int start_nid, next_nid;
1343 1344 1345 1346
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1347
	if (delta < 0)
1348
		start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1349
	else
1350
		start_nid = hstate_next_node_to_free(h, nodes_allowed);
1351 1352 1353 1354 1355 1356 1357 1358
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			/*
			 * To shrink on this node, there must be a surplus page
			 */
1359
			if (!h->surplus_huge_pages_node[nid]) {
1360 1361
				next_nid = hstate_next_node_to_alloc(h,
								nodes_allowed);
1362
				continue;
1363
			}
1364 1365 1366 1367 1368 1369
		}
		if (delta > 0) {
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1370
						h->nr_huge_pages_node[nid]) {
1371 1372
				next_nid = hstate_next_node_to_free(h,
								nodes_allowed);
1373
				continue;
1374
			}
1375
		}
1376 1377 1378 1379 1380

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1381
	} while (next_nid != start_nid);
1382 1383 1384 1385

	return ret;
}

1386
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1387 1388
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
						nodemask_t *nodes_allowed)
L
Linus Torvalds 已提交
1389
{
1390
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1391

1392 1393 1394
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1395 1396 1397 1398
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1399 1400 1401 1402 1403 1404
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1405
	 */
L
Linus Torvalds 已提交
1406
	spin_lock(&hugetlb_lock);
1407
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1408
		if (!adjust_pool_surplus(h, nodes_allowed, -1))
1409 1410 1411
			break;
	}

1412
	while (count > persistent_huge_pages(h)) {
1413 1414 1415 1416 1417 1418
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1419
		ret = alloc_fresh_huge_page(h, nodes_allowed);
1420 1421 1422 1423
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

1424 1425 1426
		/* Bail for signals. Probably ctrl-c from user */
		if (signal_pending(current))
			goto out;
1427 1428 1429 1430 1431 1432 1433 1434
	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1435 1436 1437 1438 1439 1440 1441 1442
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1443
	 */
1444
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1445
	min_count = max(count, min_count);
1446
	try_to_free_low(h, min_count, nodes_allowed);
1447
	while (min_count < persistent_huge_pages(h)) {
1448
		if (!free_pool_huge_page(h, nodes_allowed, 0))
L
Linus Torvalds 已提交
1449 1450
			break;
	}
1451
	while (count < persistent_huge_pages(h)) {
1452
		if (!adjust_pool_surplus(h, nodes_allowed, 1))
1453 1454 1455
			break;
	}
out:
1456
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1457
	spin_unlock(&hugetlb_lock);
1458
	return ret;
L
Linus Torvalds 已提交
1459 1460
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

1471 1472 1473
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);

static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1474 1475
{
	int i;
1476

1477
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
1478 1479 1480
		if (hstate_kobjs[i] == kobj) {
			if (nidp)
				*nidp = NUMA_NO_NODE;
1481
			return &hstates[i];
1482 1483 1484
		}

	return kobj_to_node_hstate(kobj, nidp);
1485 1486
}

1487
static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1488 1489
					struct kobj_attribute *attr, char *buf)
{
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	struct hstate *h;
	unsigned long nr_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		nr_huge_pages = h->nr_huge_pages;
	else
		nr_huge_pages = h->nr_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", nr_huge_pages);
1501
}
1502

1503 1504 1505
static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
			struct kobject *kobj, struct kobj_attribute *attr,
			const char *buf, size_t len)
1506 1507
{
	int err;
1508
	int nid;
1509
	unsigned long count;
1510
	struct hstate *h;
1511
	NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1512

1513
	err = strict_strtoul(buf, 10, &count);
1514
	if (err)
1515
		goto out;
1516

1517
	h = kobj_to_hstate(kobj, &nid);
1518 1519 1520 1521 1522
	if (h->order >= MAX_ORDER) {
		err = -EINVAL;
		goto out;
	}

1523 1524 1525 1526 1527 1528 1529
	if (nid == NUMA_NO_NODE) {
		/*
		 * global hstate attribute
		 */
		if (!(obey_mempolicy &&
				init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
1530
			nodes_allowed = &node_states[N_MEMORY];
1531 1532 1533 1534 1535 1536 1537 1538 1539
		}
	} else if (nodes_allowed) {
		/*
		 * per node hstate attribute: adjust count to global,
		 * but restrict alloc/free to the specified node.
		 */
		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
		init_nodemask_of_node(nodes_allowed, nid);
	} else
1540
		nodes_allowed = &node_states[N_MEMORY];
1541

1542
	h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1543

1544
	if (nodes_allowed != &node_states[N_MEMORY])
1545 1546 1547
		NODEMASK_FREE(nodes_allowed);

	return len;
1548 1549 1550
out:
	NODEMASK_FREE(nodes_allowed);
	return err;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(false, kobj, attr, buf, len);
1563 1564 1565
}
HSTATE_ATTR(nr_hugepages);

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
#ifdef CONFIG_NUMA

/*
 * hstate attribute for optionally mempolicy-based constraint on persistent
 * huge page alloc/free.
 */
static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
				       struct kobj_attribute *attr, char *buf)
{
	return nr_hugepages_show_common(kobj, attr, buf);
}

static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
	       struct kobj_attribute *attr, const char *buf, size_t len)
{
	return nr_hugepages_store_common(true, kobj, attr, buf, len);
}
HSTATE_ATTR(nr_hugepages_mempolicy);
#endif


1587 1588 1589
static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1590
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1591 1592
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
1593

1594 1595 1596 1597 1598
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
1599
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1600

1601 1602 1603
	if (h->order >= MAX_ORDER)
		return -EINVAL;

1604 1605
	err = strict_strtoul(buf, 10, &input);
	if (err)
1606
		return err;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
	struct hstate *h;
	unsigned long free_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		free_huge_pages = h->free_huge_pages;
	else
		free_huge_pages = h->free_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", free_huge_pages);
1630 1631 1632 1633 1634 1635
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1636
	struct hstate *h = kobj_to_hstate(kobj, NULL);
1637 1638 1639 1640 1641 1642 1643
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
	struct hstate *h;
	unsigned long surplus_huge_pages;
	int nid;

	h = kobj_to_hstate(kobj, &nid);
	if (nid == NUMA_NO_NODE)
		surplus_huge_pages = h->surplus_huge_pages;
	else
		surplus_huge_pages = h->surplus_huge_pages_node[nid];

	return sprintf(buf, "%lu\n", surplus_huge_pages);
1655 1656 1657 1658 1659 1660 1661 1662 1663
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
1664 1665 1666
#ifdef CONFIG_NUMA
	&nr_hugepages_mempolicy_attr.attr,
#endif
1667 1668 1669 1670 1671 1672 1673
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

J
Jeff Mahoney 已提交
1674 1675 1676
static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
				    struct kobject **hstate_kobjs,
				    struct attribute_group *hstate_attr_group)
1677 1678
{
	int retval;
1679
	int hi = hstate_index(h);
1680

1681 1682
	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
	if (!hstate_kobjs[hi])
1683 1684
		return -ENOMEM;

1685
	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1686
	if (retval)
1687
		kobject_put(hstate_kobjs[hi]);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
1702 1703
		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
					 hstate_kobjs, &hstate_attr_group);
1704 1705 1706 1707 1708 1709
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

1710 1711 1712 1713
#ifdef CONFIG_NUMA

/*
 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1714 1715 1716
 * with node devices in node_devices[] using a parallel array.  The array
 * index of a node device or _hstate == node id.
 * This is here to avoid any static dependency of the node device driver, in
1717 1718 1719 1720 1721 1722 1723 1724 1725
 * the base kernel, on the hugetlb module.
 */
struct node_hstate {
	struct kobject		*hugepages_kobj;
	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
};
struct node_hstate node_hstates[MAX_NUMNODES];

/*
1726
 * A subset of global hstate attributes for node devices
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
 */
static struct attribute *per_node_hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group per_node_hstate_attr_group = {
	.attrs = per_node_hstate_attrs,
};

/*
1740
 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
 * Returns node id via non-NULL nidp.
 */
static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	int nid;

	for (nid = 0; nid < nr_node_ids; nid++) {
		struct node_hstate *nhs = &node_hstates[nid];
		int i;
		for (i = 0; i < HUGE_MAX_HSTATE; i++)
			if (nhs->hstate_kobjs[i] == kobj) {
				if (nidp)
					*nidp = nid;
				return &hstates[i];
			}
	}

	BUG();
	return NULL;
}

/*
1763
 * Unregister hstate attributes from a single node device.
1764 1765 1766 1767 1768
 * No-op if no hstate attributes attached.
 */
void hugetlb_unregister_node(struct node *node)
{
	struct hstate *h;
1769
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1770 1771

	if (!nhs->hugepages_kobj)
1772
		return;		/* no hstate attributes */
1773

1774 1775 1776 1777 1778
	for_each_hstate(h) {
		int idx = hstate_index(h);
		if (nhs->hstate_kobjs[idx]) {
			kobject_put(nhs->hstate_kobjs[idx]);
			nhs->hstate_kobjs[idx] = NULL;
1779
		}
1780
	}
1781 1782 1783 1784 1785 1786

	kobject_put(nhs->hugepages_kobj);
	nhs->hugepages_kobj = NULL;
}

/*
1787
 * hugetlb module exit:  unregister hstate attributes from node devices
1788 1789 1790 1791 1792 1793 1794
 * that have them.
 */
static void hugetlb_unregister_all_nodes(void)
{
	int nid;

	/*
1795
	 * disable node device registrations.
1796 1797 1798 1799 1800 1801 1802
	 */
	register_hugetlbfs_with_node(NULL, NULL);

	/*
	 * remove hstate attributes from any nodes that have them.
	 */
	for (nid = 0; nid < nr_node_ids; nid++)
1803
		hugetlb_unregister_node(node_devices[nid]);
1804 1805 1806
}

/*
1807
 * Register hstate attributes for a single node device.
1808 1809 1810 1811 1812
 * No-op if attributes already registered.
 */
void hugetlb_register_node(struct node *node)
{
	struct hstate *h;
1813
	struct node_hstate *nhs = &node_hstates[node->dev.id];
1814 1815 1816 1817 1818 1819
	int err;

	if (nhs->hugepages_kobj)
		return;		/* already allocated */

	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1820
							&node->dev.kobj);
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	if (!nhs->hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
						nhs->hstate_kobjs,
						&per_node_hstate_attr_group);
		if (err) {
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
					" for node %d\n",
1831
						h->name, node->dev.id);
1832 1833 1834 1835 1836 1837 1838
			hugetlb_unregister_node(node);
			break;
		}
	}
}

/*
1839
 * hugetlb init time:  register hstate attributes for all registered node
1840 1841
 * devices of nodes that have memory.  All on-line nodes should have
 * registered their associated device by this time.
1842 1843 1844 1845 1846
 */
static void hugetlb_register_all_nodes(void)
{
	int nid;

1847
	for_each_node_state(nid, N_MEMORY) {
1848
		struct node *node = node_devices[nid];
1849
		if (node->dev.id == nid)
1850 1851 1852 1853
			hugetlb_register_node(node);
	}

	/*
1854
	 * Let the node device driver know we're here so it can
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
	 * [un]register hstate attributes on node hotplug.
	 */
	register_hugetlbfs_with_node(hugetlb_register_node,
				     hugetlb_unregister_node);
}
#else	/* !CONFIG_NUMA */

static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
{
	BUG();
	if (nidp)
		*nidp = -1;
	return NULL;
}

static void hugetlb_unregister_all_nodes(void) { }

static void hugetlb_register_all_nodes(void) { }

#endif

1876 1877 1878 1879
static void __exit hugetlb_exit(void)
{
	struct hstate *h;

1880 1881
	hugetlb_unregister_all_nodes();

1882
	for_each_hstate(h) {
1883
		kobject_put(hstate_kobjs[hstate_index(h)]);
1884 1885 1886 1887 1888 1889 1890 1891
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1892 1893 1894 1895 1896 1897
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1898

1899 1900 1901 1902
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1903
	}
1904
	default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1905 1906
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1907 1908

	hugetlb_init_hstates();
1909
	gather_bootmem_prealloc();
1910 1911 1912
	report_hugepages();

	hugetlb_sysfs_init();
1913
	hugetlb_register_all_nodes();
1914
	hugetlb_cgroup_file_init();
1915

1916 1917 1918 1919 1920 1921 1922 1923
	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1924 1925
	unsigned long i;

1926 1927 1928 1929
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
1930
	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1931
	BUG_ON(order == 0);
1932
	h = &hstates[hugetlb_max_hstate++];
1933 1934
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1935 1936 1937 1938
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1939
	INIT_LIST_HEAD(&h->hugepage_activelist);
1940 1941
	h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
	h->next_nid_to_free = first_node(node_states[N_MEMORY]);
1942 1943
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1944

1945 1946 1947
	parsed_hstate = h;
}

1948
static int __init hugetlb_nrpages_setup(char *s)
1949 1950
{
	unsigned long *mhp;
1951
	static unsigned long *last_mhp;
1952 1953

	/*
1954
	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
1955 1956
	 * so this hugepages= parameter goes to the "default hstate".
	 */
1957
	if (!hugetlb_max_hstate)
1958 1959 1960 1961
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1962 1963 1964 1965 1966 1967
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1968 1969 1970
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1971 1972 1973 1974 1975
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
1976
	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
1977 1978 1979 1980
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1981 1982
	return 1;
}
1983 1984 1985 1986 1987 1988 1989 1990
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1991

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
2004 2005 2006
static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
			 struct ctl_table *table, int write,
			 void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
2007
{
2008 2009
	struct hstate *h = &default_hstate;
	unsigned long tmp;
2010
	int ret;
2011

2012
	tmp = h->max_huge_pages;
2013

2014 2015 2016
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2017 2018
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2019 2020 2021
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2022

2023
	if (write) {
2024 2025
		NODEMASK_ALLOC(nodemask_t, nodes_allowed,
						GFP_KERNEL | __GFP_NORETRY);
2026 2027 2028
		if (!(obey_mempolicy &&
			       init_nodemask_of_mempolicy(nodes_allowed))) {
			NODEMASK_FREE(nodes_allowed);
2029
			nodes_allowed = &node_states[N_MEMORY];
2030 2031 2032
		}
		h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);

2033
		if (nodes_allowed != &node_states[N_MEMORY])
2034 2035
			NODEMASK_FREE(nodes_allowed);
	}
2036 2037
out:
	return ret;
L
Linus Torvalds 已提交
2038
}
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{

	return hugetlb_sysctl_handler_common(false, table, write,
							buffer, length, ppos);
}

#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
			  void __user *buffer, size_t *length, loff_t *ppos)
{
	return hugetlb_sysctl_handler_common(true, table, write,
							buffer, length, ppos);
}
#endif /* CONFIG_NUMA */

2057
int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
2058
			void __user *buffer,
2059 2060
			size_t *length, loff_t *ppos)
{
2061
	proc_dointvec(table, write, buffer, length, ppos);
2062 2063 2064 2065 2066 2067 2068
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

2069
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2070
			void __user *buffer,
2071 2072
			size_t *length, loff_t *ppos)
{
2073
	struct hstate *h = &default_hstate;
2074
	unsigned long tmp;
2075
	int ret;
2076

2077
	tmp = h->nr_overcommit_huge_pages;
2078

2079 2080 2081
	if (write && h->order >= MAX_ORDER)
		return -EINVAL;

2082 2083
	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
2084 2085 2086
	ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
	if (ret)
		goto out;
2087 2088 2089 2090 2091 2092

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}
2093 2094
out:
	return ret;
2095 2096
}

L
Linus Torvalds 已提交
2097 2098
#endif /* CONFIG_SYSCTL */

2099
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
2100
{
2101
	struct hstate *h = &default_hstate;
2102
	seq_printf(m,
2103 2104 2105 2106 2107
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
2108 2109 2110 2111 2112
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
2113 2114 2115 2116
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
2117
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
2118 2119
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
2120 2121
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
2122 2123 2124
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
2125 2126 2127 2128 2129
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
2130 2131
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
2132 2133
}

2134
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
2157
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
2158 2159
			goto out;

2160 2161
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
2162 2163 2164 2165 2166 2167
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
2168
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
2169 2170 2171 2172 2173 2174

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

2175 2176 2177 2178 2179 2180 2181 2182
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
L
Lucas De Marchi 已提交
2183
	 * has a reference to the reservation map it cannot disappear until
2184 2185 2186 2187 2188 2189 2190
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

2191 2192 2193 2194 2195 2196 2197 2198 2199
static void resv_map_put(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	if (!reservations)
		return;
	kref_put(&reservations->refs, resv_map_release);
}

2200 2201
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
2202
	struct hstate *h = hstate_vma(vma);
2203
	struct resv_map *reservations = vma_resv_map(vma);
2204
	struct hugepage_subpool *spool = subpool_vma(vma);
2205 2206 2207 2208 2209
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
2210 2211
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
2212 2213 2214 2215

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

2216
		resv_map_put(vma);
2217

2218
		if (reserve) {
2219
			hugetlb_acct_memory(h, -reserve);
2220
			hugepage_subpool_put_pages(spool, reserve);
2221
		}
2222
	}
2223 2224
}

L
Linus Torvalds 已提交
2225 2226 2227 2228 2229 2230
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
2231
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
2232 2233
{
	BUG();
N
Nick Piggin 已提交
2234
	return 0;
L
Linus Torvalds 已提交
2235 2236
}

2237
const struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
2238
	.fault = hugetlb_vm_op_fault,
2239
	.open = hugetlb_vm_op_open,
2240
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
2241 2242
};

2243 2244
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
2245 2246 2247
{
	pte_t entry;

2248
	if (writable) {
D
David Gibson 已提交
2249 2250 2251
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
2252
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
2253 2254 2255
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);
2256
	entry = arch_make_huge_pte(entry, vma, page, writable);
D
David Gibson 已提交
2257 2258 2259 2260

	return entry;
}

2261 2262 2263 2264 2265
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

2266
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2267
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2268
		update_mmu_cache(vma, address, ptep);
2269 2270 2271
}


D
David Gibson 已提交
2272 2273 2274 2275 2276
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
2277
	unsigned long addr;
2278
	int cow;
2279 2280
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2281 2282

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
2283

2284
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
2285 2286 2287
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
2288
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
2289 2290
		if (!dst_pte)
			goto nomem;
2291 2292 2293 2294 2295

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
2296
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
2297
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2298
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
2299
			if (cow)
2300 2301
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
2302 2303
			ptepage = pte_page(entry);
			get_page(ptepage);
2304
			page_dup_rmap(ptepage);
2305 2306 2307
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
2308
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
2309 2310 2311 2312 2313 2314 2315
	}
	return 0;

nomem:
	return -ENOMEM;
}

N
Naoya Horiguchi 已提交
2316 2317 2318 2319 2320 2321 2322
static int is_hugetlb_entry_migration(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2323
	if (non_swap_entry(swp) && is_migration_entry(swp))
N
Naoya Horiguchi 已提交
2324
		return 1;
2325
	else
N
Naoya Horiguchi 已提交
2326 2327 2328
		return 0;
}

2329 2330 2331 2332 2333 2334 2335
static int is_hugetlb_entry_hwpoisoned(pte_t pte)
{
	swp_entry_t swp;

	if (huge_pte_none(pte) || pte_present(pte))
		return 0;
	swp = pte_to_swp_entry(pte);
2336
	if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2337
		return 1;
2338
	else
2339 2340 2341
		return 0;
}

2342 2343 2344
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
			    unsigned long start, unsigned long end,
			    struct page *ref_page)
D
David Gibson 已提交
2345
{
2346
	int force_flush = 0;
D
David Gibson 已提交
2347 2348
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
2349
	pte_t *ptep;
D
David Gibson 已提交
2350 2351
	pte_t pte;
	struct page *page;
2352 2353
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
2354 2355
	const unsigned long mmun_start = start;	/* For mmu_notifiers */
	const unsigned long mmun_end   = end;	/* For mmu_notifiers */
2356

D
David Gibson 已提交
2357
	WARN_ON(!is_vm_hugetlb_page(vma));
2358 2359
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
2360

2361
	tlb_start_vma(tlb, vma);
2362
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2363
again:
2364
	spin_lock(&mm->page_table_lock);
2365
	for (address = start; address < end; address += sz) {
2366
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
2367
		if (!ptep)
2368 2369
			continue;

2370 2371 2372
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

2373 2374 2375 2376 2377 2378 2379
		pte = huge_ptep_get(ptep);
		if (huge_pte_none(pte))
			continue;

		/*
		 * HWPoisoned hugepage is already unmapped and dropped reference
		 */
2380 2381
		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
			pte_clear(mm, address, ptep);
2382
			continue;
2383
		}
2384 2385

		page = pte_page(pte);
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

2403
		pte = huge_ptep_get_and_clear(mm, address, ptep);
2404
		tlb_remove_tlb_entry(tlb, ptep, address);
2405 2406
		if (pte_dirty(pte))
			set_page_dirty(page);
2407

2408 2409 2410 2411
		page_remove_rmap(page);
		force_flush = !__tlb_remove_page(tlb, page);
		if (force_flush)
			break;
2412 2413 2414
		/* Bail out after unmapping reference page if supplied */
		if (ref_page)
			break;
D
David Gibson 已提交
2415
	}
2416
	spin_unlock(&mm->page_table_lock);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	/*
	 * mmu_gather ran out of room to batch pages, we break out of
	 * the PTE lock to avoid doing the potential expensive TLB invalidate
	 * and page-free while holding it.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu(tlb);
		if (address < end && !ref_page)
			goto again;
2427
	}
2428
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2429
	tlb_end_vma(tlb, vma);
L
Linus Torvalds 已提交
2430
}
D
David Gibson 已提交
2431

2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
			  struct vm_area_struct *vma, unsigned long start,
			  unsigned long end, struct page *ref_page)
{
	__unmap_hugepage_range(tlb, vma, start, end, ref_page);

	/*
	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
	 * test will fail on a vma being torn down, and not grab a page table
	 * on its way out.  We're lucky that the flag has such an appropriate
	 * name, and can in fact be safely cleared here. We could clear it
	 * before the __unmap_hugepage_range above, but all that's necessary
	 * is to clear it before releasing the i_mmap_mutex. This works
	 * because in the context this is called, the VMA is about to be
	 * destroyed and the i_mmap_mutex is held.
	 */
	vma->vm_flags &= ~VM_MAYSHARE;
}

2451
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2452
			  unsigned long end, struct page *ref_page)
2453
{
2454 2455 2456 2457 2458 2459 2460 2461
	struct mm_struct *mm;
	struct mmu_gather tlb;

	mm = vma->vm_mm;

	tlb_gather_mmu(&tlb, mm, 0);
	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
	tlb_finish_mmu(&tlb, start, end);
2462 2463
}

2464 2465 2466 2467 2468 2469
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
2470 2471
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
2472
{
2473
	struct hstate *h = hstate_vma(vma);
2474 2475 2476 2477 2478 2479 2480 2481
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
2482
	address = address & huge_page_mask(h);
2483 2484
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
			vma->vm_pgoff;
2485
	mapping = vma->vm_file->f_dentry->d_inode->i_mapping;
2486

2487 2488 2489 2490 2491
	/*
	 * Take the mapping lock for the duration of the table walk. As
	 * this mapping should be shared between all the VMAs,
	 * __unmap_hugepage_range() is called as the lock is already held
	 */
2492
	mutex_lock(&mapping->i_mmap_mutex);
2493
	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2506 2507
			unmap_hugepage_range(iter_vma, address,
					     address + huge_page_size(h), page);
2508
	}
2509
	mutex_unlock(&mapping->i_mmap_mutex);
2510 2511 2512 2513

	return 1;
}

2514 2515
/*
 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2516 2517 2518
 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
 * cannot race with other handlers or page migration.
 * Keep the pte_same checks anyway to make transition from the mutex easier.
2519
 */
2520
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2521 2522
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
2523
{
2524
	struct hstate *h = hstate_vma(vma);
2525
	struct page *old_page, *new_page;
2526
	int avoidcopy;
2527
	int outside_reserve = 0;
2528 2529
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
2530 2531 2532

	old_page = pte_page(pte);

2533
retry_avoidcopy:
2534 2535
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
2536
	avoidcopy = (page_mapcount(old_page) == 1);
2537
	if (avoidcopy) {
2538 2539
		if (PageAnon(old_page))
			page_move_anon_rmap(old_page, vma, address);
2540
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
2541
		return 0;
2542 2543
	}

2544 2545 2546 2547 2548 2549 2550 2551 2552
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
2553
	if (!(vma->vm_flags & VM_MAYSHARE) &&
2554 2555 2556 2557
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

2558
	page_cache_get(old_page);
2559 2560 2561

	/* Drop page_table_lock as buddy allocator may be called */
	spin_unlock(&mm->page_table_lock);
2562
	new_page = alloc_huge_page(vma, address, outside_reserve);
2563

2564
	if (IS_ERR(new_page)) {
2565
		long err = PTR_ERR(new_page);
2566
		page_cache_release(old_page);
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(huge_pte_none(pte));
2579
				spin_lock(&mm->page_table_lock);
2580 2581 2582 2583 2584 2585 2586 2587
				ptep = huge_pte_offset(mm, address & huge_page_mask(h));
				if (likely(pte_same(huge_ptep_get(ptep), pte)))
					goto retry_avoidcopy;
				/*
				 * race occurs while re-acquiring page_table_lock, and
				 * our job is done.
				 */
				return 0;
2588 2589 2590 2591
			}
			WARN_ON_ONCE(1);
		}

2592 2593
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2594 2595 2596 2597
		if (err == -ENOMEM)
			return VM_FAULT_OOM;
		else
			return VM_FAULT_SIGBUS;
2598 2599
	}

2600 2601 2602 2603
	/*
	 * When the original hugepage is shared one, it does not have
	 * anon_vma prepared.
	 */
2604
	if (unlikely(anon_vma_prepare(vma))) {
2605 2606
		page_cache_release(new_page);
		page_cache_release(old_page);
2607 2608
		/* Caller expects lock to be held */
		spin_lock(&mm->page_table_lock);
2609
		return VM_FAULT_OOM;
2610
	}
2611

A
Andrea Arcangeli 已提交
2612 2613
	copy_user_huge_page(new_page, old_page, address, vma,
			    pages_per_huge_page(h));
N
Nick Piggin 已提交
2614
	__SetPageUptodate(new_page);
2615

2616 2617 2618
	mmun_start = address & huge_page_mask(h);
	mmun_end = mmun_start + huge_page_size(h);
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2619 2620 2621 2622 2623
	/*
	 * Retake the page_table_lock to check for racing updates
	 * before the page tables are altered
	 */
	spin_lock(&mm->page_table_lock);
2624
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2625
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2626
		/* Break COW */
2627
		huge_ptep_clear_flush(vma, address, ptep);
2628 2629
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
2630
		page_remove_rmap(old_page);
2631
		hugepage_add_new_anon_rmap(new_page, vma, address);
2632 2633 2634
		/* Make the old page be freed below */
		new_page = old_page;
	}
2635 2636 2637 2638
	spin_unlock(&mm->page_table_lock);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	/* Caller expects lock to be held */
	spin_lock(&mm->page_table_lock);
2639 2640
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2641
	return 0;
2642 2643
}

2644
/* Return the pagecache page at a given address within a VMA */
2645 2646
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2647 2648
{
	struct address_space *mapping;
2649
	pgoff_t idx;
2650 2651

	mapping = vma->vm_file->f_mapping;
2652
	idx = vma_hugecache_offset(h, vma, address);
2653 2654 2655 2656

	return find_lock_page(mapping, idx);
}

H
Hugh Dickins 已提交
2657 2658 2659 2660 2661
/*
 * Return whether there is a pagecache page to back given address within VMA.
 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
 */
static bool hugetlbfs_pagecache_present(struct hstate *h,
H
Hugh Dickins 已提交
2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
			struct vm_area_struct *vma, unsigned long address)
{
	struct address_space *mapping;
	pgoff_t idx;
	struct page *page;

	mapping = vma->vm_file->f_mapping;
	idx = vma_hugecache_offset(h, vma, address);

	page = find_get_page(mapping, idx);
	if (page)
		put_page(page);
	return page != NULL;
}

2677
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2678
			unsigned long address, pte_t *ptep, unsigned int flags)
2679
{
2680
	struct hstate *h = hstate_vma(vma);
2681
	int ret = VM_FAULT_SIGBUS;
2682
	int anon_rmap = 0;
2683
	pgoff_t idx;
A
Adam Litke 已提交
2684 2685 2686
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2687
	pte_t new_pte;
A
Adam Litke 已提交
2688

2689 2690 2691
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
L
Lucas De Marchi 已提交
2692
	 * COW. Warn that such a situation has occurred as it may not be obvious
2693 2694 2695 2696 2697 2698 2699 2700
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2701
	mapping = vma->vm_file->f_mapping;
2702
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2703 2704 2705 2706 2707

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2708 2709 2710
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2711
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2712 2713
		if (idx >= size)
			goto out;
2714
		page = alloc_huge_page(vma, address, 0);
2715
		if (IS_ERR(page)) {
2716 2717 2718 2719 2720
			ret = PTR_ERR(page);
			if (ret == -ENOMEM)
				ret = VM_FAULT_OOM;
			else
				ret = VM_FAULT_SIGBUS;
2721 2722
			goto out;
		}
A
Andrea Arcangeli 已提交
2723
		clear_huge_page(page, address, pages_per_huge_page(h));
N
Nick Piggin 已提交
2724
		__SetPageUptodate(page);
2725

2726
		if (vma->vm_flags & VM_MAYSHARE) {
2727
			int err;
K
Ken Chen 已提交
2728
			struct inode *inode = mapping->host;
2729 2730 2731 2732 2733 2734 2735 2736

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2737 2738

			spin_lock(&inode->i_lock);
2739
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2740
			spin_unlock(&inode->i_lock);
2741
		} else {
2742
			lock_page(page);
2743 2744 2745 2746
			if (unlikely(anon_vma_prepare(vma))) {
				ret = VM_FAULT_OOM;
				goto backout_unlocked;
			}
2747
			anon_rmap = 1;
2748
		}
2749
	} else {
2750 2751 2752 2753 2754 2755
		/*
		 * If memory error occurs between mmap() and fault, some process
		 * don't have hwpoisoned swap entry for errored virtual address.
		 * So we need to block hugepage fault by PG_hwpoison bit check.
		 */
		if (unlikely(PageHWPoison(page))) {
2756
			ret = VM_FAULT_HWPOISON |
2757
				VM_FAULT_SET_HINDEX(hstate_index(h));
2758 2759
			goto backout_unlocked;
		}
2760
	}
2761

2762 2763 2764 2765 2766 2767
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2768
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2769 2770 2771 2772
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2773

2774
	spin_lock(&mm->page_table_lock);
2775
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2776 2777 2778
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2779
	ret = 0;
2780
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2781 2782
		goto backout;

2783 2784 2785 2786
	if (anon_rmap)
		hugepage_add_new_anon_rmap(page, vma, address);
	else
		page_dup_rmap(page);
2787 2788 2789 2790
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2791
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2792
		/* Optimization, do the COW without a second fault */
2793
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2794 2795
	}

2796
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2797 2798
	unlock_page(page);
out:
2799
	return ret;
A
Adam Litke 已提交
2800 2801 2802

backout:
	spin_unlock(&mm->page_table_lock);
2803
backout_unlocked:
A
Adam Litke 已提交
2804 2805 2806
	unlock_page(page);
	put_page(page);
	goto out;
2807 2808
}

2809
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2810
			unsigned long address, unsigned int flags)
2811 2812 2813
{
	pte_t *ptep;
	pte_t entry;
2814
	int ret;
2815
	struct page *page = NULL;
2816
	struct page *pagecache_page = NULL;
2817
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2818
	struct hstate *h = hstate_vma(vma);
2819

2820 2821
	address &= huge_page_mask(h);

2822 2823 2824
	ptep = huge_pte_offset(mm, address);
	if (ptep) {
		entry = huge_ptep_get(ptep);
N
Naoya Horiguchi 已提交
2825 2826 2827 2828
		if (unlikely(is_hugetlb_entry_migration(entry))) {
			migration_entry_wait(mm, (pmd_t *)ptep, address);
			return 0;
		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2829
			return VM_FAULT_HWPOISON_LARGE |
2830
				VM_FAULT_SET_HINDEX(hstate_index(h));
2831 2832
	}

2833
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2834 2835 2836
	if (!ptep)
		return VM_FAULT_OOM;

2837 2838 2839 2840 2841 2842
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2843 2844
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2845
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2846
		goto out_mutex;
2847
	}
2848

N
Nick Piggin 已提交
2849
	ret = 0;
2850

2851 2852 2853 2854 2855 2856 2857 2858
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2859
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2860 2861
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2862
			goto out_mutex;
2863
		}
2864

2865
		if (!(vma->vm_flags & VM_MAYSHARE))
2866 2867 2868 2869
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2870 2871 2872 2873 2874 2875 2876 2877
	/*
	 * hugetlb_cow() requires page locks of pte_page(entry) and
	 * pagecache_page, so here we need take the former one
	 * when page != pagecache_page or !pagecache_page.
	 * Note that locking order is always pagecache_page -> page,
	 * so no worry about deadlock.
	 */
	page = pte_page(entry);
2878
	get_page(page);
2879
	if (page != pagecache_page)
2880 2881
		lock_page(page);

2882 2883
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2884 2885 2886 2887
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2888
	if (flags & FAULT_FLAG_WRITE) {
2889
		if (!pte_write(entry)) {
2890 2891
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2892 2893 2894 2895 2896
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2897 2898
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2899
		update_mmu_cache(vma, address, ptep);
2900 2901

out_page_table_lock:
2902
	spin_unlock(&mm->page_table_lock);
2903 2904 2905 2906 2907

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}
2908 2909
	if (page != pagecache_page)
		unlock_page(page);
2910
	put_page(page);
2911

2912
out_mutex:
2913
	mutex_unlock(&hugetlb_instantiation_mutex);
2914 2915

	return ret;
2916 2917
}

A
Andi Kleen 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

D
David Gibson 已提交
2927 2928
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2929
			unsigned long *position, int *length, int i,
H
Hugh Dickins 已提交
2930
			unsigned int flags)
D
David Gibson 已提交
2931
{
2932 2933
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2934
	int remainder = *length;
2935
	struct hstate *h = hstate_vma(vma);
D
David Gibson 已提交
2936

2937
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2938
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2939
		pte_t *pte;
H
Hugh Dickins 已提交
2940
		int absent;
A
Adam Litke 已提交
2941
		struct page *page;
D
David Gibson 已提交
2942

A
Adam Litke 已提交
2943 2944
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
H
Hugh Dickins 已提交
2945
		 * each hugepage.  We have to make sure we get the
A
Adam Litke 已提交
2946 2947
		 * first, for the page indexing below to work.
		 */
2948
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
H
Hugh Dickins 已提交
2949 2950 2951 2952
		absent = !pte || huge_pte_none(huge_ptep_get(pte));

		/*
		 * When coredumping, it suits get_dump_page if we just return
H
Hugh Dickins 已提交
2953 2954 2955 2956
		 * an error where there's an empty slot with no huge pagecache
		 * to back it.  This way, we avoid allocating a hugepage, and
		 * the sparse dumpfile avoids allocating disk blocks, but its
		 * huge holes still show up with zeroes where they need to be.
H
Hugh Dickins 已提交
2957
		 */
H
Hugh Dickins 已提交
2958 2959
		if (absent && (flags & FOLL_DUMP) &&
		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
H
Hugh Dickins 已提交
2960 2961 2962
			remainder = 0;
			break;
		}
D
David Gibson 已提交
2963

H
Hugh Dickins 已提交
2964 2965
		if (absent ||
		    ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2966
			int ret;
D
David Gibson 已提交
2967

A
Adam Litke 已提交
2968
			spin_unlock(&mm->page_table_lock);
H
Hugh Dickins 已提交
2969 2970
			ret = hugetlb_fault(mm, vma, vaddr,
				(flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
A
Adam Litke 已提交
2971
			spin_lock(&mm->page_table_lock);
2972
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2973
				continue;
D
David Gibson 已提交
2974

A
Adam Litke 已提交
2975 2976 2977 2978
			remainder = 0;
			break;
		}

2979
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2980
		page = pte_page(huge_ptep_get(pte));
2981
same_page:
2982
		if (pages) {
H
Hugh Dickins 已提交
2983
			pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2984
			get_page(pages[i]);
2985
		}
D
David Gibson 已提交
2986 2987 2988 2989 2990

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2991
		++pfn_offset;
D
David Gibson 已提交
2992 2993
		--remainder;
		++i;
2994
		if (vaddr < vma->vm_end && remainder &&
2995
				pfn_offset < pages_per_huge_page(h)) {
2996 2997 2998 2999 3000 3001
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
3002
	}
3003
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
3004 3005 3006
	*length = remainder;
	*position = vaddr;

H
Hugh Dickins 已提交
3007
	return i ? i : -EFAULT;
D
David Gibson 已提交
3008
}
3009

3010
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3011 3012 3013 3014 3015 3016
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
3017
	struct hstate *h = hstate_vma(vma);
3018
	unsigned long pages = 0;
3019 3020 3021 3022

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

3023
	mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3024
	spin_lock(&mm->page_table_lock);
3025
	for (; address < end; address += huge_page_size(h)) {
3026 3027 3028
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
3029 3030
		if (huge_pmd_unshare(mm, &address, ptep)) {
			pages++;
3031
			continue;
3032
		}
3033
		if (!huge_pte_none(huge_ptep_get(ptep))) {
3034 3035 3036
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
3037
			pages++;
3038 3039 3040
		}
	}
	spin_unlock(&mm->page_table_lock);
3041 3042 3043 3044 3045 3046
	/*
	 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
	 * may have cleared our pud entry and done put_page on the page table:
	 * once we release i_mmap_mutex, another task can do the final put_page
	 * and that page table be reused and filled with junk.
	 */
3047
	flush_tlb_range(vma, start, end);
3048
	mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3049 3050

	return pages << h->order;
3051 3052
}

3053 3054
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
3055
					struct vm_area_struct *vma,
3056
					vm_flags_t vm_flags)
3057
{
3058
	long ret, chg;
3059
	struct hstate *h = hstate_inode(inode);
3060
	struct hugepage_subpool *spool = subpool_inode(inode);
3061

3062 3063 3064
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
3065
	 * without using reserves
3066
	 */
3067
	if (vm_flags & VM_NORESERVE)
3068 3069
		return 0;

3070 3071 3072 3073 3074 3075
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
3076
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3077
		chg = region_chg(&inode->i_mapping->private_list, from, to);
3078 3079 3080 3081 3082
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

3083
		chg = to - from;
3084

3085 3086 3087 3088
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

3089 3090 3091 3092
	if (chg < 0) {
		ret = chg;
		goto out_err;
	}
3093

3094
	/* There must be enough pages in the subpool for the mapping */
3095 3096 3097 3098
	if (hugepage_subpool_get_pages(spool, chg)) {
		ret = -ENOSPC;
		goto out_err;
	}
3099 3100

	/*
3101
	 * Check enough hugepages are available for the reservation.
3102
	 * Hand the pages back to the subpool if there are not
3103
	 */
3104
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
3105
	if (ret < 0) {
3106
		hugepage_subpool_put_pages(spool, chg);
3107
		goto out_err;
K
Ken Chen 已提交
3108
	}
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
3121
	if (!vma || vma->vm_flags & VM_MAYSHARE)
3122
		region_add(&inode->i_mapping->private_list, from, to);
3123
	return 0;
3124
out_err:
3125 3126
	if (vma)
		resv_map_put(vma);
3127
	return ret;
3128 3129 3130 3131
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
3132
	struct hstate *h = hstate_inode(inode);
3133
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
3134
	struct hugepage_subpool *spool = subpool_inode(inode);
K
Ken Chen 已提交
3135 3136

	spin_lock(&inode->i_lock);
3137
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
3138 3139
	spin_unlock(&inode->i_lock);

3140
	hugepage_subpool_put_pages(spool, (chg - freed));
3141
	hugetlb_acct_memory(h, -(chg - freed));
3142
}
3143

3144 3145
#ifdef CONFIG_MEMORY_FAILURE

3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/* Should be called in hugetlb_lock */
static int is_hugepage_on_freelist(struct page *hpage)
{
	struct page *page;
	struct page *tmp;
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);

	list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
		if (page == hpage)
			return 1;
	return 0;
}

3160 3161 3162 3163
/*
 * This function is called from memory failure code.
 * Assume the caller holds page lock of the head page.
 */
3164
int dequeue_hwpoisoned_huge_page(struct page *hpage)
3165 3166 3167
{
	struct hstate *h = page_hstate(hpage);
	int nid = page_to_nid(hpage);
3168
	int ret = -EBUSY;
3169 3170

	spin_lock(&hugetlb_lock);
3171
	if (is_hugepage_on_freelist(hpage)) {
3172 3173 3174 3175 3176 3177 3178
		/*
		 * Hwpoisoned hugepage isn't linked to activelist or freelist,
		 * but dangling hpage->lru can trigger list-debug warnings
		 * (this happens when we call unpoison_memory() on it),
		 * so let it point to itself with list_del_init().
		 */
		list_del_init(&hpage->lru);
3179
		set_page_refcounted(hpage);
3180 3181 3182 3183
		h->free_huge_pages--;
		h->free_huge_pages_node[nid]--;
		ret = 0;
	}
3184
	spin_unlock(&hugetlb_lock);
3185
	return ret;
3186
}
3187
#endif