hugetlb.c 62.6 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9
/*
 * Generic hugetlb support.
 * (C) William Irwin, April 2004
 */
#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
10
#include <linux/seq_file.h>
L
Linus Torvalds 已提交
11 12
#include <linux/sysctl.h>
#include <linux/highmem.h>
A
Andrea Arcangeli 已提交
13
#include <linux/mmu_notifier.h>
L
Linus Torvalds 已提交
14
#include <linux/nodemask.h>
D
David Gibson 已提交
15
#include <linux/pagemap.h>
16
#include <linux/mempolicy.h>
17
#include <linux/cpuset.h>
18
#include <linux/mutex.h>
19
#include <linux/bootmem.h>
20
#include <linux/sysfs.h>
21

D
David Gibson 已提交
22 23
#include <asm/page.h>
#include <asm/pgtable.h>
24
#include <asm/io.h>
D
David Gibson 已提交
25 26

#include <linux/hugetlb.h>
27
#include "internal.h"
L
Linus Torvalds 已提交
28 29

const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
30 31
static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
unsigned long hugepages_treat_as_movable;
32

33 34 35 36
static int max_hstate;
unsigned int default_hstate_idx;
struct hstate hstates[HUGE_MAX_HSTATE];

37 38
__initdata LIST_HEAD(huge_boot_pages);

39 40 41
/* for command line parsing */
static struct hstate * __initdata parsed_hstate;
static unsigned long __initdata default_hstate_max_huge_pages;
42
static unsigned long __initdata default_hstate_size;
43 44 45

#define for_each_hstate(h) \
	for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
46

47 48 49 50
/*
 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
 */
static DEFINE_SPINLOCK(hugetlb_lock);
51

52 53 54
/*
 * Region tracking -- allows tracking of reservations and instantiated pages
 *                    across the pages in a mapping.
55 56 57 58 59 60 61 62 63 64
 *
 * The region data structures are protected by a combination of the mmap_sem
 * and the hugetlb_instantion_mutex.  To access or modify a region the caller
 * must either hold the mmap_sem for write, or the mmap_sem for read and
 * the hugetlb_instantiation mutex:
 *
 * 	down_write(&mm->mmap_sem);
 * or
 * 	down_read(&mm->mmap_sem);
 * 	mutex_lock(&hugetlb_instantiation_mutex);
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
 */
struct file_region {
	struct list_head link;
	long from;
	long to;
};

static long region_add(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg, *trg;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;

	/* Check for and consume any regions we now overlap with. */
	nrg = rg;
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			break;

		/* If this area reaches higher then extend our area to
		 * include it completely.  If this is not the first area
		 * which we intend to reuse, free it. */
		if (rg->to > t)
			t = rg->to;
		if (rg != nrg) {
			list_del(&rg->link);
			kfree(rg);
		}
	}
	nrg->from = f;
	nrg->to = t;
	return 0;
}

static long region_chg(struct list_head *head, long f, long t)
{
	struct file_region *rg, *nrg;
	long chg = 0;

	/* Locate the region we are before or in. */
	list_for_each_entry(rg, head, link)
		if (f <= rg->to)
			break;

	/* If we are below the current region then a new region is required.
	 * Subtle, allocate a new region at the position but make it zero
	 * size such that we can guarantee to record the reservation. */
	if (&rg->link == head || t < rg->from) {
		nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
		if (!nrg)
			return -ENOMEM;
		nrg->from = f;
		nrg->to   = f;
		INIT_LIST_HEAD(&nrg->link);
		list_add(&nrg->link, rg->link.prev);

		return t - f;
	}

	/* Round our left edge to the current segment if it encloses us. */
	if (f > rg->from)
		f = rg->from;
	chg = t - f;

	/* Check for and consume any regions we now overlap with. */
	list_for_each_entry(rg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		if (rg->from > t)
			return chg;

		/* We overlap with this area, if it extends futher than
		 * us then we must extend ourselves.  Account for its
		 * existing reservation. */
		if (rg->to > t) {
			chg += rg->to - t;
			t = rg->to;
		}
		chg -= rg->to - rg->from;
	}
	return chg;
}

static long region_truncate(struct list_head *head, long end)
{
	struct file_region *rg, *trg;
	long chg = 0;

	/* Locate the region we are either in or before. */
	list_for_each_entry(rg, head, link)
		if (end <= rg->to)
			break;
	if (&rg->link == head)
		return 0;

	/* If we are in the middle of a region then adjust it. */
	if (end > rg->from) {
		chg = rg->to - end;
		rg->to = end;
		rg = list_entry(rg->link.next, typeof(*rg), link);
	}

	/* Drop any remaining regions. */
	list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
		if (&rg->link == head)
			break;
		chg += rg->to - rg->from;
		list_del(&rg->link);
		kfree(rg);
	}
	return chg;
}

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static long region_count(struct list_head *head, long f, long t)
{
	struct file_region *rg;
	long chg = 0;

	/* Locate each segment we overlap with, and count that overlap. */
	list_for_each_entry(rg, head, link) {
		int seg_from;
		int seg_to;

		if (rg->to <= f)
			continue;
		if (rg->from >= t)
			break;

		seg_from = max(rg->from, f);
		seg_to = min(rg->to, t);

		chg += seg_to - seg_from;
	}

	return chg;
}

211 212 213 214
/*
 * Convert the address within this vma to the page offset within
 * the mapping, in pagecache page units; huge pages here.
 */
215 216
static pgoff_t vma_hugecache_offset(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
217
{
218 219
	return ((address - vma->vm_start) >> huge_page_shift(h)) +
			(vma->vm_pgoff >> huge_page_order(h));
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
/*
 * Return the size of the pages allocated when backing a VMA. In the majority
 * cases this will be same size as used by the page table entries.
 */
unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
{
	struct hstate *hstate;

	if (!is_vm_hugetlb_page(vma))
		return PAGE_SIZE;

	hstate = hstate_vma(vma);

	return 1UL << (hstate->order + PAGE_SHIFT);
}
237
EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
238

239 240 241 242 243 244 245 246 247 248 249 250 251
/*
 * Return the page size being used by the MMU to back a VMA. In the majority
 * of cases, the page size used by the kernel matches the MMU size. On
 * architectures where it differs, an architecture-specific version of this
 * function is required.
 */
#ifndef vma_mmu_pagesize
unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
{
	return vma_kernel_pagesize(vma);
}
#endif

252 253 254 255 256 257 258
/*
 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 * bits of the reservation map pointer, which are always clear due to
 * alignment.
 */
#define HPAGE_RESV_OWNER    (1UL << 0)
#define HPAGE_RESV_UNMAPPED (1UL << 1)
259
#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
260

261 262 263 264 265 266 267 268 269
/*
 * These helpers are used to track how many pages are reserved for
 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 * is guaranteed to have their future faults succeed.
 *
 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 * the reserve counters are updated with the hugetlb_lock held. It is safe
 * to reset the VMA at fork() time as it is not in use yet and there is no
 * chance of the global counters getting corrupted as a result of the values.
270 271 272 273 274 275 276 277 278
 *
 * The private mapping reservation is represented in a subtly different
 * manner to a shared mapping.  A shared mapping has a region map associated
 * with the underlying file, this region map represents the backing file
 * pages which have ever had a reservation assigned which this persists even
 * after the page is instantiated.  A private mapping has a region map
 * associated with the original mmap which is attached to all VMAs which
 * reference it, this region map represents those offsets which have consumed
 * reservation ie. where pages have been instantiated.
279
 */
280 281 282 283 284 285 286 287 288 289 290
static unsigned long get_vma_private_data(struct vm_area_struct *vma)
{
	return (unsigned long)vma->vm_private_data;
}

static void set_vma_private_data(struct vm_area_struct *vma,
							unsigned long value)
{
	vma->vm_private_data = (void *)value;
}

291 292 293 294 295
struct resv_map {
	struct kref refs;
	struct list_head regions;
};

296
static struct resv_map *resv_map_alloc(void)
297 298 299 300 301 302 303 304 305 306 307
{
	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
	if (!resv_map)
		return NULL;

	kref_init(&resv_map->refs);
	INIT_LIST_HEAD(&resv_map->regions);

	return resv_map;
}

308
static void resv_map_release(struct kref *ref)
309 310 311 312 313 314 315 316 317
{
	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);

	/* Clear out any active regions before we release the map. */
	region_truncate(&resv_map->regions, 0);
	kfree(resv_map);
}

static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
318 319
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
320
	if (!(vma->vm_flags & VM_MAYSHARE))
321 322
		return (struct resv_map *)(get_vma_private_data(vma) &
							~HPAGE_RESV_MASK);
323
	return NULL;
324 325
}

326
static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
327 328
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
329
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
330

331 332
	set_vma_private_data(vma, (get_vma_private_data(vma) &
				HPAGE_RESV_MASK) | (unsigned long)map);
333 334 335 336 337
}

static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
338
	VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
339 340

	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
341 342 343 344 345
}

static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
346 347

	return (get_vma_private_data(vma) & flag) != 0;
348 349 350
}

/* Decrement the reserved pages in the hugepage pool by one */
351 352
static void decrement_hugepage_resv_vma(struct hstate *h,
			struct vm_area_struct *vma)
353
{
354 355 356
	if (vma->vm_flags & VM_NORESERVE)
		return;

357
	if (vma->vm_flags & VM_MAYSHARE) {
358
		/* Shared mappings always use reserves */
359
		h->resv_huge_pages--;
360
	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
361 362 363 364
		/*
		 * Only the process that called mmap() has reserves for
		 * private mappings.
		 */
365
		h->resv_huge_pages--;
366 367 368
	}
}

369
/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
370 371 372
void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
	VM_BUG_ON(!is_vm_hugetlb_page(vma));
373
	if (!(vma->vm_flags & VM_MAYSHARE))
374 375 376 377
		vma->vm_private_data = (void *)0;
}

/* Returns true if the VMA has associated reserve pages */
378
static int vma_has_reserves(struct vm_area_struct *vma)
379
{
380
	if (vma->vm_flags & VM_MAYSHARE)
381 382 383 384
		return 1;
	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
		return 1;
	return 0;
385 386
}

387 388 389 390 391 392 393 394 395 396 397 398
static void clear_gigantic_page(struct page *page,
			unsigned long addr, unsigned long sz)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
399 400
static void clear_huge_page(struct page *page,
			unsigned long addr, unsigned long sz)
401 402 403
{
	int i;

H
Hannes Eder 已提交
404 405 406 407
	if (unlikely(sz > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, sz);
		return;
	}
408

409
	might_sleep();
410
	for (i = 0; i < sz/PAGE_SIZE; i++) {
411
		cond_resched();
412
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
413 414 415
	}
}

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
static void copy_gigantic_page(struct page *dst, struct page *src,
			   unsigned long addr, struct vm_area_struct *vma)
{
	int i;
	struct hstate *h = hstate_vma(vma);
	struct page *dst_base = dst;
	struct page *src_base = src;
	might_sleep();
	for (i = 0; i < pages_per_huge_page(h); ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}
433
static void copy_huge_page(struct page *dst, struct page *src,
434
			   unsigned long addr, struct vm_area_struct *vma)
435 436
{
	int i;
437
	struct hstate *h = hstate_vma(vma);
438

H
Hannes Eder 已提交
439 440 441 442
	if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
		copy_gigantic_page(dst, src, addr, vma);
		return;
	}
443

444
	might_sleep();
445
	for (i = 0; i < pages_per_huge_page(h); i++) {
446
		cond_resched();
447
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
448 449 450
	}
}

451
static void enqueue_huge_page(struct hstate *h, struct page *page)
L
Linus Torvalds 已提交
452 453
{
	int nid = page_to_nid(page);
454 455 456
	list_add(&page->lru, &h->hugepage_freelists[nid]);
	h->free_huge_pages++;
	h->free_huge_pages_node[nid]++;
L
Linus Torvalds 已提交
457 458
}

459 460
static struct page *dequeue_huge_page_vma(struct hstate *h,
				struct vm_area_struct *vma,
461
				unsigned long address, int avoid_reserve)
L
Linus Torvalds 已提交
462
{
463
	int nid;
L
Linus Torvalds 已提交
464
	struct page *page = NULL;
465
	struct mempolicy *mpol;
466
	nodemask_t *nodemask;
467
	struct zonelist *zonelist = huge_zonelist(vma, address,
468
					htlb_alloc_mask, &mpol, &nodemask);
469 470
	struct zone *zone;
	struct zoneref *z;
L
Linus Torvalds 已提交
471

472 473 474 475 476
	/*
	 * A child process with MAP_PRIVATE mappings created by their parent
	 * have no page reserves. This check ensures that reservations are
	 * not "stolen". The child may still get SIGKILLed
	 */
477
	if (!vma_has_reserves(vma) &&
478
			h->free_huge_pages - h->resv_huge_pages == 0)
479 480
		return NULL;

481
	/* If reserves cannot be used, ensure enough pages are in the pool */
482
	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
483 484
		return NULL;

485 486
	for_each_zone_zonelist_nodemask(zone, z, zonelist,
						MAX_NR_ZONES - 1, nodemask) {
487 488
		nid = zone_to_nid(zone);
		if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
489 490
		    !list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
A
Andrew Morton 已提交
491 492
					  struct page, lru);
			list_del(&page->lru);
493 494
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
495 496

			if (!avoid_reserve)
497
				decrement_hugepage_resv_vma(h, vma);
498

K
Ken Chen 已提交
499
			break;
A
Andrew Morton 已提交
500
		}
L
Linus Torvalds 已提交
501
	}
502
	mpol_cond_put(mpol);
L
Linus Torvalds 已提交
503 504 505
	return page;
}

506
static void update_and_free_page(struct hstate *h, struct page *page)
A
Adam Litke 已提交
507 508
{
	int i;
509

510 511
	VM_BUG_ON(h->order >= MAX_ORDER);

512 513 514
	h->nr_huge_pages--;
	h->nr_huge_pages_node[page_to_nid(page)]--;
	for (i = 0; i < pages_per_huge_page(h); i++) {
A
Adam Litke 已提交
515 516 517 518 519 520
		page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
				1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
				1 << PG_private | 1<< PG_writeback);
	}
	set_compound_page_dtor(page, NULL);
	set_page_refcounted(page);
521
	arch_release_hugepage(page);
522
	__free_pages(page, huge_page_order(h));
A
Adam Litke 已提交
523 524
}

525 526 527 528 529 530 531 532 533 534 535
struct hstate *size_to_hstate(unsigned long size)
{
	struct hstate *h;

	for_each_hstate(h) {
		if (huge_page_size(h) == size)
			return h;
	}
	return NULL;
}

536 537
static void free_huge_page(struct page *page)
{
538 539 540 541
	/*
	 * Can't pass hstate in here because it is called from the
	 * compound page destructor.
	 */
542
	struct hstate *h = page_hstate(page);
543
	int nid = page_to_nid(page);
544
	struct address_space *mapping;
545

546
	mapping = (struct address_space *) page_private(page);
547
	set_page_private(page, 0);
548
	BUG_ON(page_count(page));
549 550 551
	INIT_LIST_HEAD(&page->lru);

	spin_lock(&hugetlb_lock);
552
	if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
553 554 555
		update_and_free_page(h, page);
		h->surplus_huge_pages--;
		h->surplus_huge_pages_node[nid]--;
556
	} else {
557
		enqueue_huge_page(h, page);
558
	}
559
	spin_unlock(&hugetlb_lock);
560
	if (mapping)
561
		hugetlb_put_quota(mapping, 1);
562 563
}

564
static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
565 566 567
{
	set_compound_page_dtor(page, free_huge_page);
	spin_lock(&hugetlb_lock);
568 569
	h->nr_huge_pages++;
	h->nr_huge_pages_node[nid]++;
570 571 572 573
	spin_unlock(&hugetlb_lock);
	put_page(page); /* free it into the hugepage allocator */
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
static void prep_compound_gigantic_page(struct page *page, unsigned long order)
{
	int i;
	int nr_pages = 1 << order;
	struct page *p = page + 1;

	/* we rely on prep_new_huge_page to set the destructor */
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
		__SetPageTail(p);
		p->first_page = page;
	}
}

int PageHuge(struct page *page)
{
	compound_page_dtor *dtor;

	if (!PageCompound(page))
		return 0;

	page = compound_head(page);
	dtor = get_compound_page_dtor(page);

	return dtor == free_huge_page;
}

602
static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
L
Linus Torvalds 已提交
603 604
{
	struct page *page;
605

606 607 608
	if (h->order >= MAX_ORDER)
		return NULL;

609
	page = alloc_pages_exact_node(nid,
610 611
		htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
						__GFP_REPEAT|__GFP_NOWARN,
612
		huge_page_order(h));
L
Linus Torvalds 已提交
613
	if (page) {
614
		if (arch_prepare_hugepage(page)) {
615
			__free_pages(page, huge_page_order(h));
616
			return NULL;
617
		}
618
		prep_new_huge_page(h, page, nid);
L
Linus Torvalds 已提交
619
	}
620 621 622 623

	return page;
}

624 625
/*
 * Use a helper variable to find the next node and then
626
 * copy it back to next_nid_to_alloc afterwards:
627
 * otherwise there's a window in which a racer might
628
 * pass invalid nid MAX_NUMNODES to alloc_pages_exact_node.
629 630 631 632 633 634
 * But we don't need to use a spin_lock here: it really
 * doesn't matter if occasionally a racer chooses the
 * same nid as we do.  Move nid forward in the mask even
 * if we just successfully allocated a hugepage so that
 * the next caller gets hugepages on the next node.
 */
635
static int hstate_next_node_to_alloc(struct hstate *h)
636 637
{
	int next_nid;
638
	next_nid = next_node(h->next_nid_to_alloc, node_online_map);
639 640
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
641
	h->next_nid_to_alloc = next_nid;
642 643 644
	return next_nid;
}

645
static int alloc_fresh_huge_page(struct hstate *h)
646 647 648 649 650 651
{
	struct page *page;
	int start_nid;
	int next_nid;
	int ret = 0;

652 653
	start_nid = h->next_nid_to_alloc;
	next_nid = start_nid;
654 655

	do {
656
		page = alloc_fresh_huge_page_node(h, next_nid);
657 658
		if (page)
			ret = 1;
659 660
		next_nid = hstate_next_node_to_alloc(h);
	} while (!page && next_nid != start_nid);
661

662 663 664 665 666
	if (ret)
		count_vm_event(HTLB_BUDDY_PGALLOC);
	else
		count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);

667
	return ret;
L
Linus Torvalds 已提交
668 669
}

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
/*
 * helper for free_pool_huge_page() - find next node
 * from which to free a huge page
 */
static int hstate_next_node_to_free(struct hstate *h)
{
	int next_nid;
	next_nid = next_node(h->next_nid_to_free, node_online_map);
	if (next_nid == MAX_NUMNODES)
		next_nid = first_node(node_online_map);
	h->next_nid_to_free = next_nid;
	return next_nid;
}

/*
 * Free huge page from pool from next node to free.
 * Attempt to keep persistent huge pages more or less
 * balanced over allowed nodes.
 * Called with hugetlb_lock locked.
 */
static int free_pool_huge_page(struct hstate *h)
{
	int start_nid;
	int next_nid;
	int ret = 0;

	start_nid = h->next_nid_to_free;
	next_nid = start_nid;

	do {
		if (!list_empty(&h->hugepage_freelists[next_nid])) {
			struct page *page =
				list_entry(h->hugepage_freelists[next_nid].next,
					  struct page, lru);
			list_del(&page->lru);
			h->free_huge_pages--;
			h->free_huge_pages_node[next_nid]--;
			update_and_free_page(h, page);
			ret = 1;
		}
		next_nid = hstate_next_node_to_free(h);
	} while (!ret && next_nid != start_nid);

	return ret;
}

716 717
static struct page *alloc_buddy_huge_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
718 719
{
	struct page *page;
720
	unsigned int nid;
721

722 723 724
	if (h->order >= MAX_ORDER)
		return NULL;

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	/*
	 * Assume we will successfully allocate the surplus page to
	 * prevent racing processes from causing the surplus to exceed
	 * overcommit
	 *
	 * This however introduces a different race, where a process B
	 * tries to grow the static hugepage pool while alloc_pages() is
	 * called by process A. B will only examine the per-node
	 * counters in determining if surplus huge pages can be
	 * converted to normal huge pages in adjust_pool_surplus(). A
	 * won't be able to increment the per-node counter, until the
	 * lock is dropped by B, but B doesn't drop hugetlb_lock until
	 * no more huge pages can be converted from surplus to normal
	 * state (and doesn't try to convert again). Thus, we have a
	 * case where a surplus huge page exists, the pool is grown, and
	 * the surplus huge page still exists after, even though it
	 * should just have been converted to a normal huge page. This
	 * does not leak memory, though, as the hugepage will be freed
	 * once it is out of use. It also does not allow the counters to
	 * go out of whack in adjust_pool_surplus() as we don't modify
	 * the node values until we've gotten the hugepage and only the
	 * per-node value is checked there.
	 */
	spin_lock(&hugetlb_lock);
749
	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
750 751 752
		spin_unlock(&hugetlb_lock);
		return NULL;
	} else {
753 754
		h->nr_huge_pages++;
		h->surplus_huge_pages++;
755 756 757
	}
	spin_unlock(&hugetlb_lock);

758 759
	page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
					__GFP_REPEAT|__GFP_NOWARN,
760
					huge_page_order(h));
761

762 763 764 765 766
	if (page && arch_prepare_hugepage(page)) {
		__free_pages(page, huge_page_order(h));
		return NULL;
	}

767
	spin_lock(&hugetlb_lock);
768
	if (page) {
769 770 771 772 773 774
		/*
		 * This page is now managed by the hugetlb allocator and has
		 * no users -- drop the buddy allocator's reference.
		 */
		put_page_testzero(page);
		VM_BUG_ON(page_count(page));
775
		nid = page_to_nid(page);
776
		set_compound_page_dtor(page, free_huge_page);
777 778 779
		/*
		 * We incremented the global counters already
		 */
780 781
		h->nr_huge_pages_node[nid]++;
		h->surplus_huge_pages_node[nid]++;
782
		__count_vm_event(HTLB_BUDDY_PGALLOC);
783
	} else {
784 785
		h->nr_huge_pages--;
		h->surplus_huge_pages--;
786
		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
787
	}
788
	spin_unlock(&hugetlb_lock);
789 790 791 792

	return page;
}

793 794 795 796
/*
 * Increase the hugetlb pool such that it can accomodate a reservation
 * of size 'delta'.
 */
797
static int gather_surplus_pages(struct hstate *h, int delta)
798 799 800 801 802 803
{
	struct list_head surplus_list;
	struct page *page, *tmp;
	int ret, i;
	int needed, allocated;

804
	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
805
	if (needed <= 0) {
806
		h->resv_huge_pages += delta;
807
		return 0;
808
	}
809 810 811 812 813 814 815 816

	allocated = 0;
	INIT_LIST_HEAD(&surplus_list);

	ret = -ENOMEM;
retry:
	spin_unlock(&hugetlb_lock);
	for (i = 0; i < needed; i++) {
817
		page = alloc_buddy_huge_page(h, NULL, 0);
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
		if (!page) {
			/*
			 * We were not able to allocate enough pages to
			 * satisfy the entire reservation so we free what
			 * we've allocated so far.
			 */
			spin_lock(&hugetlb_lock);
			needed = 0;
			goto free;
		}

		list_add(&page->lru, &surplus_list);
	}
	allocated += needed;

	/*
	 * After retaking hugetlb_lock, we need to recalculate 'needed'
	 * because either resv_huge_pages or free_huge_pages may have changed.
	 */
	spin_lock(&hugetlb_lock);
838 839
	needed = (h->resv_huge_pages + delta) -
			(h->free_huge_pages + allocated);
840 841 842 843 844 845 846
	if (needed > 0)
		goto retry;

	/*
	 * The surplus_list now contains _at_least_ the number of extra pages
	 * needed to accomodate the reservation.  Add the appropriate number
	 * of pages to the hugetlb pool and free the extras back to the buddy
847 848 849
	 * allocator.  Commit the entire reservation here to prevent another
	 * process from stealing the pages as they are added to the pool but
	 * before they are reserved.
850 851
	 */
	needed += allocated;
852
	h->resv_huge_pages += delta;
853 854
	ret = 0;
free:
855
	/* Free the needed pages to the hugetlb pool */
856
	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
857 858
		if ((--needed) < 0)
			break;
859
		list_del(&page->lru);
860
		enqueue_huge_page(h, page);
861 862 863 864 865 866 867
	}

	/* Free unnecessary surplus pages to the buddy allocator */
	if (!list_empty(&surplus_list)) {
		spin_unlock(&hugetlb_lock);
		list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
			list_del(&page->lru);
868
			/*
869 870 871
			 * The page has a reference count of zero already, so
			 * call free_huge_page directly instead of using
			 * put_page.  This must be done with hugetlb_lock
872 873 874
			 * unlocked which is safe because free_huge_page takes
			 * hugetlb_lock before deciding how to free the page.
			 */
875
			free_huge_page(page);
876
		}
877
		spin_lock(&hugetlb_lock);
878 879 880 881 882 883 884 885 886 887
	}

	return ret;
}

/*
 * When releasing a hugetlb pool reservation, any surplus pages that were
 * allocated to satisfy the reservation must be explicitly freed if they were
 * never used.
 */
888 889
static void return_unused_surplus_pages(struct hstate *h,
					unsigned long unused_resv_pages)
890 891 892 893 894
{
	static int nid = -1;
	struct page *page;
	unsigned long nr_pages;

895 896 897 898 899 900
	/*
	 * We want to release as many surplus pages as possible, spread
	 * evenly across all nodes. Iterate across all nodes until we
	 * can no longer free unreserved surplus pages. This occurs when
	 * the nodes with surplus pages have no free pages.
	 */
901
	unsigned long remaining_iterations = nr_online_nodes;
902

903
	/* Uncommit the reservation */
904
	h->resv_huge_pages -= unused_resv_pages;
905

906 907 908 909
	/* Cannot return gigantic pages currently */
	if (h->order >= MAX_ORDER)
		return;

910
	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
911

912
	while (remaining_iterations-- && nr_pages) {
913 914 915 916
		nid = next_node(nid, node_online_map);
		if (nid == MAX_NUMNODES)
			nid = first_node(node_online_map);

917
		if (!h->surplus_huge_pages_node[nid])
918 919
			continue;

920 921
		if (!list_empty(&h->hugepage_freelists[nid])) {
			page = list_entry(h->hugepage_freelists[nid].next,
922 923
					  struct page, lru);
			list_del(&page->lru);
924 925 926 927 928
			update_and_free_page(h, page);
			h->free_huge_pages--;
			h->free_huge_pages_node[nid]--;
			h->surplus_huge_pages--;
			h->surplus_huge_pages_node[nid]--;
929
			nr_pages--;
930
			remaining_iterations = nr_online_nodes;
931 932 933 934
		}
	}
}

935 936 937 938 939 940 941 942 943
/*
 * Determine if the huge page at addr within the vma has an associated
 * reservation.  Where it does not we will need to logically increase
 * reservation and actually increase quota before an allocation can occur.
 * Where any new reservation would be required the reservation change is
 * prepared, but not committed.  Once the page has been quota'd allocated
 * an instantiated the change should be committed via vma_commit_reservation.
 * No action is required on failure.
 */
944
static long vma_needs_reservation(struct hstate *h,
945
			struct vm_area_struct *vma, unsigned long addr)
946 947 948 949
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

950
	if (vma->vm_flags & VM_MAYSHARE) {
951
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
952 953 954
		return region_chg(&inode->i_mapping->private_list,
							idx, idx + 1);

955 956
	} else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
		return 1;
957

958
	} else  {
959
		long err;
960
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
961 962 963 964 965 966 967
		struct resv_map *reservations = vma_resv_map(vma);

		err = region_chg(&reservations->regions, idx, idx + 1);
		if (err < 0)
			return err;
		return 0;
	}
968
}
969 970
static void vma_commit_reservation(struct hstate *h,
			struct vm_area_struct *vma, unsigned long addr)
971 972 973 974
{
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;

975
	if (vma->vm_flags & VM_MAYSHARE) {
976
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
977
		region_add(&inode->i_mapping->private_list, idx, idx + 1);
978 979

	} else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
980
		pgoff_t idx = vma_hugecache_offset(h, vma, addr);
981 982 983 984
		struct resv_map *reservations = vma_resv_map(vma);

		/* Mark this page used in the map. */
		region_add(&reservations->regions, idx, idx + 1);
985 986 987
	}
}

988
static struct page *alloc_huge_page(struct vm_area_struct *vma,
989
				    unsigned long addr, int avoid_reserve)
L
Linus Torvalds 已提交
990
{
991
	struct hstate *h = hstate_vma(vma);
992
	struct page *page;
993 994
	struct address_space *mapping = vma->vm_file->f_mapping;
	struct inode *inode = mapping->host;
995
	long chg;
996 997 998 999 1000

	/*
	 * Processes that did not create the mapping will have no reserves and
	 * will not have accounted against quota. Check that the quota can be
	 * made before satisfying the allocation
1001 1002
	 * MAP_NORESERVE mappings may also need pages and quota allocated
	 * if no reserve mapping overlaps.
1003
	 */
1004
	chg = vma_needs_reservation(h, vma, addr);
1005 1006 1007
	if (chg < 0)
		return ERR_PTR(chg);
	if (chg)
1008 1009
		if (hugetlb_get_quota(inode->i_mapping, chg))
			return ERR_PTR(-ENOSPC);
L
Linus Torvalds 已提交
1010 1011

	spin_lock(&hugetlb_lock);
1012
	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
L
Linus Torvalds 已提交
1013
	spin_unlock(&hugetlb_lock);
1014

K
Ken Chen 已提交
1015
	if (!page) {
1016
		page = alloc_buddy_huge_page(h, vma, addr);
K
Ken Chen 已提交
1017
		if (!page) {
1018
			hugetlb_put_quota(inode->i_mapping, chg);
K
Ken Chen 已提交
1019 1020 1021
			return ERR_PTR(-VM_FAULT_OOM);
		}
	}
1022

1023 1024
	set_page_refcounted(page);
	set_page_private(page, (unsigned long) mapping);
1025

1026
	vma_commit_reservation(h, vma, addr);
1027

1028
	return page;
1029 1030
}

1031
int __weak alloc_bootmem_huge_page(struct hstate *h)
1032 1033 1034 1035 1036 1037 1038 1039
{
	struct huge_bootmem_page *m;
	int nr_nodes = nodes_weight(node_online_map);

	while (nr_nodes) {
		void *addr;

		addr = __alloc_bootmem_node_nopanic(
1040
				NODE_DATA(h->next_nid_to_alloc),
1041 1042 1043 1044 1045 1046 1047 1048 1049
				huge_page_size(h), huge_page_size(h), 0);

		if (addr) {
			/*
			 * Use the beginning of the huge page to store the
			 * huge_bootmem_page struct (until gather_bootmem
			 * puts them into the mem_map).
			 */
			m = addr;
1050
			goto found;
1051
		}
1052
		hstate_next_node_to_alloc(h);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		nr_nodes--;
	}
	return 0;

found:
	BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
	/* Put them into a private list first because mem_map is not up yet */
	list_add(&m->list, &huge_boot_pages);
	m->hstate = h;
	return 1;
}

1065 1066 1067 1068 1069 1070 1071 1072
static void prep_compound_huge_page(struct page *page, int order)
{
	if (unlikely(order > (MAX_ORDER - 1)))
		prep_compound_gigantic_page(page, order);
	else
		prep_compound_page(page, order);
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
/* Put bootmem huge pages into the standard lists after mem_map is up */
static void __init gather_bootmem_prealloc(void)
{
	struct huge_bootmem_page *m;

	list_for_each_entry(m, &huge_boot_pages, list) {
		struct page *page = virt_to_page(m);
		struct hstate *h = m->hstate;
		__ClearPageReserved(page);
		WARN_ON(page_count(page) != 1);
1083
		prep_compound_huge_page(page, h->order);
1084 1085 1086 1087
		prep_new_huge_page(h, page, page_to_nid(page));
	}
}

1088
static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
L
Linus Torvalds 已提交
1089 1090
{
	unsigned long i;
1091

1092
	for (i = 0; i < h->max_huge_pages; ++i) {
1093 1094 1095 1096
		if (h->order >= MAX_ORDER) {
			if (!alloc_bootmem_huge_page(h))
				break;
		} else if (!alloc_fresh_huge_page(h))
L
Linus Torvalds 已提交
1097 1098
			break;
	}
1099
	h->max_huge_pages = i;
1100 1101 1102 1103 1104 1105 1106
}

static void __init hugetlb_init_hstates(void)
{
	struct hstate *h;

	for_each_hstate(h) {
1107 1108 1109
		/* oversize hugepages were init'ed in early boot */
		if (h->order < MAX_ORDER)
			hugetlb_hstate_alloc_pages(h);
1110 1111 1112
	}
}

A
Andi Kleen 已提交
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
static char * __init memfmt(char *buf, unsigned long n)
{
	if (n >= (1UL << 30))
		sprintf(buf, "%lu GB", n >> 30);
	else if (n >= (1UL << 20))
		sprintf(buf, "%lu MB", n >> 20);
	else
		sprintf(buf, "%lu KB", n >> 10);
	return buf;
}

1124 1125 1126 1127 1128
static void __init report_hugepages(void)
{
	struct hstate *h;

	for_each_hstate(h) {
A
Andi Kleen 已提交
1129 1130 1131 1132 1133
		char buf[32];
		printk(KERN_INFO "HugeTLB registered %s page size, "
				 "pre-allocated %ld pages\n",
			memfmt(buf, huge_page_size(h)),
			h->free_huge_pages);
1134 1135 1136
	}
}

L
Linus Torvalds 已提交
1137
#ifdef CONFIG_HIGHMEM
1138
static void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1139
{
1140 1141
	int i;

1142 1143 1144
	if (h->order >= MAX_ORDER)
		return;

L
Linus Torvalds 已提交
1145 1146
	for (i = 0; i < MAX_NUMNODES; ++i) {
		struct page *page, *next;
1147 1148 1149
		struct list_head *freel = &h->hugepage_freelists[i];
		list_for_each_entry_safe(page, next, freel, lru) {
			if (count >= h->nr_huge_pages)
1150
				return;
L
Linus Torvalds 已提交
1151 1152 1153
			if (PageHighMem(page))
				continue;
			list_del(&page->lru);
1154
			update_and_free_page(h, page);
1155 1156
			h->free_huge_pages--;
			h->free_huge_pages_node[page_to_nid(page)]--;
L
Linus Torvalds 已提交
1157 1158 1159 1160
		}
	}
}
#else
1161
static inline void try_to_free_low(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1162 1163 1164 1165
{
}
#endif

1166 1167 1168 1169 1170 1171 1172
/*
 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
 * balanced by operating on them in a round-robin fashion.
 * Returns 1 if an adjustment was made.
 */
static int adjust_pool_surplus(struct hstate *h, int delta)
{
1173
	int start_nid, next_nid;
1174 1175 1176 1177
	int ret = 0;

	VM_BUG_ON(delta != -1 && delta != 1);

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	if (delta < 0)
		start_nid = h->next_nid_to_alloc;
	else
		start_nid = h->next_nid_to_free;
	next_nid = start_nid;

	do {
		int nid = next_nid;
		if (delta < 0)  {
			next_nid = hstate_next_node_to_alloc(h);
			/*
			 * To shrink on this node, there must be a surplus page
			 */
			if (!h->surplus_huge_pages_node[nid])
				continue;
		}
		if (delta > 0) {
			next_nid = hstate_next_node_to_free(h);
			/*
			 * Surplus cannot exceed the total number of pages
			 */
			if (h->surplus_huge_pages_node[nid] >=
1200
						h->nr_huge_pages_node[nid])
1201 1202
				continue;
		}
1203 1204 1205 1206 1207

		h->surplus_huge_pages += delta;
		h->surplus_huge_pages_node[nid] += delta;
		ret = 1;
		break;
1208
	} while (next_nid != start_nid);
1209 1210 1211 1212

	return ret;
}

1213
#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1214
static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count)
L
Linus Torvalds 已提交
1215
{
1216
	unsigned long min_count, ret;
L
Linus Torvalds 已提交
1217

1218 1219 1220
	if (h->order >= MAX_ORDER)
		return h->max_huge_pages;

1221 1222 1223 1224
	/*
	 * Increase the pool size
	 * First take pages out of surplus state.  Then make up the
	 * remaining difference by allocating fresh huge pages.
1225 1226 1227 1228 1229 1230
	 *
	 * We might race with alloc_buddy_huge_page() here and be unable
	 * to convert a surplus huge page to a normal huge page. That is
	 * not critical, though, it just means the overall size of the
	 * pool might be one hugepage larger than it needs to be, but
	 * within all the constraints specified by the sysctls.
1231
	 */
L
Linus Torvalds 已提交
1232
	spin_lock(&hugetlb_lock);
1233 1234
	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, -1))
1235 1236 1237
			break;
	}

1238
	while (count > persistent_huge_pages(h)) {
1239 1240 1241 1242 1243 1244
		/*
		 * If this allocation races such that we no longer need the
		 * page, free_huge_page will handle it by freeing the page
		 * and reducing the surplus.
		 */
		spin_unlock(&hugetlb_lock);
1245
		ret = alloc_fresh_huge_page(h);
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
		spin_lock(&hugetlb_lock);
		if (!ret)
			goto out;

	}

	/*
	 * Decrease the pool size
	 * First return free pages to the buddy allocator (being careful
	 * to keep enough around to satisfy reservations).  Then place
	 * pages into surplus state as needed so the pool will shrink
	 * to the desired size as pages become free.
1258 1259 1260 1261 1262 1263 1264 1265
	 *
	 * By placing pages into the surplus state independent of the
	 * overcommit value, we are allowing the surplus pool size to
	 * exceed overcommit. There are few sane options here. Since
	 * alloc_buddy_huge_page() is checking the global counter,
	 * though, we'll note that we're not allowed to exceed surplus
	 * and won't grow the pool anywhere else. Not until one of the
	 * sysctls are changed, or the surplus pages go out of use.
1266
	 */
1267
	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1268
	min_count = max(count, min_count);
1269 1270
	try_to_free_low(h, min_count);
	while (min_count < persistent_huge_pages(h)) {
1271
		if (!free_pool_huge_page(h))
L
Linus Torvalds 已提交
1272 1273
			break;
	}
1274 1275
	while (count < persistent_huge_pages(h)) {
		if (!adjust_pool_surplus(h, 1))
1276 1277 1278
			break;
	}
out:
1279
	ret = persistent_huge_pages(h);
L
Linus Torvalds 已提交
1280
	spin_unlock(&hugetlb_lock);
1281
	return ret;
L
Linus Torvalds 已提交
1282 1283
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
#define HSTATE_ATTR_RO(_name) \
	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)

#define HSTATE_ATTR(_name) \
	static struct kobj_attribute _name##_attr = \
		__ATTR(_name, 0644, _name##_show, _name##_store)

static struct kobject *hugepages_kobj;
static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];

static struct hstate *kobj_to_hstate(struct kobject *kobj)
{
	int i;
	for (i = 0; i < HUGE_MAX_HSTATE; i++)
		if (hstate_kobjs[i] == kobj)
			return &hstates[i];
	BUG();
	return NULL;
}

static ssize_t nr_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_huge_pages);
}
static ssize_t nr_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	h->max_huge_pages = set_max_huge_pages(h, input);

	return count;
}
HSTATE_ATTR(nr_hugepages);

static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
}
static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
	int err;
	unsigned long input;
	struct hstate *h = kobj_to_hstate(kobj);

	err = strict_strtoul(buf, 10, &input);
	if (err)
		return 0;

	spin_lock(&hugetlb_lock);
	h->nr_overcommit_huge_pages = input;
	spin_unlock(&hugetlb_lock);

	return count;
}
HSTATE_ATTR(nr_overcommit_hugepages);

static ssize_t free_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->free_huge_pages);
}
HSTATE_ATTR_RO(free_hugepages);

static ssize_t resv_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->resv_huge_pages);
}
HSTATE_ATTR_RO(resv_hugepages);

static ssize_t surplus_hugepages_show(struct kobject *kobj,
					struct kobj_attribute *attr, char *buf)
{
	struct hstate *h = kobj_to_hstate(kobj);
	return sprintf(buf, "%lu\n", h->surplus_huge_pages);
}
HSTATE_ATTR_RO(surplus_hugepages);

static struct attribute *hstate_attrs[] = {
	&nr_hugepages_attr.attr,
	&nr_overcommit_hugepages_attr.attr,
	&free_hugepages_attr.attr,
	&resv_hugepages_attr.attr,
	&surplus_hugepages_attr.attr,
	NULL,
};

static struct attribute_group hstate_attr_group = {
	.attrs = hstate_attrs,
};

static int __init hugetlb_sysfs_add_hstate(struct hstate *h)
{
	int retval;

	hstate_kobjs[h - hstates] = kobject_create_and_add(h->name,
							hugepages_kobj);
	if (!hstate_kobjs[h - hstates])
		return -ENOMEM;

	retval = sysfs_create_group(hstate_kobjs[h - hstates],
							&hstate_attr_group);
	if (retval)
		kobject_put(hstate_kobjs[h - hstates]);

	return retval;
}

static void __init hugetlb_sysfs_init(void)
{
	struct hstate *h;
	int err;

	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
	if (!hugepages_kobj)
		return;

	for_each_hstate(h) {
		err = hugetlb_sysfs_add_hstate(h);
		if (err)
			printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
								h->name);
	}
}

static void __exit hugetlb_exit(void)
{
	struct hstate *h;

	for_each_hstate(h) {
		kobject_put(hstate_kobjs[h - hstates]);
	}

	kobject_put(hugepages_kobj);
}
module_exit(hugetlb_exit);

static int __init hugetlb_init(void)
{
1437 1438 1439 1440 1441 1442
	/* Some platform decide whether they support huge pages at boot
	 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
	 * there is no such support
	 */
	if (HPAGE_SHIFT == 0)
		return 0;
1443

1444 1445 1446 1447
	if (!size_to_hstate(default_hstate_size)) {
		default_hstate_size = HPAGE_SIZE;
		if (!size_to_hstate(default_hstate_size))
			hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1448
	}
1449 1450 1451
	default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
	if (default_hstate_max_huge_pages)
		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1452 1453 1454

	hugetlb_init_hstates();

1455 1456
	gather_bootmem_prealloc();

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	report_hugepages();

	hugetlb_sysfs_init();

	return 0;
}
module_init(hugetlb_init);

/* Should be called on processing a hugepagesz=... option */
void __init hugetlb_add_hstate(unsigned order)
{
	struct hstate *h;
1469 1470
	unsigned long i;

1471 1472 1473 1474 1475 1476 1477 1478 1479
	if (size_to_hstate(PAGE_SIZE << order)) {
		printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
		return;
	}
	BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
	BUG_ON(order == 0);
	h = &hstates[max_hstate++];
	h->order = order;
	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1480 1481 1482 1483
	h->nr_huge_pages = 0;
	h->free_huge_pages = 0;
	for (i = 0; i < MAX_NUMNODES; ++i)
		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1484 1485
	h->next_nid_to_alloc = first_node(node_online_map);
	h->next_nid_to_free = first_node(node_online_map);
1486 1487
	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
					huge_page_size(h)/1024);
1488

1489 1490 1491
	parsed_hstate = h;
}

1492
static int __init hugetlb_nrpages_setup(char *s)
1493 1494
{
	unsigned long *mhp;
1495
	static unsigned long *last_mhp;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505

	/*
	 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
	 * so this hugepages= parameter goes to the "default hstate".
	 */
	if (!max_hstate)
		mhp = &default_hstate_max_huge_pages;
	else
		mhp = &parsed_hstate->max_huge_pages;

1506 1507 1508 1509 1510 1511
	if (mhp == last_mhp) {
		printk(KERN_WARNING "hugepages= specified twice without "
			"interleaving hugepagesz=, ignoring\n");
		return 1;
	}

1512 1513 1514
	if (sscanf(s, "%lu", mhp) <= 0)
		*mhp = 0;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	/*
	 * Global state is always initialized later in hugetlb_init.
	 * But we need to allocate >= MAX_ORDER hstates here early to still
	 * use the bootmem allocator.
	 */
	if (max_hstate && parsed_hstate->order >= MAX_ORDER)
		hugetlb_hstate_alloc_pages(parsed_hstate);

	last_mhp = mhp;

1525 1526
	return 1;
}
1527 1528 1529 1530 1531 1532 1533 1534
__setup("hugepages=", hugetlb_nrpages_setup);

static int __init hugetlb_default_setup(char *s)
{
	default_hstate_size = memparse(s, &s);
	return 1;
}
__setup("default_hugepagesz=", hugetlb_default_setup);
1535

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
static unsigned int cpuset_mems_nr(unsigned int *array)
{
	int node;
	unsigned int nr = 0;

	for_each_node_mask(node, cpuset_current_mems_allowed)
		nr += array[node];

	return nr;
}

#ifdef CONFIG_SYSCTL
L
Linus Torvalds 已提交
1548 1549 1550 1551
int hugetlb_sysctl_handler(struct ctl_table *table, int write,
			   struct file *file, void __user *buffer,
			   size_t *length, loff_t *ppos)
{
1552 1553 1554 1555 1556 1557 1558 1559
	struct hstate *h = &default_hstate;
	unsigned long tmp;

	if (!write)
		tmp = h->max_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
L
Linus Torvalds 已提交
1560
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1561 1562 1563 1564

	if (write)
		h->max_huge_pages = set_max_huge_pages(h, tmp);

L
Linus Torvalds 已提交
1565 1566
	return 0;
}
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579

int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
	proc_dointvec(table, write, file, buffer, length, ppos);
	if (hugepages_treat_as_movable)
		htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
	else
		htlb_alloc_mask = GFP_HIGHUSER;
	return 0;
}

1580 1581 1582 1583
int hugetlb_overcommit_handler(struct ctl_table *table, int write,
			struct file *file, void __user *buffer,
			size_t *length, loff_t *ppos)
{
1584
	struct hstate *h = &default_hstate;
1585 1586 1587 1588 1589 1590 1591
	unsigned long tmp;

	if (!write)
		tmp = h->nr_overcommit_huge_pages;

	table->data = &tmp;
	table->maxlen = sizeof(unsigned long);
1592
	proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
1593 1594 1595 1596 1597 1598 1599

	if (write) {
		spin_lock(&hugetlb_lock);
		h->nr_overcommit_huge_pages = tmp;
		spin_unlock(&hugetlb_lock);
	}

1600 1601 1602
	return 0;
}

L
Linus Torvalds 已提交
1603 1604
#endif /* CONFIG_SYSCTL */

1605
void hugetlb_report_meminfo(struct seq_file *m)
L
Linus Torvalds 已提交
1606
{
1607
	struct hstate *h = &default_hstate;
1608
	seq_printf(m,
1609 1610 1611 1612 1613
			"HugePages_Total:   %5lu\n"
			"HugePages_Free:    %5lu\n"
			"HugePages_Rsvd:    %5lu\n"
			"HugePages_Surp:    %5lu\n"
			"Hugepagesize:   %8lu kB\n",
1614 1615 1616 1617 1618
			h->nr_huge_pages,
			h->free_huge_pages,
			h->resv_huge_pages,
			h->surplus_huge_pages,
			1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
L
Linus Torvalds 已提交
1619 1620 1621 1622
}

int hugetlb_report_node_meminfo(int nid, char *buf)
{
1623
	struct hstate *h = &default_hstate;
L
Linus Torvalds 已提交
1624 1625
	return sprintf(buf,
		"Node %d HugePages_Total: %5u\n"
1626 1627
		"Node %d HugePages_Free:  %5u\n"
		"Node %d HugePages_Surp:  %5u\n",
1628 1629 1630
		nid, h->nr_huge_pages_node[nid],
		nid, h->free_huge_pages_node[nid],
		nid, h->surplus_huge_pages_node[nid]);
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635
}

/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
unsigned long hugetlb_total_pages(void)
{
1636 1637
	struct hstate *h = &default_hstate;
	return h->nr_huge_pages * pages_per_huge_page(h);
L
Linus Torvalds 已提交
1638 1639
}

1640
static int hugetlb_acct_memory(struct hstate *h, long delta)
M
Mel Gorman 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
{
	int ret = -ENOMEM;

	spin_lock(&hugetlb_lock);
	/*
	 * When cpuset is configured, it breaks the strict hugetlb page
	 * reservation as the accounting is done on a global variable. Such
	 * reservation is completely rubbish in the presence of cpuset because
	 * the reservation is not checked against page availability for the
	 * current cpuset. Application can still potentially OOM'ed by kernel
	 * with lack of free htlb page in cpuset that the task is in.
	 * Attempt to enforce strict accounting with cpuset is almost
	 * impossible (or too ugly) because cpuset is too fluid that
	 * task or memory node can be dynamically moved between cpusets.
	 *
	 * The change of semantics for shared hugetlb mapping with cpuset is
	 * undesirable. However, in order to preserve some of the semantics,
	 * we fall back to check against current free page availability as
	 * a best attempt and hopefully to minimize the impact of changing
	 * semantics that cpuset has.
	 */
	if (delta > 0) {
1663
		if (gather_surplus_pages(h, delta) < 0)
M
Mel Gorman 已提交
1664 1665
			goto out;

1666 1667
		if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
			return_unused_surplus_pages(h, delta);
M
Mel Gorman 已提交
1668 1669 1670 1671 1672 1673
			goto out;
		}
	}

	ret = 0;
	if (delta < 0)
1674
		return_unused_surplus_pages(h, (unsigned long) -delta);
M
Mel Gorman 已提交
1675 1676 1677 1678 1679 1680

out:
	spin_unlock(&hugetlb_lock);
	return ret;
}

1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
static void hugetlb_vm_op_open(struct vm_area_struct *vma)
{
	struct resv_map *reservations = vma_resv_map(vma);

	/*
	 * This new VMA should share its siblings reservation map if present.
	 * The VMA will only ever have a valid reservation map pointer where
	 * it is being copied for another still existing VMA.  As that VMA
	 * has a reference to the reservation map it cannot dissappear until
	 * after this open call completes.  It is therefore safe to take a
	 * new reference here without additional locking.
	 */
	if (reservations)
		kref_get(&reservations->refs);
}

1697 1698
static void hugetlb_vm_op_close(struct vm_area_struct *vma)
{
1699
	struct hstate *h = hstate_vma(vma);
1700 1701 1702 1703 1704 1705
	struct resv_map *reservations = vma_resv_map(vma);
	unsigned long reserve;
	unsigned long start;
	unsigned long end;

	if (reservations) {
1706 1707
		start = vma_hugecache_offset(h, vma, vma->vm_start);
		end = vma_hugecache_offset(h, vma, vma->vm_end);
1708 1709 1710 1711 1712 1713

		reserve = (end - start) -
			region_count(&reservations->regions, start, end);

		kref_put(&reservations->refs, resv_map_release);

1714
		if (reserve) {
1715
			hugetlb_acct_memory(h, -reserve);
1716 1717
			hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
		}
1718
	}
1719 1720
}

L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726
/*
 * We cannot handle pagefaults against hugetlb pages at all.  They cause
 * handle_mm_fault() to try to instantiate regular-sized pages in the
 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
 * this far.
 */
N
Nick Piggin 已提交
1727
static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
L
Linus Torvalds 已提交
1728 1729
{
	BUG();
N
Nick Piggin 已提交
1730
	return 0;
L
Linus Torvalds 已提交
1731 1732 1733
}

struct vm_operations_struct hugetlb_vm_ops = {
N
Nick Piggin 已提交
1734
	.fault = hugetlb_vm_op_fault,
1735
	.open = hugetlb_vm_op_open,
1736
	.close = hugetlb_vm_op_close,
L
Linus Torvalds 已提交
1737 1738
};

1739 1740
static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
				int writable)
D
David Gibson 已提交
1741 1742 1743
{
	pte_t entry;

1744
	if (writable) {
D
David Gibson 已提交
1745 1746 1747
		entry =
		    pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
	} else {
1748
		entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
D
David Gibson 已提交
1749 1750 1751 1752 1753 1754 1755
	}
	entry = pte_mkyoung(entry);
	entry = pte_mkhuge(entry);

	return entry;
}

1756 1757 1758 1759 1760
static void set_huge_ptep_writable(struct vm_area_struct *vma,
				   unsigned long address, pte_t *ptep)
{
	pte_t entry;

1761 1762
	entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
1763 1764
		update_mmu_cache(vma, address, entry);
	}
1765 1766 1767
}


D
David Gibson 已提交
1768 1769 1770 1771 1772
int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
			    struct vm_area_struct *vma)
{
	pte_t *src_pte, *dst_pte, entry;
	struct page *ptepage;
1773
	unsigned long addr;
1774
	int cow;
1775 1776
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);
1777 1778

	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
D
David Gibson 已提交
1779

1780
	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
H
Hugh Dickins 已提交
1781 1782 1783
		src_pte = huge_pte_offset(src, addr);
		if (!src_pte)
			continue;
1784
		dst_pte = huge_pte_alloc(dst, addr, sz);
D
David Gibson 已提交
1785 1786
		if (!dst_pte)
			goto nomem;
1787 1788 1789 1790 1791

		/* If the pagetables are shared don't copy or take references */
		if (dst_pte == src_pte)
			continue;

H
Hugh Dickins 已提交
1792
		spin_lock(&dst->page_table_lock);
N
Nick Piggin 已提交
1793
		spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
1794
		if (!huge_pte_none(huge_ptep_get(src_pte))) {
1795
			if (cow)
1796 1797
				huge_ptep_set_wrprotect(src, addr, src_pte);
			entry = huge_ptep_get(src_pte);
1798 1799 1800 1801 1802
			ptepage = pte_page(entry);
			get_page(ptepage);
			set_huge_pte_at(dst, addr, dst_pte, entry);
		}
		spin_unlock(&src->page_table_lock);
H
Hugh Dickins 已提交
1803
		spin_unlock(&dst->page_table_lock);
D
David Gibson 已提交
1804 1805 1806 1807 1808 1809 1810
	}
	return 0;

nomem:
	return -ENOMEM;
}

1811
void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1812
			    unsigned long end, struct page *ref_page)
D
David Gibson 已提交
1813 1814 1815
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address;
1816
	pte_t *ptep;
D
David Gibson 已提交
1817 1818
	pte_t pte;
	struct page *page;
1819
	struct page *tmp;
1820 1821 1822
	struct hstate *h = hstate_vma(vma);
	unsigned long sz = huge_page_size(h);

1823 1824 1825 1826 1827
	/*
	 * A page gathering list, protected by per file i_mmap_lock. The
	 * lock is used to avoid list corruption from multiple unmapping
	 * of the same page since we are using page->lru.
	 */
1828
	LIST_HEAD(page_list);
D
David Gibson 已提交
1829 1830

	WARN_ON(!is_vm_hugetlb_page(vma));
1831 1832
	BUG_ON(start & ~huge_page_mask(h));
	BUG_ON(end & ~huge_page_mask(h));
D
David Gibson 已提交
1833

A
Andrea Arcangeli 已提交
1834
	mmu_notifier_invalidate_range_start(mm, start, end);
1835
	spin_lock(&mm->page_table_lock);
1836
	for (address = start; address < end; address += sz) {
1837
		ptep = huge_pte_offset(mm, address);
A
Adam Litke 已提交
1838
		if (!ptep)
1839 1840
			continue;

1841 1842 1843
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		/*
		 * If a reference page is supplied, it is because a specific
		 * page is being unmapped, not a range. Ensure the page we
		 * are about to unmap is the actual page of interest.
		 */
		if (ref_page) {
			pte = huge_ptep_get(ptep);
			if (huge_pte_none(pte))
				continue;
			page = pte_page(pte);
			if (page != ref_page)
				continue;

			/*
			 * Mark the VMA as having unmapped its page so that
			 * future faults in this VMA will fail rather than
			 * looking like data was lost
			 */
			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
		}

1865
		pte = huge_ptep_get_and_clear(mm, address, ptep);
1866
		if (huge_pte_none(pte))
D
David Gibson 已提交
1867
			continue;
1868

D
David Gibson 已提交
1869
		page = pte_page(pte);
1870 1871
		if (pte_dirty(pte))
			set_page_dirty(page);
1872
		list_add(&page->lru, &page_list);
D
David Gibson 已提交
1873
	}
L
Linus Torvalds 已提交
1874
	spin_unlock(&mm->page_table_lock);
1875
	flush_tlb_range(vma, start, end);
A
Andrea Arcangeli 已提交
1876
	mmu_notifier_invalidate_range_end(mm, start, end);
1877 1878 1879 1880
	list_for_each_entry_safe(page, tmp, &page_list, lru) {
		list_del(&page->lru);
		put_page(page);
	}
L
Linus Torvalds 已提交
1881
}
D
David Gibson 已提交
1882

1883
void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
1884
			  unsigned long end, struct page *ref_page)
1885
{
1886 1887 1888
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
	__unmap_hugepage_range(vma, start, end, ref_page);
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1889 1890
}

1891 1892 1893 1894 1895 1896
/*
 * This is called when the original mapper is failing to COW a MAP_PRIVATE
 * mappping it owns the reserve page for. The intention is to unmap the page
 * from other VMAs and let the children be SIGKILLed if they are faulting the
 * same region.
 */
1897 1898
static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
				struct page *page, unsigned long address)
1899
{
1900
	struct hstate *h = hstate_vma(vma);
1901 1902 1903 1904 1905 1906 1907 1908 1909
	struct vm_area_struct *iter_vma;
	struct address_space *mapping;
	struct prio_tree_iter iter;
	pgoff_t pgoff;

	/*
	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
	 * from page cache lookup which is in HPAGE_SIZE units.
	 */
1910
	address = address & huge_page_mask(h);
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
		+ (vma->vm_pgoff >> PAGE_SHIFT);
	mapping = (struct address_space *)page_private(page);

	vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		/* Do not unmap the current VMA */
		if (iter_vma == vma)
			continue;

		/*
		 * Unmap the page from other VMAs without their own reserves.
		 * They get marked to be SIGKILLed if they fault in these
		 * areas. This is because a future no-page fault on this VMA
		 * could insert a zeroed page instead of the data existing
		 * from the time of fork. This would look like data corruption
		 */
		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
			unmap_hugepage_range(iter_vma,
1929
				address, address + huge_page_size(h),
1930 1931 1932 1933 1934 1935
				page);
	}

	return 1;
}

1936
static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
1937 1938
			unsigned long address, pte_t *ptep, pte_t pte,
			struct page *pagecache_page)
1939
{
1940
	struct hstate *h = hstate_vma(vma);
1941
	struct page *old_page, *new_page;
1942
	int avoidcopy;
1943
	int outside_reserve = 0;
1944 1945 1946

	old_page = pte_page(pte);

1947
retry_avoidcopy:
1948 1949 1950 1951 1952
	/* If no-one else is actually using this page, avoid the copy
	 * and just make the page writable */
	avoidcopy = (page_count(old_page) == 1);
	if (avoidcopy) {
		set_huge_ptep_writable(vma, address, ptep);
N
Nick Piggin 已提交
1953
		return 0;
1954 1955
	}

1956 1957 1958 1959 1960 1961 1962 1963 1964
	/*
	 * If the process that created a MAP_PRIVATE mapping is about to
	 * perform a COW due to a shared page count, attempt to satisfy
	 * the allocation without using the existing reserves. The pagecache
	 * page is used to determine if the reserve at this address was
	 * consumed or not. If reserves were used, a partial faulted mapping
	 * at the time of fork() could consume its reserves on COW instead
	 * of the full address range.
	 */
1965
	if (!(vma->vm_flags & VM_MAYSHARE) &&
1966 1967 1968 1969
			is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
			old_page != pagecache_page)
		outside_reserve = 1;

1970
	page_cache_get(old_page);
1971
	new_page = alloc_huge_page(vma, address, outside_reserve);
1972

1973
	if (IS_ERR(new_page)) {
1974
		page_cache_release(old_page);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

		/*
		 * If a process owning a MAP_PRIVATE mapping fails to COW,
		 * it is due to references held by a child and an insufficient
		 * huge page pool. To guarantee the original mappers
		 * reliability, unmap the page from child processes. The child
		 * may get SIGKILLed if it later faults.
		 */
		if (outside_reserve) {
			BUG_ON(huge_pte_none(pte));
			if (unmap_ref_private(mm, vma, old_page, address)) {
				BUG_ON(page_count(old_page) != 1);
				BUG_ON(huge_pte_none(pte));
				goto retry_avoidcopy;
			}
			WARN_ON_ONCE(1);
		}

1993
		return -PTR_ERR(new_page);
1994 1995 1996
	}

	spin_unlock(&mm->page_table_lock);
1997
	copy_huge_page(new_page, old_page, address, vma);
N
Nick Piggin 已提交
1998
	__SetPageUptodate(new_page);
1999 2000
	spin_lock(&mm->page_table_lock);

2001
	ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2002
	if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2003
		/* Break COW */
2004
		huge_ptep_clear_flush(vma, address, ptep);
2005 2006 2007 2008 2009 2010 2011
		set_huge_pte_at(mm, address, ptep,
				make_huge_pte(vma, new_page, 1));
		/* Make the old page be freed below */
		new_page = old_page;
	}
	page_cache_release(new_page);
	page_cache_release(old_page);
N
Nick Piggin 已提交
2012
	return 0;
2013 2014
}

2015
/* Return the pagecache page at a given address within a VMA */
2016 2017
static struct page *hugetlbfs_pagecache_page(struct hstate *h,
			struct vm_area_struct *vma, unsigned long address)
2018 2019
{
	struct address_space *mapping;
2020
	pgoff_t idx;
2021 2022

	mapping = vma->vm_file->f_mapping;
2023
	idx = vma_hugecache_offset(h, vma, address);
2024 2025 2026 2027

	return find_lock_page(mapping, idx);
}

2028
static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2029
			unsigned long address, pte_t *ptep, unsigned int flags)
2030
{
2031
	struct hstate *h = hstate_vma(vma);
2032
	int ret = VM_FAULT_SIGBUS;
2033
	pgoff_t idx;
A
Adam Litke 已提交
2034 2035 2036
	unsigned long size;
	struct page *page;
	struct address_space *mapping;
2037
	pte_t new_pte;
A
Adam Litke 已提交
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
	/*
	 * Currently, we are forced to kill the process in the event the
	 * original mapper has unmapped pages from the child due to a failed
	 * COW. Warn that such a situation has occured as it may not be obvious
	 */
	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
		printk(KERN_WARNING
			"PID %d killed due to inadequate hugepage pool\n",
			current->pid);
		return ret;
	}

A
Adam Litke 已提交
2051
	mapping = vma->vm_file->f_mapping;
2052
	idx = vma_hugecache_offset(h, vma, address);
A
Adam Litke 已提交
2053 2054 2055 2056 2057

	/*
	 * Use page lock to guard against racing truncation
	 * before we get page_table_lock.
	 */
2058 2059 2060
retry:
	page = find_lock_page(mapping, idx);
	if (!page) {
2061
		size = i_size_read(mapping->host) >> huge_page_shift(h);
2062 2063
		if (idx >= size)
			goto out;
2064
		page = alloc_huge_page(vma, address, 0);
2065 2066
		if (IS_ERR(page)) {
			ret = -PTR_ERR(page);
2067 2068
			goto out;
		}
2069
		clear_huge_page(page, address, huge_page_size(h));
N
Nick Piggin 已提交
2070
		__SetPageUptodate(page);
2071

2072
		if (vma->vm_flags & VM_MAYSHARE) {
2073
			int err;
K
Ken Chen 已提交
2074
			struct inode *inode = mapping->host;
2075 2076 2077 2078 2079 2080 2081 2082

			err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
			if (err) {
				put_page(page);
				if (err == -EEXIST)
					goto retry;
				goto out;
			}
K
Ken Chen 已提交
2083 2084

			spin_lock(&inode->i_lock);
2085
			inode->i_blocks += blocks_per_huge_page(h);
K
Ken Chen 已提交
2086
			spin_unlock(&inode->i_lock);
2087 2088 2089
		} else
			lock_page(page);
	}
2090

2091 2092 2093 2094 2095 2096
	/*
	 * If we are going to COW a private mapping later, we examine the
	 * pending reservations for this page now. This will ensure that
	 * any allocations necessary to record that reservation occur outside
	 * the spinlock.
	 */
2097
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2098 2099 2100 2101
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
			goto backout_unlocked;
		}
2102

2103
	spin_lock(&mm->page_table_lock);
2104
	size = i_size_read(mapping->host) >> huge_page_shift(h);
A
Adam Litke 已提交
2105 2106 2107
	if (idx >= size)
		goto backout;

N
Nick Piggin 已提交
2108
	ret = 0;
2109
	if (!huge_pte_none(huge_ptep_get(ptep)))
A
Adam Litke 已提交
2110 2111
		goto backout;

2112 2113 2114 2115
	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
				&& (vma->vm_flags & VM_SHARED)));
	set_huge_pte_at(mm, address, ptep, new_pte);

2116
	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2117
		/* Optimization, do the COW without a second fault */
2118
		ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2119 2120
	}

2121
	spin_unlock(&mm->page_table_lock);
A
Adam Litke 已提交
2122 2123
	unlock_page(page);
out:
2124
	return ret;
A
Adam Litke 已提交
2125 2126 2127

backout:
	spin_unlock(&mm->page_table_lock);
2128
backout_unlocked:
A
Adam Litke 已提交
2129 2130 2131
	unlock_page(page);
	put_page(page);
	goto out;
2132 2133
}

2134
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2135
			unsigned long address, unsigned int flags)
2136 2137 2138
{
	pte_t *ptep;
	pte_t entry;
2139
	int ret;
2140
	struct page *pagecache_page = NULL;
2141
	static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2142
	struct hstate *h = hstate_vma(vma);
2143

2144
	ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2145 2146 2147
	if (!ptep)
		return VM_FAULT_OOM;

2148 2149 2150 2151 2152 2153
	/*
	 * Serialize hugepage allocation and instantiation, so that we don't
	 * get spurious allocation failures if two CPUs race to instantiate
	 * the same page in the page cache.
	 */
	mutex_lock(&hugetlb_instantiation_mutex);
2154 2155
	entry = huge_ptep_get(ptep);
	if (huge_pte_none(entry)) {
2156
		ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2157
		goto out_mutex;
2158
	}
2159

N
Nick Piggin 已提交
2160
	ret = 0;
2161

2162 2163 2164 2165 2166 2167 2168 2169
	/*
	 * If we are going to COW the mapping later, we examine the pending
	 * reservations for this page now. This will ensure that any
	 * allocations necessary to record that reservation occur outside the
	 * spinlock. For private mappings, we also lookup the pagecache
	 * page now as it is used to determine if a reservation has been
	 * consumed.
	 */
2170
	if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2171 2172
		if (vma_needs_reservation(h, vma, address) < 0) {
			ret = VM_FAULT_OOM;
2173
			goto out_mutex;
2174
		}
2175

2176
		if (!(vma->vm_flags & VM_MAYSHARE))
2177 2178 2179 2180
			pagecache_page = hugetlbfs_pagecache_page(h,
								vma, address);
	}

2181 2182
	spin_lock(&mm->page_table_lock);
	/* Check for a racing update before calling hugetlb_cow */
2183 2184 2185 2186
	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
		goto out_page_table_lock;


2187
	if (flags & FAULT_FLAG_WRITE) {
2188
		if (!pte_write(entry)) {
2189 2190
			ret = hugetlb_cow(mm, vma, address, ptep, entry,
							pagecache_page);
2191 2192 2193 2194 2195
			goto out_page_table_lock;
		}
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
2196 2197
	if (huge_ptep_set_access_flags(vma, address, ptep, entry,
						flags & FAULT_FLAG_WRITE))
2198 2199 2200
		update_mmu_cache(vma, address, entry);

out_page_table_lock:
2201
	spin_unlock(&mm->page_table_lock);
2202 2203 2204 2205 2206 2207

	if (pagecache_page) {
		unlock_page(pagecache_page);
		put_page(pagecache_page);
	}

2208
out_mutex:
2209
	mutex_unlock(&hugetlb_instantiation_mutex);
2210 2211

	return ret;
2212 2213
}

A
Andi Kleen 已提交
2214 2215 2216 2217 2218 2219 2220 2221 2222
/* Can be overriden by architectures */
__attribute__((weak)) struct page *
follow_huge_pud(struct mm_struct *mm, unsigned long address,
	       pud_t *pud, int write)
{
	BUG();
	return NULL;
}

K
KOSAKI Motohiro 已提交
2223 2224 2225 2226 2227 2228 2229 2230
static int huge_zeropage_ok(pte_t *ptep, int write, int shared)
{
	if (!ptep || write || shared)
		return 0;
	else
		return huge_pte_none(huge_ptep_get(ptep));
}

D
David Gibson 已提交
2231 2232
int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
			struct page **pages, struct vm_area_struct **vmas,
2233 2234
			unsigned long *position, int *length, int i,
			int write)
D
David Gibson 已提交
2235
{
2236 2237
	unsigned long pfn_offset;
	unsigned long vaddr = *position;
D
David Gibson 已提交
2238
	int remainder = *length;
2239
	struct hstate *h = hstate_vma(vma);
K
KOSAKI Motohiro 已提交
2240 2241
	int zeropage_ok = 0;
	int shared = vma->vm_flags & VM_SHARED;
D
David Gibson 已提交
2242

2243
	spin_lock(&mm->page_table_lock);
D
David Gibson 已提交
2244
	while (vaddr < vma->vm_end && remainder) {
A
Adam Litke 已提交
2245 2246
		pte_t *pte;
		struct page *page;
D
David Gibson 已提交
2247

A
Adam Litke 已提交
2248 2249 2250 2251 2252
		/*
		 * Some archs (sparc64, sh*) have multiple pte_ts to
		 * each hugepage.  We have to make * sure we get the
		 * first, for the page indexing below to work.
		 */
2253
		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
K
KOSAKI Motohiro 已提交
2254 2255
		if (huge_zeropage_ok(pte, write, shared))
			zeropage_ok = 1;
D
David Gibson 已提交
2256

K
KOSAKI Motohiro 已提交
2257 2258
		if (!pte ||
		    (huge_pte_none(huge_ptep_get(pte)) && !zeropage_ok) ||
2259
		    (write && !pte_write(huge_ptep_get(pte)))) {
A
Adam Litke 已提交
2260
			int ret;
D
David Gibson 已提交
2261

A
Adam Litke 已提交
2262
			spin_unlock(&mm->page_table_lock);
2263
			ret = hugetlb_fault(mm, vma, vaddr, write);
A
Adam Litke 已提交
2264
			spin_lock(&mm->page_table_lock);
2265
			if (!(ret & VM_FAULT_ERROR))
A
Adam Litke 已提交
2266
				continue;
D
David Gibson 已提交
2267

A
Adam Litke 已提交
2268 2269 2270 2271 2272 2273
			remainder = 0;
			if (!i)
				i = -EFAULT;
			break;
		}

2274
		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2275
		page = pte_page(huge_ptep_get(pte));
2276
same_page:
2277
		if (pages) {
K
KOSAKI Motohiro 已提交
2278 2279 2280
			if (zeropage_ok)
				pages[i] = ZERO_PAGE(0);
			else
2281
				pages[i] = mem_map_offset(page, pfn_offset);
K
KOSAKI Motohiro 已提交
2282
			get_page(pages[i]);
2283
		}
D
David Gibson 已提交
2284 2285 2286 2287 2288

		if (vmas)
			vmas[i] = vma;

		vaddr += PAGE_SIZE;
2289
		++pfn_offset;
D
David Gibson 已提交
2290 2291
		--remainder;
		++i;
2292
		if (vaddr < vma->vm_end && remainder &&
2293
				pfn_offset < pages_per_huge_page(h)) {
2294 2295 2296 2297 2298 2299
			/*
			 * We use pfn_offset to avoid touching the pageframes
			 * of this compound page.
			 */
			goto same_page;
		}
D
David Gibson 已提交
2300
	}
2301
	spin_unlock(&mm->page_table_lock);
D
David Gibson 已提交
2302 2303 2304 2305 2306
	*length = remainder;
	*position = vaddr;

	return i;
}
2307 2308 2309 2310 2311 2312 2313 2314

void hugetlb_change_protection(struct vm_area_struct *vma,
		unsigned long address, unsigned long end, pgprot_t newprot)
{
	struct mm_struct *mm = vma->vm_mm;
	unsigned long start = address;
	pte_t *ptep;
	pte_t pte;
2315
	struct hstate *h = hstate_vma(vma);
2316 2317 2318 2319

	BUG_ON(address >= end);
	flush_cache_range(vma, address, end);

2320
	spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2321
	spin_lock(&mm->page_table_lock);
2322
	for (; address < end; address += huge_page_size(h)) {
2323 2324 2325
		ptep = huge_pte_offset(mm, address);
		if (!ptep)
			continue;
2326 2327
		if (huge_pmd_unshare(mm, &address, ptep))
			continue;
2328
		if (!huge_pte_none(huge_ptep_get(ptep))) {
2329 2330 2331 2332 2333 2334
			pte = huge_ptep_get_and_clear(mm, address, ptep);
			pte = pte_mkhuge(pte_modify(pte, newprot));
			set_huge_pte_at(mm, address, ptep, pte);
		}
	}
	spin_unlock(&mm->page_table_lock);
2335
	spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2336 2337 2338 2339

	flush_tlb_range(vma, start, end);
}

2340 2341
int hugetlb_reserve_pages(struct inode *inode,
					long from, long to,
2342 2343
					struct vm_area_struct *vma,
					int acctflag)
2344
{
2345
	long ret, chg;
2346
	struct hstate *h = hstate_inode(inode);
2347

2348 2349 2350 2351 2352 2353 2354 2355
	/*
	 * Only apply hugepage reservation if asked. At fault time, an
	 * attempt will be made for VM_NORESERVE to allocate a page
	 * and filesystem quota without using reserves
	 */
	if (acctflag & VM_NORESERVE)
		return 0;

2356 2357 2358 2359 2360 2361
	/*
	 * Shared mappings base their reservation on the number of pages that
	 * are already allocated on behalf of the file. Private mappings need
	 * to reserve the full area even if read-only as mprotect() may be
	 * called to make the mapping read-write. Assume !vma is a shm mapping
	 */
2362
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2363
		chg = region_chg(&inode->i_mapping->private_list, from, to);
2364 2365 2366 2367 2368
	else {
		struct resv_map *resv_map = resv_map_alloc();
		if (!resv_map)
			return -ENOMEM;

2369
		chg = to - from;
2370

2371 2372 2373 2374
		set_vma_resv_map(vma, resv_map);
		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
	}

2375 2376
	if (chg < 0)
		return chg;
2377

2378
	/* There must be enough filesystem quota for the mapping */
2379 2380
	if (hugetlb_get_quota(inode->i_mapping, chg))
		return -ENOSPC;
2381 2382

	/*
2383 2384
	 * Check enough hugepages are available for the reservation.
	 * Hand back the quota if there are not
2385
	 */
2386
	ret = hugetlb_acct_memory(h, chg);
K
Ken Chen 已提交
2387 2388
	if (ret < 0) {
		hugetlb_put_quota(inode->i_mapping, chg);
2389
		return ret;
K
Ken Chen 已提交
2390
	}
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

	/*
	 * Account for the reservations made. Shared mappings record regions
	 * that have reservations as they are shared by multiple VMAs.
	 * When the last VMA disappears, the region map says how much
	 * the reservation was and the page cache tells how much of
	 * the reservation was consumed. Private mappings are per-VMA and
	 * only the consumed reservations are tracked. When the VMA
	 * disappears, the original reservation is the VMA size and the
	 * consumed reservations are stored in the map. Hence, nothing
	 * else has to be done for private mappings here
	 */
2403
	if (!vma || vma->vm_flags & VM_MAYSHARE)
2404
		region_add(&inode->i_mapping->private_list, from, to);
2405 2406 2407 2408 2409
	return 0;
}

void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
{
2410
	struct hstate *h = hstate_inode(inode);
2411
	long chg = region_truncate(&inode->i_mapping->private_list, offset);
K
Ken Chen 已提交
2412 2413

	spin_lock(&inode->i_lock);
2414
	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
K
Ken Chen 已提交
2415 2416
	spin_unlock(&inode->i_lock);

2417
	hugetlb_put_quota(inode->i_mapping, (chg - freed));
2418
	hugetlb_acct_memory(h, -(chg - freed));
2419
}